CN103323212A - Experimental device and method for simulating wellbore annulus drilling fluid flow characteristics - Google Patents
Experimental device and method for simulating wellbore annulus drilling fluid flow characteristics Download PDFInfo
- Publication number
- CN103323212A CN103323212A CN2013102627380A CN201310262738A CN103323212A CN 103323212 A CN103323212 A CN 103323212A CN 2013102627380 A CN2013102627380 A CN 2013102627380A CN 201310262738 A CN201310262738 A CN 201310262738A CN 103323212 A CN103323212 A CN 103323212A
- Authority
- CN
- China
- Prior art keywords
- mud
- hole
- flange
- seat
- drill pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 11
- 239000012530 fluid Substances 0.000 title abstract description 39
- 238000002474 experimental method Methods 0.000 claims abstract description 14
- 238000004088 simulation Methods 0.000 claims description 12
- 239000005341 toughened glass Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims 5
- 238000004519 manufacturing process Methods 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000005086 pumping Methods 0.000 abstract 1
- 238000005520 cutting process Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 2
- 241000233855 Orchidaceae Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
Images
Landscapes
- Earth Drilling (AREA)
Abstract
本发明涉及一种模拟井筒环空钻井液流动特性的实验装置及方法,利用外筒和模拟钻杆模拟井筒环空并固定于支撑台板之上,通过旋转马达带到模拟钻杆转动,并控制模拟钻杆转速;利用泥浆泵向外筒和模拟钻杆之间的井筒环空中注入泥浆,并控制流量;控制举升马达调节支撑台板与水平线之间的角度;通过特制的偏心孔法兰盘来控制钻杆偏心量;本发明可以实验模拟不同钻杆转速、不同流量、不同井斜角、不同偏心距下井筒环空钻井液流动特性,满足了不同工况的要求,且实验所用泥浆可以循环泵入、反复使用,节约成本。
The invention relates to an experimental device and method for simulating the flow characteristics of drilling fluid in the annulus of a wellbore. An outer cylinder and a simulated drill pipe are used to simulate the annulus of the wellbore and fixed on a supporting platform, and the simulated drill pipe is rotated by a rotating motor, and Control the rotational speed of the simulated drill pipe; use the mud pump to inject mud into the wellbore annulus between the outer cylinder and the simulated drill pipe, and control the flow; control the lifting motor to adjust the angle between the support table and the horizontal line; through the special eccentric hole flange to control the eccentricity of the drill pipe; the present invention can experimentally simulate the flow characteristics of drilling fluid in the annulus of the wellbore under different drill pipe speeds, different flow rates, different inclination angles, and different eccentricities, which meets the requirements of different working conditions, and the mud used in the experiment can be Circulation pumping, repeated use, saving cost.
Description
技术领域 technical field
本发明属于钻井工况实验研究领域,具体涉及一种模拟井筒环空钻井液流动特性的实验装置及方法。 The invention belongs to the field of experimental research on drilling working conditions, and in particular relates to an experimental device and method for simulating the flow characteristics of drilling fluid in the annulus of a wellbore.
背景技术 Background technique
钻井液是钻井的血液,在钻井工程中有着十分重要的作用。除了冷却和润滑钻头及钻柱、平衡井壁岩石侧压力、平衡地层压力、有效传递水力功率外,其最主要的作用是把岩屑从井底携带至地面,从而保持井底清洁,避免钻头重复切削,减少磨损,提高效率。而岩屑颗粒的举升与钻井液的流动状态密切相关,钻井液在井筒环空中的压强与速度分布决定了是否能够顺利将岩屑携带至地面。实际工程中,为了确保岩屑能够顺利上返,通常通过增大泵压、提高钻井液流量来实现。但这时,钻井液在井筒中的压力损失增大了;对于属于非牛顿流体的钻井液而言,其流动形态也发生了转变,即从层流转变成为紊流,在钻杆旋转的作用下,还可能出现杂乱紊动的旋流。因此,正确掌握钻井液在井筒中的流动特性,合理控制泵压和流量,是决定安全高效钻进的前提。 Drilling fluid is the blood of drilling and plays a very important role in drilling engineering. In addition to cooling and lubricating the drill bit and drill string, balancing the lateral pressure of the wellbore rock, balancing the formation pressure, and effectively transmitting hydraulic power, its main function is to carry cuttings from the bottom of the well to the surface, so as to keep the bottom of the well clean and prevent the drilling of the drill bit. Repeated cutting reduces wear and improves efficiency. The lifting of cuttings particles is closely related to the flow state of the drilling fluid. The pressure and velocity distribution of the drilling fluid in the annulus of the wellbore determines whether the cuttings can be carried to the surface smoothly. In actual engineering, in order to ensure the smooth return of cuttings, it is usually achieved by increasing the pump pressure and increasing the flow rate of drilling fluid. But at this time, the pressure loss of the drilling fluid in the wellbore increases; for the drilling fluid belonging to non-Newtonian fluid, its flow form also changes, that is, from laminar flow to turbulent flow. Under the circumstances, there may also be a messy and turbulent swirl. Therefore, correctly grasping the flow characteristics of drilling fluid in the wellbore and reasonably controlling the pump pressure and flow rate are the prerequisites for safe and efficient drilling.
