CN103310936A - Low-loss Fe-based nanocrystalline soft magnetic powder core and manufacturing method thereof - Google Patents
Low-loss Fe-based nanocrystalline soft magnetic powder core and manufacturing method thereof Download PDFInfo
- Publication number
- CN103310936A CN103310936A CN2013102807932A CN201310280793A CN103310936A CN 103310936 A CN103310936 A CN 103310936A CN 2013102807932 A CN2013102807932 A CN 2013102807932A CN 201310280793 A CN201310280793 A CN 201310280793A CN 103310936 A CN103310936 A CN 103310936A
- Authority
- CN
- China
- Prior art keywords
- powder core
- magnetic powder
- magnetic
- loss
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000006247 magnetic powder Substances 0.000 title abstract description 65
- 238000004519 manufacturing process Methods 0.000 title abstract 2
- 239000000843 powder Substances 0.000 claims abstract description 9
- 238000002360 preparation method Methods 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 4
- 239000000956 alloy Substances 0.000 claims abstract description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 12
- 238000000137 annealing Methods 0.000 claims description 12
- 238000000498 ball milling Methods 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 238000002161 passivation Methods 0.000 claims description 6
- 239000003822 epoxy resin Substances 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 229920002050 silicone resin Polymers 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims 4
- 238000009413 insulation Methods 0.000 claims 2
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- 230000003064 anti-oxidating effect Effects 0.000 claims 1
- 238000000227 grinding Methods 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- 238000012216 screening Methods 0.000 claims 1
- 238000005275 alloying Methods 0.000 abstract description 3
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000004615 ingredient Substances 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 52
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- VAWNDNOTGRTLLU-UHFFFAOYSA-N iron molybdenum nickel Chemical compound [Fe].[Ni].[Mo] VAWNDNOTGRTLLU-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910000702 sendust Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
技术领域technical field
本发明涉及磁性材料领域,尤其涉及一种低损耗Fe基纳米晶磁粉芯及其制备方法。The invention relates to the field of magnetic materials, in particular to a low-loss Fe-based nanocrystalline magnetic powder core and a preparation method thereof.
背景技术Background technique
软磁粉芯在电子信息、电工及中高频领域有着广泛的应用。随着电子工业的发展,对于电子产品微型化的要求越来越高。近几十年来,为了满足电子工业的发展,各国研究人员采用不同方法制备了各种具有不同磁性能的软磁粉芯,这些磁粉芯广泛应用于滤波器、调频扼流圈及开关电源中。Soft magnetic powder cores are widely used in electronic information, electrical engineering and medium and high frequency fields. With the development of the electronic industry, the requirements for the miniaturization of electronic products are getting higher and higher. In recent decades, in order to meet the development of the electronics industry, researchers from various countries have used different methods to prepare various soft magnetic powder cores with different magnetic properties. These magnetic powder cores are widely used in filters, frequency modulation choke coils and switching power supplies.
1921年,美国西屋公司的Arnold和G.W.Elmen等首次将电解铁粉压制成磁粉芯,他们将这种磁粉芯主要用作电话线路中的负载电感,两年后,他们又研制出高磁导率坡莫合金,并于1927年把其制成了磁粉芯,因其具有良好的优点,很快被产业化,到1950年代已被广泛使用。1932年,日本人增本量和山本宏发明了铁硅铝合金,由于发明地是在仙台,因此铁硅铝合金也被称为Sendust。但是,直到1980年代初,Sendust磁粉芯才成功开发并逐渐实现产业化。1940年,美国贝尔实验室的V.E.Legg和F.J.Given开发了铁镍钼合金磁粉芯,这种磁粉芯由81%镍、17%铁和2%钼组成。因含有2%左右的钼,因此磁导率和电阻率大幅提高、具有良好的时间稳定性、较小的温度系数、低损耗等优点,之后受到高度关注。上世纪六十年代的时候,美国的MK-46II鱼雷的制导和控制部分,就大量使用了该磁芯。In 1921, Arnold and G.W.Elmen of the Westinghouse Company of the United States first pressed electrolytic iron powder into a magnetic powder core. They mainly used this magnetic powder core as a load inductance in telephone lines. Two years later, they developed a high magnetic permeability. Permalloy, and made it into a magnetic powder core in 1927, because of its good advantages, it was quickly industrialized, and it was widely used in the 1950s. In 1932, Japanese Masumoto and Hiroshi Yamamoto invented sendust. Since the invention was in Sendai, sendust is also called Sendust. However, it was not until the early 1980s that Sendust magnetic powder cores were successfully developed and gradually realized industrialization. In 1940, V.E.Legg and F.J.Given of Bell Laboratories in the United States developed an iron-nickel-molybdenum alloy magnetic powder core, which is composed of 81% nickel, 17% iron and 2% molybdenum. Because it contains about 2% molybdenum, the magnetic permeability and resistivity are greatly improved, and it has good time stability, small temperature coefficient, low loss and other advantages, and has attracted high attention since then. In the 1960s, the guidance and control part of the American MK-46II torpedo used this magnetic core extensively.
人们为了使电子器件以适应不同频段的工作环境,使其具有高频、低损耗、高Q值等特性,做了大量的工作。目前,在高端市场上铁镍钼合金磁粉芯占据了主要份额,但由于铁镍钼磁粉芯造价昂贵,其应用一直受到限制。近年来,Fe基纳米晶-非晶软磁粉芯因其成本较低,制备工艺简单,性能优异而备受关注,有望取代铁镍钼磁粉芯的部分用途People have done a lot of work to make electronic devices adapt to the working environment of different frequency bands, so that they have high frequency, low loss, high Q value and other characteristics. At present, iron-nickel-molybdenum alloy magnetic powder cores occupy a major share in the high-end market, but their application has been limited due to the high cost of iron-nickel-molybdenum magnetic powder cores. In recent years, Fe-based nanocrystalline-amorphous soft magnetic powder cores have attracted much attention due to their low cost, simple preparation process, and excellent performance, and are expected to replace some uses of iron-nickel-molybdenum magnetic powder cores.
发明内容Contents of the invention
本发明的目的是克服现有技术的不足,提供一种低损耗Fe基纳米晶磁粉芯及其制备方法。The purpose of the invention is to overcome the deficiencies of the prior art and provide a low-loss Fe-based nanocrystalline magnetic powder core and a preparation method thereof.
低损耗Fe基纳米晶磁粉芯的组成为:FeaSibBcCudMeYf,式中M为C、P、Cr或Mn,下标a、b、c、d、e、f表示相应合金元素的原子百分比,满足以下条件:70≤a≤90,2≤b≤15,4≤c≤13,0.4≤d≤3,2≤e≤8,0<f≤5;且a+b+c+d+e+f=100。The composition of the low-loss Fe-based nanocrystalline magnetic powder core is: Fe a Si b B c Cu d Me Y f , where M is C, P, Cr or Mn, subscripts a, b, c, d, e, f Indicates the atomic percentage of the corresponding alloying element, meeting the following conditions: 70≤a≤90, 2≤b≤15, 4≤c≤13, 0.4≤d≤3, 2≤e≤8, 0<f≤5; and a +b+c+d+e+f=100.