国外学者已经对环状空间中的流体流动做了很多研究,1993年Nouri等人通过实验研究分析了偏心和同心垂直环空中流体的紊动流动,但是没有考虑环空内筒旋转对流体流动的影响。1995年,Escudier和Gouldson实验研究分析了中心筒转动对牛顿流体和假塑性流体流动的影响,得到了不同流动情况下的速度剖面,指出流体摩擦因子是流体流速的函数。国内在该方面的研究一般借助于数学理论模型或CFD模拟,实验研究成果较少。 Foreign scholars have done a lot of research on the fluid flow in the annular space. In 1993, Nouri et al. analyzed the turbulent flow of fluid in the eccentric and concentric vertical annulus through experimental research, but did not consider the influence of the rotation of the inner cylinder of the annulus on the fluid flow. Influence. In 1995, Escudier and Gouldson experimentally analyzed the influence of central cylinder rotation on the flow of Newtonian fluid and pseudoplastic fluid, obtained the velocity profiles under different flow conditions, and pointed out that the fluid friction factor is a function of fluid velocity. Domestic research in this area generally relies on mathematical theoretical models or CFD simulations, and there are few experimental research results.
实际钻井过程中钻杆旋转、偏心时常发生,它们对钻井液流动特性的影响十分显著。另外,斜井、水平井也是现今常见的井身结构,不同井斜角也会对井筒内流体的流动状态产生重大影响。同时考虑钻杆转速、钻杆偏心、井斜角,才能正确地评价钻井作业时井筒环空中钻井液的水力特性。因此,提供一种能够模拟不同井斜角、不同偏心距、不同钻杆转速、不同流量条件下的井筒环空钻井液流动特性的实验装置及方法显得尤为必要。 Drill pipe rotation and eccentricity often occur in the actual drilling process, and their influence on the flow characteristics of drilling fluid is very significant. In addition, deviated wells and horizontal wells are also common wellbore structures nowadays, and different inclination angles will also have a significant impact on the fluid flow state in the wellbore. At the same time, considering the drill pipe speed, drill pipe eccentricity, and well inclination angle, the hydraulic characteristics of the drilling fluid in the wellbore annulus can be correctly evaluated during drilling operations. Therefore, it is particularly necessary to provide an experimental device and method capable of simulating the flow characteristics of drilling fluid in the annulus of the wellbore under different inclination angles, different eccentric distances, different drill pipe rotation speeds, and different flow conditions.
发明内容 Contents of the invention
本发明的目的是,提出一种模拟井筒环空钻井液流动特性的实验装置及方法。 The object of the present invention is to propose an experimental device and method for simulating the flow characteristics of drilling fluid in the annular space of the wellbore.
为了实现上述目的,本发明采取以下技术方案: In order to achieve the above object, the present invention takes the following technical solutions:
本发明涉及一种模拟井筒环空钻井液流动特性的实验装置,包括外筒、模拟钻杆、孔法兰盘、支架滚轴、旋转马达、前测压表、后测压表、前分流器、后分流器、支撑台板、支撑杆、伸缩杆、举升马达、流量计、泥浆泵、泥浆罐、泥浆循环阀、泥浆输入阀、泥浆输出阀、前滑轮、后滑轮、钢丝绳、卡抱、旁孔、轴孔、孔法兰座、偏心孔法兰盘、偏法兰轴孔、偏法兰旁孔、偏法兰座、旋转马达座、支架滚轴座。外筒由透明钢化玻璃制成,两端设有前测压表和后测压表;外筒中间设有模拟钻杆,模拟钻杆两端分别与旋转马达和支架滚轴相连;外筒两端通过法兰分别连接有前分流器和后分流器,且两端法兰连接处设有孔法兰盘或偏心孔法兰盘;前分流器通过软管与泥浆泵相连,前分流器前端设有一流量计,流量计与泥浆泵之间设有一泥浆输入阀;后分流器与泥浆罐通过软管相连,两者之间设有一泥浆输出阀;泥浆罐通过软管与泥浆泵相连,两者之间设有一泥浆循环阀;孔法兰盘或偏心孔法兰盘下端、旋转马达下端以及支架滚轴下端分别设有孔法兰座或偏法兰座、旋转马达座、支架滚轴座,孔法兰座或偏法兰座、旋转马达座、支架滚轴座均通过螺钉连接固定于支撑台板之上;支撑台板两端设有前滑轮和后滑轮,后滑轮上固定有钢丝绳,钢丝绳通过前滑轮后,固定于举升马达之上;支撑台板下部设有支撑杆和伸缩杆。 The invention relates to an experimental device for simulating the flow characteristics of drilling fluid in the annular space of a wellbore, which includes an outer cylinder, a simulated drill pipe, a hole flange, a support roller, a rotating motor, a front pressure gauge, a rear pressure gauge, a front diverter, and a rear pressure gauge. Diverter, support plate, support rod, telescopic rod, lift motor, flow meter, mud pump, mud tank, mud circulation valve, mud input valve, mud output valve, front pulley, rear pulley, wire rope, clamping, side Hole, shaft hole, hole flange seat, eccentric hole flange, partial flange shaft hole, partial flange side hole, partial flange seat, rotating motor seat, bracket roller seat. The outer cylinder is made of transparent tempered glass, with a front pressure gauge and a rear pressure gauge at both ends; a simulated drill pipe is installed in the middle of the outer cylinder, and the two ends of the simulated drill pipe are respectively connected with the