低损耗Fe基纳米晶磁粉芯的制备方法的步骤如下:The steps of the preparation method of the low-loss Fe-based nanocrystalline magnetic powder core are as follows:
(1)将FeaSibBcCudMeYf非晶薄带在真空退火炉中于420℃保温1h后,对其进行机械破碎,式中M为C、P、Cr或Mn,下标a、b、c、d、e、f表示相应合金元素的原子百分比,满足以下条件:70≤a≤90,2≤b≤15,4≤c≤13,0.4≤d≤3,2≤e≤8,0<f≤5;且a+b+c+d+e+f=100;(1) After the Fe a Si b B c Cu d M e Y f amorphous ribbon is kept at 420 ° C for 1 h in a vacuum annealing furnace, it is mechanically crushed, where M is C, P, Cr or Mn, The subscripts a, b, c, d, e, and f represent the atomic percentages of the corresponding alloy elements, and satisfy the following conditions: 70≤a≤90,2≤b≤15,4≤c≤13,0.4≤d≤3,2 ≤e≤8,0<f≤5; and a+b+c+d+e+f=100;
(2)FeaSibBcCudMeYf非晶薄带机械破碎后,置于行星式球磨机中球磨,球料比为5:1,球磨时间为4h,转速为260r/min,并加入乙醇防止氧化,干燥后经筛分得到不同颗粒度的FeaSibBcCudMeYf磁粉;(2) Fe a Si b B c Cu d M e Y f amorphous thin strips are mechanically crushed, and placed in a planetary ball mill for ball milling, the ball-to-material ratio is 5:1, the ball milling time is 4 hours, and the speed is 260r/min. Add ethanol to prevent oxidation, dry and sieve to obtain Fe a Si b B c Cu d Me Y f magnetic powder with different particle sizes;
(3)将不同目数的FeaSibBcCudMeYf磁粉进行混合,其中-100目~+200目的FeaSibBcCudMeYf磁粉占总质量的15%,-200目~+300目的FeaSibBcCudMeYf磁粉占总质量的70%,-300目~+400目的FeaSibBcCudMeYf磁粉占总质量的10%,-400目的FeaSibBcCudMeYf磁粉占总质量的5%,经过0.4wt%的磷酸水溶液钝化处理后,与0.5wt%的有机粘结剂充分混合,并在1.80GPa压强下压制成磁粉芯;(3) Mix Fe a Si b B c Cu d Me Y f magnetic powders of different meshes, among which Fe a Si b B c Cu d Me Y f magnetic powders of -100 mesh to +200 mesh account for 15% of the total mass %, -200 mesh ~ +300 mesh Fe a Si b B c Cu d Me Y f magnetic powder accounts for 70% of the total mass, -300 mesh ~ +400 mesh Fe a Si b B c Cu d Me Y f magnetic powder accounts for 10% of the total mass, -400 mesh Fe a Si b B c Cu d Me Y f magnetic powder accounts for 5% of the total mass, after passivation treatment with 0.4wt% phosphoric acid aqueous solution, and 0.5wt% organic binder Mix well and press into magnetic powder core under 1.80GPa pressure;
(4)将压制好的磁粉芯置于真空退火炉中500℃保温1h,得到Fe基纳米晶磁粉芯。(4) Place the pressed magnetic powder core in a vacuum annealing furnace at 500° C. for 1 hour to obtain a Fe-based nanocrystalline magnetic powder core.
所述的有机粘结剂为环氧树脂或硅酮树脂。The organic binder is epoxy resin or silicone resin.
本发明的优点是:通过此法可获得软磁性能优异的低损耗Fe基纳米晶磁粉芯,且工艺简单,易于成型,利于环保,并具有一定的成本优势。The invention has the advantages that the low-loss Fe-based nanocrystalline magnetic powder core with excellent soft magnetic properties can be obtained through the method, and the process is simple, easy to shape, beneficial to environmental protection, and has certain cost advantages.
具体实施方式Detailed ways
低损耗Fe基纳米晶磁粉芯的组成为:FeaSibBcCudMeYf,式中M为C、P、Cr或Mn,下标a、b、c、d、e、f表示相应合金元素的原子百分比,满足以下条件:70≤a≤90,2≤b≤15,4≤c≤13,0.4≤d≤3,2≤e≤8,0<f≤5;且a+b+c+d+e+f=100。The composition of the low-loss Fe-based nanocrystalline magnetic powder core is: Fe a Si b B c Cu d Me Y f , where M is C, P, Cr or Mn, subscripts a, b, c, d, e, f Indicates the atomic percentage of the corresponding alloying element, meeting the following conditions: 70≤a≤90, 2≤b≤15, 4≤c≤13, 0.4≤d≤3, 2≤e≤8, 0<f≤5; and a +b+c+d+e+f=100.
实施例1Example 1
(1)将Fe70Si15B4Cu0.4M8Y2.6非晶薄带在真空退火炉中于420℃保温1h后,对其进行机械破碎;(1) Mechanically crush the Fe 70 Si 15 B 4 Cu 0.4 M 8 Y 2.6 amorphous ribbon in a vacuum annealing furnace at 420°C for 1 hour;
(2)Fe70Si15B4Cu0.4M8Y2.6非晶薄带机械破碎后,置于行星式球磨机中球磨,球料比为5:1,球磨时间为4h,转速为260r/min,并加入乙醇防止氧化,干燥后经筛分得到不同颗粒度的Fe70Si15B4Cu0.4M8Y2.6磁粉;(2) Fe 70 Si 15 B 4 Cu 0.4 M 8 Y 2.6 Amorphous strips were mechanically crushed, then placed in a planetary ball mill for ball milling with a ball-to-material ratio of 5:1, ball milling time of 4 hours, and a rotational speed of 260r/min. Add ethanol to prevent oxidation, dry and sieve to obtain Fe 70 Si 15 B 4 Cu 0.4 M 8 Y 2.6 magnetic powder with different particle sizes;
(3)将不同目数的Fe70Si15B4Cu0.4M8Y2.6磁粉进行混合,其中-100目~+200目的Fe70Si15B4Cu0.4M8Y2.6磁粉占总质量的15%,-200目~+300目的Fe70Si15B4Cu0.4M8Y2.6磁粉占总质量的70%,-300目~+400目的Fe70Si15B4Cu0.4M8Y2.6磁粉占总质量的10%,-400目的Fe70Si15B4Cu0.4M8Y2.6磁粉占总质量的5%,经过0.4wt%的磷酸水溶液钝化处理后,与0.5wt%的环氧树脂粘结剂充分混合,并在1.80GPa压强下压制成环型坯样;磁环的外径为22.90mm,内径为14.20mm,高为7.60mm。(3) Mix Fe 70 Si 15 B 4 Cu 0.4 M 8 Y 2.6 magnetic powders of different meshes, among which Fe 70 Si 15 B 4 Cu 0.4 M 8 Y 2.6 magnetic powders of -100 mesh to +200 mesh account for 15% of the total mass %, -200 mesh to +300 mesh Fe 70 Si 15 B 4 Cu 0.4 M 8 Y 2.6 magnetic powder accounts for 70% of the total mass, -300 mesh to +400 mesh Fe 70 Si 15 B 4 Cu 0.4 M 8 Y 2.6 magnetic powder accounts for 10% of the total mass, -400 mesh Fe 70 Si 15 B 4 Cu 0.4 M 8 Y 2.6 magnetic powder accounts for 5% of the total mass, after passivation treatment with 0.4wt% phosphoric acid aqueous solution, bonded with 0.5wt% epoxy resin The binder is fully mixed and pressed under a pressure of 1.80GPa to form a ring-shaped blank; the outer diameter of the magnetic ring is 22.90mm, the inner diameter is 14.20mm, and the height is 7.60mm.
(4)将压制好的磁粉芯置于真空退火炉中500℃保温1h,得到Fe基纳米晶磁粉芯。(4) Place the pressed magnetic powder core in a vacuum annealing furnace at 500° C. for 1 hour to obtain a Fe-based nanocrystalline magnetic powder core.