rotating motor and the support roller; The ends are connected to the front splitter and the rear splitter respectively through flanges, and flanges with holes or eccentric holes are arranged at the flange joints at both ends; the front splitter is connected to the mud pump through a hose, and a flow meter is provided at the front end of the front splitter , there is a mud input valve between the flow meter and the mud pump; the rear splitter is connected to the mud tank through a hose, and a mud output valve is set between the two; the mud tank is connected to the mud pump through a hose, and a There is a mud circulation valve; the lower end of the hole flange or eccentric hole flange, the lower end of the rotating motor and the lower end of the support roller are respectively provided with a hole flange seat or a partial flange seat, a rotary motor seat, a support roller seat, a hole flange seat or a partial flange seat, and a rotating The motor seat and the bracket roller seat are fixed on the supporting platform through screw connection; the two ends of the supporting platform are equipped with a front pulley and a rear pulley, and a steel wire rope is fixed on the rear pulley. After the steel wire rope passes through the front pulley, it is fixed to the lifting motor. above; the lower part of the support plate is provided with support rods and telescopic rods.
所述的一种模拟井筒环空钻井液流动特性的实验装置可以提供一种模拟井筒环空钻井液流动特性的实验方法,其具体过程如下:首先,根据实验所需的偏心距δ选择孔法兰盘或偏心孔法兰盘,在外筒中安放好模拟钻杆,并装备好整套装置;然后,控制举升马达和伸缩杆调节支撑台板与水平线所成角度;打开泥浆循环阀、泥浆输入阀和泥浆输出阀,打开泥浆泵向模拟钻杆与外筒之间的环空中泵入泥浆;泥浆经由前分流器整流后进入环空,通过环空后又由后分流器汇集,然后通过软管排至泥浆罐中;通过泥浆输入阀调节控制泥浆输入流量,从流量计上读出泥浆流量值,并记录;待泥浆形成稳定循环后,打开旋转马达,带动模拟钻杆旋转,调整旋转马达以控制模拟钻杆转速,并记录转速;观察前测压表和后测压表读数,待读数稳定后记录压力值。 The described experimental device for simulating the flow characteristics of wellbore annular drilling fluid can provide an experimental method for simulating the flow characteristics of wellbore annular drilling fluid. The specific process is as follows: first, select the hole flange according to the eccentricity δ required for the experiment Or the eccentric hole flange, place the simulated drill pipe in the outer cylinder, and equip the whole set of devices; then, control the lifting motor and telescopic rod to adjust the angle between the support table and the horizontal line; open the mud circulation valve, mud input valve and mud output valve , Turn on the mud pump to pump mud into the annular space between the simulated drill pipe and the outer cylinder; the mud enters the annular space after being rectified by the front splitter, and then collected by the rear splitter after passing through the annular space, and then discharged to the mud tank through the hose Middle; adjust and control the mud input flow through the mud input valve, read the mud flow value from the flow meter, and record it; after the mud forms a stable circulation, turn on the rotating motor to drive the simulated drill pipe to rotate, and adjust the rotated motor to control the simulated drill pipe Speed, and record the speed; observe the readings of the front and rear pressure gauges, and record the pressure value after the readings are stable.
所述装置的支撑台板与水平线所成角度调节范围为0°~90°。 The adjustment range of the angle formed by the supporting platen of the device and the horizontal line is 0°-90°.
所述装置的孔法兰盘上开有轴孔和旁孔,偏心孔法兰盘上开有偏法兰轴孔和偏法兰旁孔。 The hole flange of the device is provided with a shaft hole and a side hole, and the eccentric hole flange is provided with a side flange shaft hole and a side hole of the side flange.
所述装置的偏心孔法兰盘上的偏法兰轴孔中心相对孔法兰盘轴孔中心的偏心距δ根据实际实验需要的偏心程度加工制造。 The eccentric distance δ between the center of the shaft hole of the eccentric flange on the flange of the eccentric hole of the device and the center of the shaft hole of the flange is processed and manufactured according to the degree of eccentricity required by the actual experiment.
所述装置外筒外壁设有一卡抱,通过螺钉连接于支撑台板之上。 The outer wall of the outer cylinder of the device is provided with a clamp, which is connected to the supporting platform by screws.