经检测,目标产物的相关电磁参数如表1:After testing, the relevant electromagnetic parameters of the target product are shown in Table 1:
实施例2Example 2
(1)将Fe90Si2B4Cu1P2Y1非晶薄带在真空退火炉中于420℃保温1h后,对其进行机械破碎;(1) After the Fe 90 Si 2 B 4 Cu 1 P 2 Y 1 amorphous thin strip was kept at 420°C for 1 h in a vacuum annealing furnace, it was mechanically crushed;
(2)Fe90Si2B4Cu1P2Y1非晶薄带机械破碎后,置于行星式球磨机中球磨,球料比为5:1,球磨时间为4h,转速为260r/min,并加入乙醇防止氧化,干燥后经筛分得到不同颗粒度的Fe90Si2B4Cu1P2Y1磁粉;(2) After the Fe 90 Si 2 B 4 Cu 1 P 2 Y 1 amorphous strip is mechanically crushed, it is placed in a planetary ball mill for ball milling, the ball-to-material ratio is 5:1, the ball milling time is 4 hours, and the speed is 260r/min. Add ethanol to prevent oxidation, dry and sieve to obtain Fe 90 Si 2 B 4 Cu 1 P 2 Y 1 magnetic powder with different particle sizes;
(3)将不同目数的Fe90Si2B4Cu1P2Y1磁粉进行混合,其中-100目~+200目的Fe90Si2B4Cu1P2Y1磁粉占总质量的15%,-200目~+300目的Fe90Si2B4Cu1P2Y1磁粉占总质量的70%,-300目~+400目的Fe90Si2B4Cu1P2Y1磁粉占总质量的10%,-400目的Fe90Si2B4Cu1P2Y1磁粉占总质量的5%,经过0.4wt%的磷酸水溶液钝化处理后,与0.5wt%的硅酮树脂粘结剂充分混合,并在1.80GPa压强下压制成磁粉芯;(3) Mix Fe 90 Si 2 B 4 Cu 1 P 2 Y 1 magnetic powders of different meshes, among which Fe 90 Si 2 B 4 Cu 1 P 2 Y 1 magnetic powders of -100 mesh to +200 mesh account for 15% of the total mass %, -200 mesh to +300 mesh Fe 90 Si 2 B 4 Cu 1 P 2 Y 1 magnetic powder accounts for 70% of the total mass, -300 mesh to +400 mesh Fe 90 Si 2 B 4 Cu 1 P 2 Y 1 magnetic powder accounts for 10% of the total mass, -400 mesh Fe 90 Si 2 B 4 Cu 1 P 2 Y 1 magnetic powder accounts for 5% of the total mass, after passivation treatment with 0.4wt% phosphoric acid aqueous solution, and 0.5wt% silicone resin The binder is fully mixed and pressed into a magnetic powder core under a pressure of 1.80GPa;
(4)将压制好的磁粉芯置于真空退火炉中500℃保温1h,得到Fe基纳米晶磁粉芯。(4) Place the pressed magnetic powder core in a vacuum annealing furnace at 500° C. for 1 hour to obtain a Fe-based nanocrystalline magnetic powder core.
经检测,目标产物的相关电磁参数如表2:After testing, the relevant electromagnetic parameters of the target product are shown in Table 2:
实施例3Example 3
(1)将Fe60Si11B13Cu3Cr8Y5非晶薄带在真空退火炉中于420℃保温1h后,对其进行机械破碎;(1) Mechanically crush the Fe 60 Si 11 B 13 Cu 3 Cr 8 Y 5 amorphous thin ribbon at 420°C for 1 hour in a vacuum annealing furnace;
(2)Fe60Si11B13Cu3Cr8Y5非晶薄带机械破碎后,置于行星式球磨机中球磨,球料比为5:1,球磨时间为4h,转速为260r/min,并加入乙醇防止氧化,干燥后经筛分得到不同颗粒度的Fe60Si11B13Cu3Cr8Y5磁粉;(2) After the Fe 60 Si 11 B 13 Cu 3 Cr 8 Y 5 amorphous strip is mechanically crushed, it is placed in a planetary ball mill for ball milling, the ball-to-material ratio is 5:1, the ball milling time is 4 hours, and the speed is 260r/min. Add ethanol to prevent oxidation, dry and sieve to obtain Fe 60 Si 11 B 13 Cu 3 Cr 8 Y 5 magnetic powder with different particle sizes;