本发明具有以下优点: The present invention has the following advantages:
1、本发明可操作性强,可以实验模拟不同井斜角、不同偏心距、不同钻杆转速、不同流量下井筒环空钻井液流动特性,满足了不同工况的要求。 1. The present invention has strong operability, and can experimentally simulate the flow characteristics of drilling fluid in the annulus of the wellbore under different well inclination angles, different eccentric distances, different drill pipe speeds, and different flow rates, and meets the requirements of different working conditions.
2、实验所用泥浆可以循环泵入、反复使用,节约成本。 2. The mud used in the experiment can be pumped in circularly and used repeatedly to save cost.
附图说明 Description of drawings
图1为本发明装置整体布局示意图 Fig. 1 is a schematic diagram of the overall layout of the device of the present invention
图2为孔法兰盘和偏心孔法兰盘示意图 Figure 2 is a schematic diagram of a hole flange and an eccentric hole flange
图3为前分流器和旋转马达相对空间位置示意图 Figure 3 is a schematic diagram of the relative spatial positions of the front splitter and the rotary motor
图4为后分流器和支架滚轴相对空间位置示意图 Figure 4 is a schematic diagram of the relative spatial positions of the rear splitter and the support rollers
图5为前分流器与外筒法兰连接示意图 Figure 5 is a schematic diagram of the connection between the front splitter and the outer cylinder flange
其中,1.外筒、2.模拟钻杆、3.孔法兰盘、4.支架滚轴、5.旋转马达、6.前测压表、7.后测压表、8.前分流器、9.后分流器、10.支撑台板、11.支撑杆、12.伸缩杆、13.举升马达、14.流量计、15.泥浆泵、16.泥浆罐、17.泥浆循环阀、18.泥浆输入阀、19.泥浆输出阀、20.前滑轮、21.后滑轮、22.钢丝绳、23.卡抱、24.旁孔、25.轴孔、26.孔法兰座、27.偏心孔法兰盘、28.偏法兰轴孔、29.偏法兰旁孔、30.偏法兰座、31.旋转马达座、32.支架滚轴座。 Among them, 1. Outer cylinder, 2. Simulated drill pipe, 3. Hole flange, 4. Support roller, 5. Rotary motor, 6. Front pressure gauge, 7. Rear pressure gauge, 8. Front diverter, 9 .Rear diverter, 10. Support platen, 11. Support rod, 12. Telescopic rod, 13. Lift motor, 14. Flow meter, 15. Mud pump, 16. Mud tank, 17. Mud circulation valve, 18. Mud input valve, 19. Mud output valve, 20. Front pulley, 21. Rear pulley, 22. Wire rope, 23. Clamp, 24. Side hole, 25. Shaft hole, 26. Hole flange seat, 27. Eccentric hole flange, 28. Partial flange shaft hole, 29. Partial flange side hole, 30. Partial flange seat, 31. Rotary motor seat, 32. Bracket roller seat.
具体实施方式 Detailed ways
下面结合附图及实施例,对本发明的具体实施作进一步描述。 The specific implementation of the present invention will be further described below in conjunction with the accompanying drawings and embodiments.
本发明涉及一种模拟井筒环空钻井液流动特性的实验装置,包括外筒1、模拟钻杆2、孔法兰盘3、支架滚轴4、旋转马达5、前测压表6、后测压表7、前分流器8、后分流器9、支撑台板10、支撑杆11、伸缩杆12、举升马达13、流量计14、泥浆泵15、泥浆罐16、泥浆循环阀17、泥浆输入阀18、泥浆输出阀19、前滑轮20、后滑轮21、钢丝绳22、卡抱23、旁孔24、轴孔25、孔法兰座26、偏心孔法兰盘27、偏法兰轴孔28、偏法兰旁孔29、偏法兰座30、旋转马达座31、支架滚轴座32。
The invention relates to an experimental device for simulating the flow characteristics of drilling fluid in the annular space of a wellbore, comprising an
如图1所示,外筒1由透明钢化玻璃制成,两端设有前测压表6和后测压表7,用于测定泥浆稳定流动后的压力值;外筒1中间设有模拟钻杆2,模拟钻杆2两端分别与旋转马达5和支架滚轴4相连,通过旋转马达5带动模拟钻杆2转动,支架滚轴4为模拟钻杆2提供支撑;外筒1两端通过法兰分别连接有前分流器8和后分流器9,且两端法兰连接处设有孔法兰盘3或偏心孔法兰盘27(前分流器8与外筒1法兰连接如图5所示,后分流器9和外筒1法兰连接方式与前分流器8和外筒1连接类似),连接后前分流器8和旋转马达5的空间位置,以及后分流器9和支架滚轴4的空间位置分别如图3和4所示;前分流器8通过软管与泥浆泵15相连,前分流器8前端设有一流量计14,流量计14与泥浆泵15之间设有一泥浆输入阀18,通过调节泥浆输入阀18控制输入泥浆流量,并通过流量计14读取泥浆流量值;后分流器9与泥浆罐16通过软管相连,两者之间设有一泥浆输出阀19;泥浆罐16通过软管与泥浆泵15相连,两者之间设有一泥浆循环阀17;孔法兰盘3或偏心孔法兰盘27下端、旋转马达5下端以及支架滚轴4下端分别设有孔法兰座26或偏法兰座30、旋转马达座31、支架滚轴座32,孔法兰座26或偏法兰座30、旋转马达座31、支架滚轴座32均通过螺钉连接固定于支撑台板10之上;支撑台板10两端设有前滑轮20和后滑轮21,后滑轮21上固定有钢丝绳22,钢丝绳22通过前滑轮20后,固定于举升马达13之上,通过举升马达13带动支撑台板10的抬升和下降;支撑台板10下部设有支撑杆11和伸缩杆12;通过举升马达13和伸缩杆12的配合,可以实现支撑台板10的多角度调节;所述装置的支撑台板10与水平线所成角度调节范围为0°~90°;如图2(A)所示,孔法兰盘3上开有轴孔25和旁孔24,如图2(B)所示,偏心孔法兰盘27上开有偏法兰轴孔28和偏法兰旁孔29;如图2所示,所述装置的偏心孔法兰盘27上的偏法兰轴孔28中心相对孔法兰盘3轴孔25中心的偏心距δ根据实际实验需要的偏心程度加工制造;所述装置外筒1外壁设有一卡抱23,通过螺钉连接于支撑台板10之上。
As shown in Figure 1, the outer cylinder 1 is made of transparent tempered glass, with a front pressure gauge 6 and a rear pressure gauge 7 at both ends for measuring the pressure value after the mud flows stably; The drill pipe 2 and the two ends of the simulated drill pipe 2 are respectively connected with the rotating motor 5 and the support roller 4, and the simulated drill pipe 2 is driven to rotate by the rotating motor 5, and the support roller 4 provides support for the simulated drill pipe 2; the two ends of the outer cylinder 1 The front splitter 8 and the rear splitter 9 are respectively connected through flanges, and the flange connection at both ends is provided with a hole flange 3 or an eccentric hole flange 27 (the flange connection between the front splitter 8 and the outer cylinder 1 is shown in Figure 5 , the rear splitter 9 and the outer cylinder 1 are connected in a similar way to the connection between the front splitter 8 and the outer cylinder 1), the spatial position of the connection between the rear and front splitter 8 and the rotary motor 5, and the rear splitter 9 and the support roller 4 The spatial positions are shown in Figures 3 and 4 respectively; the front splitter 8 is connected to the mud pump 15 through a hose, a flow meter 14 is provided at the front end of the front splitter 8, and a mud input valve is arranged between the flow meter 14 and the mud pump 15 18. Control the input mud flow by adjusting the
所述的一种模拟井筒环空钻井液流动特性的实验装置可以提供一种模拟井筒环空钻井液流动特性的实验方法,其具体过程如下:首先,根据实验所需的偏心距δ选择孔法兰盘3或偏心孔法兰盘17,在外筒1中安放好模拟钻杆2,并装备好整套装置;然后,控制举升马达13和伸缩杆12调节支撑台板10与水平线所成角度;打开泥浆循环阀17、泥浆输入阀18和泥浆输出阀19,打开泥浆泵15向模拟钻杆2与外筒1之间的环空中泵入泥浆;泥浆经由前分流器8整流后进入环空,通过环空后又由后分流器9汇集,然后通过软管排至泥浆罐16中;通过泥浆输入阀18调节控制泥浆输入流量,从流量计14上读出泥浆流量值,并记录;待泥浆形成稳定循环后,打开旋转马达5,带动模拟钻杆2旋转,调整旋转马达5以控制模拟钻杆2转速,并记录转速;观察前测压表6和后测压表7读数,待读数稳定后记录压力值。
The described experimental device for simulating the flow characteristics of wellbore annular drilling fluid can provide an experimental method for simulating the flow characteristics of wellbore annular drilling fluid. The specific process is as follows: first, select the hole flange according to the eccentricity δ required for the
具体实施例1
模拟水平井段钻井工况下井筒环空钻井液流动特性时,首先,通过控制举升马达13和伸缩杆12调节支撑台板10与水平线所成角度为0°;然后,打开泥浆循环阀17、泥浆输入阀18和泥浆输出阀19,打开泥浆泵15向模拟钻杆2与外筒1之间的环空中泵入泥浆;泥浆经由前分流器8整流后进入环空,通过环空后又由后分流器9汇集,然后通过软管排至泥浆罐16中;通过泥浆输入阀18调节控制泥浆输入流量,从流量计14上读出泥浆流量值,并记录;待泥浆形成稳定循环后,打开旋转马达5,带动模拟钻杆2旋转,调整旋转马达5以控制模拟钻杆2转速,并记录转速;观察前测压表6和后测压表7读数,待读数稳定后记录压力值。通过调节旋转马达5控制模拟钻杆2的转速,以及调节泥浆输入阀18的开度控制泥浆输入流量,可以开展不同钻杆转速、不同流量条件下水平井段井筒环空钻井液流动特性的模拟实验。
When simulating the drilling fluid flow characteristics in the wellbore annulus under the drilling condition of the horizontal well section, firstly, the angle formed by the support table 10 and the horizontal line is adjusted to 0° by controlling the lifting
具体实施例2
模拟垂直井段钻井工况下井筒环空钻井液流动特性时,首先,通过控制举升马达13和伸缩杆12调节支撑台板10与水平线所成角度为90°;然后,打开泥浆循环阀17、泥浆输入阀18和泥浆输出阀19,打开泥浆泵15向模拟钻杆2与外筒1之间的环空中泵入泥浆;泥浆经由前分流器8整流后进入环空,通过环空后又由后分流器9汇集,然后通过软管排至泥浆罐16中;通过泥浆输入阀18调节控制泥浆输入流量,从流量计14上读出泥浆流量值,并记录;待泥浆形成稳定循环后,打开旋转马达5,带动模拟钻杆2旋转,调整旋转马达5以控制模拟钻杆2转速,并记录转速;观察前测压表6和后测压表7读数,待读数稳定后记录压力值。通过调节旋转马达5控制模拟钻杆2的转速,以及调节泥浆输入阀18的开度控制泥浆输入流量,可以开展不同钻杆转速、不同流量条件下垂直井段井筒环空钻井液流动特性的模拟实验。
When simulating the drilling fluid flow characteristics in the wellbore annulus under the drilling conditions of the vertical well section, firstly, the angle formed by the support table 10 and the horizontal line is adjusted to 90° by controlling the lifting
具体实施例3
模拟斜井段钻井工况下井筒环空钻井液流动特性时,首先,通过控制举升马达13和伸缩杆12调节支撑台板10与水平线所成角度为某一锐角角度;然后,打开泥浆循环阀17、泥浆输入阀18和泥浆输出阀19,打开泥浆泵15向模拟钻杆2与外筒1之间的环空中泵入泥浆;泥浆经由前分流器8整流后进入环空,通过环空后又由后分流器9汇集,然后通过软管排至泥浆罐16中;通过泥浆输入阀18调节控制泥浆输入流量,从流量计14上读出泥浆流量值,并记录;待泥浆形成稳定循环后,打开旋转马达5,带动模拟钻杆2旋转,调整旋转马达5以控制模拟钻杆2转速,并记录转速;观察前测压表6和后测压表7读数,待读数稳定后记录压力值。通过调节旋转马达5控制模拟钻杆2的转速,以及调节泥浆输入阀18的开度控制泥浆输入流量,可以开展不同钻杆转速、不同流量条件下某一锐角角度斜井段井筒环空钻井液流动特性的模拟实验。
When simulating the drilling fluid flow characteristics in the annulus of the wellbore under the drilling condition of the deviated section, firstly, adjust the angle formed by the support table 10 and the horizontal line to a certain acute angle by controlling the lifting
具体实施例4 Specific embodiment 4
模拟钻井工况下钻杆存在偏心时的井筒环空钻井液流动特性,首先,根据实验所需的偏心距δ选择偏心孔法兰盘27,将装置中原有的孔法兰盘3更换为偏心孔法兰盘27;然后,根据实验要求反映的井身角度,通过控制举升马达13和伸缩杆12调节支撑台板10与水平线所成的角度;接着,打开泥浆循环阀17、泥浆输入阀18和泥浆输出阀19,打开泥浆泵15向模拟钻杆2与外筒1之间的环空中泵入泥浆;泥浆经由前分流器8整流后进入环空,通过环空后又由后分流器9汇集,然后通过软管排至泥浆罐16中;通过泥浆输入阀18调节控制泥浆输入流量,从流量计14上读出泥浆流量值,并记录;待泥浆形成稳定循环后,打开旋转马达5,带动模拟钻杆2旋转,调整旋转马达5以控制模拟钻杆2转速,并记录转速;观察前测压表6和后测压表7读数,待读数稳定后记录压力值。通过调节旋转马达5控制模拟钻杆2的转速,以及调节泥浆输入阀18的开度控制泥浆输入流量,可以开展不同钻杆转速、不同流量条件下钻杆存在偏心时的井筒环空钻井液流动特性的模拟实验。
To simulate the drilling fluid flow characteristics in the annulus of the wellbore when the drill pipe is eccentric under drilling conditions, first, select the eccentric hole flange 27 according to the eccentric distance δ required for the experiment, and replace the original hole flange 3 in the device with the eccentric hole flange 27; Then, according to the shaft angle reflected by the experiment, the angle between the support plate 10 and the horizontal line is adjusted by controlling the lifting motor 13 and the telescopic rod 12; then, the mud circulation valve 17, the mud input valve 18 and the mud output valve 19 are opened , turn on the mud pump 15 to pump mud into the annular space between the simulated drill pipe 2 and the outer cylinder 1; the mud enters the annular space after being rectified by the front splitter 8, and is collected by the rear splitter 9 after passing through the annular space, and then passes through the soft The pipe is discharged into the mud tank 16; the mud input flow is adjusted and controlled through the mud input valve 18, and the mud flow value is read from the flow meter 14 and recorded; after the mud forms a stable cycle, the rotary motor 5 is turned on to drive the simulated drill pipe 2 Rotate, adjust the rotating motor 5 to control the rotating speed of the simulated drill pipe 2, and record the rotating speed; observe the readings of the front pressure gauge 6 and the rear pressure gauge 7, and record the pressure value after the reading is stable. By adjusting the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102627380A CN103323212A (en) | 2013-06-28 | 2013-06-28 | Experimental device and method for simulating wellbore annulus drilling fluid flow characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102627380A CN103323212A (en) | 2013-06-28 | 2013-06-28 | Experimental device and method for simulating wellbore annulus drilling fluid flow characteristics |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103323212A true CN103323212A (en) | 2013-09-25 |
Family
ID=49192102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013102627380A Pending CN103323212A (en) | 2013-06-28 | 2013-06-28 | Experimental device and method for simulating wellbore annulus drilling fluid flow characteristics |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103323212A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103759920A (en) * | 2014-01-26 | 2014-04-30 | 中国地质大学(武汉) | Hydrodynamic process study experimental apparatus for drilling |
CN104863541A (en) * | 2015-04-22 | 2015-08-26 | 中国石油大学(华东) | Experimental method of simulating cementing in well cementation process |
CN104897858A (en) * | 2015-06-17 | 2015-09-09 | 中国海洋石油总公司 | System for simulating underground dynamic circulation of drilling fluid |
CN105114053A (en) * | 2015-07-28 | 2015-12-02 | 中国石油大学(北京) | In-situ observation tester simulating sand cleaning process in drilling |
CN105390060A (en) * | 2015-12-24 | 2016-03-09 | 中国地质大学(武汉) | Annular multi-field coupling simulation drilling experiment method and apparatus through horizontal directional drilling |
CN106482925A (en) * | 2016-09-23 | 2017-03-08 | 燕山大学 | Experiment and measurement device for simulating flow field induced by simultaneous rotation of drill string and outer cylinder |
CN106761720A (en) * | 2016-11-23 | 2017-05-31 | 西南石油大学 | A kind of air horizontal well drilling annular space takes rock analogue means |
CN107842355A (en) * | 2017-09-24 | 2018-03-27 | 西南石油大学 | One kind measurement annulus multi phase flow fluidised form and fluid pressure experimental provision |
CN107989596A (en) * | 2017-04-11 | 2018-05-04 | 中国石油天然气股份有限公司 | Simulation shaft device and oil-gas-water three-phase flow simulation experiment system |
CN110118080A (en) * | 2019-05-17 | 2019-08-13 | 中国地质大学(武汉) | A kind of experimental rig being eccentrically rotated for dummy level drilling drilling rod |
CN113187466A (en) * | 2021-06-07 | 2021-07-30 | 西南石油大学 | Visual experimental device and method for clearing and evaluating long horizontal section rock debris bed |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102392634A (en) * | 2011-09-29 | 2012-03-28 | 西南石油大学 | Measuring device and measuring method for well-cementing annular weight loss of cement slurry |
CN102787817A (en) * | 2012-09-08 | 2012-11-21 | 东北石油大学 | Comprehensive simulation experimental device of drilling circulation system |
CN202900235U (en) * | 2012-09-11 | 2013-04-24 | 中国海洋石油总公司 | Large slope well sand-carrying effect simulation evaluation device |
-
2013
- 2013-06-28 CN CN2013102627380A patent/CN103323212A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102392634A (en) * | 2011-09-29 | 2012-03-28 | 西南石油大学 | Measuring device and measuring method for well-cementing annular weight loss of cement slurry |
CN102787817A (en) * | 2012-09-08 | 2012-11-21 | 东北石油大学 | Comprehensive simulation experimental device of drilling circulation system |
CN202900235U (en) * | 2012-09-11 | 2013-04-24 | 中国海洋石油总公司 | Large slope well sand-carrying effect simulation evaluation device |
Non-Patent Citations (3)
Title |
---|
杨树人 等: "大斜度井中钻井液携屑规律的实验研究", 《大庆石油学院学报》, vol. 21, no. 1, 31 March 1997 (1997-03-31), pages 126 - 129 * |
雒贵明 等: "水平井大斜度井钻井液流变参数调控技术的实验研究", 《大庆石油学院学报》, vol. 21, no. 1, 31 March 1997 (1997-03-31) * |
马林虎: "定向井和水平井中岩屑携带试验研究", 《石油钻采工艺》, 2 March 1989 (1989-03-02) * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103759920A (en) * | 2014-01-26 | 2014-04-30 | 中国地质大学(武汉) | Hydrodynamic process study experimental apparatus for drilling |
CN104863541B (en) * | 2015-04-22 | 2017-07-11 | 中国石油大学(华东) | Cemented experimental method in one kind simulation well cementing process |
CN104863541A (en) * | 2015-04-22 | 2015-08-26 | 中国石油大学(华东) | Experimental method of simulating cementing in well cementation process |
CN104897858A (en) * | 2015-06-17 | 2015-09-09 | 中国海洋石油总公司 | System for simulating underground dynamic circulation of drilling fluid |
CN105114053A (en) * | 2015-07-28 | 2015-12-02 | 中国石油大学(北京) | In-situ observation tester simulating sand cleaning process in drilling |
CN105114053B (en) * | 2015-07-28 | 2018-04-17 | 中国石油大学(北京) | One kind simulation drilling well sand removal process in-situ observation testing machine |
CN105390060B (en) * | 2015-12-24 | 2017-11-07 | 中国地质大学(武汉) | Horizontal directional drill annular space multi- scenarios method analogic drilling experimental method and experimental provision |
CN105390060A (en) * | 2015-12-24 | 2016-03-09 | 中国地质大学(武汉) | Annular multi-field coupling simulation drilling experiment method and apparatus through horizontal directional drilling |
CN106482925A (en) * | 2016-09-23 | 2017-03-08 | 燕山大学 | Experiment and measurement device for simulating flow field induced by simultaneous rotation of drill string and outer cylinder |
CN106482925B (en) * | 2016-09-23 | 2018-12-07 | 燕山大学 | Simulation drill string and outer cylinder rotate the experiment and measuring device for inducing flow field simultaneously |
CN106761720A (en) * | 2016-11-23 | 2017-05-31 | 西南石油大学 | A kind of air horizontal well drilling annular space takes rock analogue means |
CN107989596A (en) * | 2017-04-11 | 2018-05-04 | 中国石油天然气股份有限公司 | Simulation shaft device and oil-gas-water three-phase flow simulation experiment system |
CN107989596B (en) * | 2017-04-11 | 2021-04-30 | 中国石油天然气股份有限公司 | Simulation shaft device and oil-gas-water three-phase flow simulation experiment system |
CN107842355A (en) * | 2017-09-24 | 2018-03-27 | 西南石油大学 | One kind measurement annulus multi phase flow fluidised form and fluid pressure experimental provision |
CN110118080A (en) * | 2019-05-17 | 2019-08-13 | 中国地质大学(武汉) | A kind of experimental rig being eccentrically rotated for dummy level drilling drilling rod |
CN110118080B (en) * | 2019-05-17 | 2023-12-19 | 中国地质大学(武汉) | A test device for simulating eccentric rotation of horizontal drilling drill pipes |
CN113187466A (en) * | 2021-06-07 | 2021-07-30 | 西南石油大学 | Visual experimental device and method for clearing and evaluating long horizontal section rock debris bed |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103323212A (en) | Experimental device and method for simulating wellbore annulus drilling fluid flow characteristics | |
CN102305021B (en) | Experimental method for simulating dynamic mechanics characteristic of underground drilling rig of air well drilling | |
CN109209337B (en) | Horizontal well drilling lubricity experiment device and method considering rock debris bed | |
CN103531076B (en) | A set of drilling condition simulation system and workflow thereof | |
CN201593387U (en) | Drilling annulus pressure precise control system | |
CN100510690C (en) | Petroleum drilling pipe shocking and sliding wear tester | |
CN103558123B (en) | Experimental provision and the method for sand circulation of drilling fluid flow characteristics are taken in a kind of simulation | |
CN105863611B (en) | A kind of more well type multiphase annular spaces take bits simulator | |
CN103883310A (en) | Experiment table for simulating drilling system | |
CN203769758U (en) | Drilling system simulation experiment table | |
WO2009065523A3 (en) | Self-circulating drill bit | |
CN203296732U (en) | A drilling tool capable of generating axial shock vibration | |
CN205879904U (en) | Experimental device for lost circulation material is denuded by wall of a well under simulation well | |
CN203929547U (en) | A kind of vertical dynamic load casing tube abrasion testing machine | |
CN110469278A (en) | A kind of cutting bed cleaning tool and application method | |
CN107587841A (en) | A kind of water pump installation servicing unit | |
CN209145588U (en) | A multifunctional experimental system for simulating the dynamic circulation of the whole section of drilling | |
CN106989874A (en) | A kind of horizontal high speed rock bit bearing helixseal experimental rig | |
CN204941363U (en) | Telescopic well sinker drilling cramp lifting gear | |
CN208206712U (en) | A kind of rotary friction-wear detecting apparatus | |
CN106482925B (en) | Simulation drill string and outer cylinder rotate the experiment and measuring device for inducing flow field simultaneously | |
CN204382418U (en) | A kind of plank drilling equipment | |
CN106089196B (en) | A kind of improved coal-winning machine | |
CN103278527B (en) | Diamond drill bit heat dispersion performance in-situ measurement test bed | |
CN114961564A (en) | Indoor experimental device and method for optimizing structure of tool for generating alternating flow field at bottom of well |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130925 |