(3)将不同目数的Fe60Si11B13Cu3Cr8Y5磁粉进行混合,其中-100目~+200目的Fe60Si11B13Cu3Cr8Y5磁粉占总质量的15%,-200目~+300目的Fe60Si11B13Cu3Cr8Y5磁粉占总质量的70%,-300目~+400目的Fe60Si11B13Cu3Cr8Y5磁粉占总质量的10%,-400目的Fe60Si11B13Cu3Cr8Y5磁粉占总质量的5%,经过0.4wt%的磷酸水溶液钝化处理后,与0.5wt%的环氧树脂粘结剂充分混合,并在1.80GPa压强下压制成磁粉芯;(3) Mix Fe 60 Si 11 B 13 Cu 3 Cr 8 Y 5 magnetic powders of different meshes, among which Fe 60 Si 11 B 13 Cu 3 Cr 8 Y 5 magnetic powders of -100 mesh to +200 mesh account for 15% of the total mass %, -200 mesh to +300 mesh Fe 60 Si 11 B 13 Cu 3 Cr 8 Y 5 magnetic powder accounts for 70% of the total mass, -300 mesh to +400 mesh Fe 60 Si 11 B 13 Cu 3 Cr 8 Y 5 magnetic powder accounts for 10% of the total mass, -400 mesh Fe 60 Si 11 B 13 Cu 3 Cr 8 Y 5 magnetic powder accounts for 5% of the total mass, after passivation treatment with 0.4wt% phosphoric acid aqueous solution, bonded with 0.5wt% epoxy resin The binder is fully mixed and pressed into a magnetic powder core under a pressure of 1.80GPa;
(4)将压制好的磁粉芯置于真空退火炉中500℃保温1h,得到Fe基纳米晶磁粉芯。(4) Place the pressed magnetic powder core in a vacuum annealing furnace at 500° C. for 1 hour to obtain a Fe-based nanocrystalline magnetic powder core.
经检测,目标产物的相关电磁参数如表3:After testing, the relevant electromagnetic parameters of the target product are shown in Table 3:
实施例4Example 4
(1)将Fe74Si6B6Cu3Mn6Y5非晶薄带在真空退火炉中于420℃保温1h后,对其进行机械破碎;(1) After the Fe 74 Si 6 B 6 Cu 3 Mn 6 Y 5 amorphous thin strip was kept at 420°C for 1 hour in a vacuum annealing furnace, it was mechanically crushed;
(2)Fe74Si6B6Cu3Mn6Y5非晶薄带机械破碎后,置于行星式球磨机中球磨,球料比为5:1,球磨时间为4h,转速为260r/min,并加入乙醇防止氧化,干燥后经筛分得到不同颗粒度的Fe74Si6B6Cu3Mn6Y5磁粉;(2) After the Fe 74 Si 6 B 6 Cu 3 Mn 6 Y 5 amorphous strip is mechanically crushed, it is placed in a planetary ball mill for ball milling, the ball-to-material ratio is 5:1, the ball milling time is 4 hours, and the speed is 260r/min. Add ethanol to prevent oxidation, dry and sieve to obtain Fe 74 Si 6 B 6 Cu 3 Mn 6 Y 5 magnetic powder with different particle sizes;
(3)将不同目数的Fe74Si6B6Cu3Mn6Y5磁粉进行混合,其中-100目~+200目的Fe74Si6B6Cu3Mn6Y5磁粉占总质量的15%,-200目~+300目的Fe74Si6B6Cu3Mn6Y5磁粉占总质量的70%,-300目~+400目的Fe74Si6B6Cu3Mn6Y5磁粉占总质量的10%,-400目的Fe74Si6B6Cu3Mn6Y5磁粉占总质量的5%,经过0.4wt%的磷酸水溶液钝化处理后,与0.5wt%的硅酮树脂粘结剂充分混合,并在1.80GPa压强下压制成磁粉芯;(3) Mix Fe 74 Si 6 B 6 Cu 3 Mn 6 Y 5 magnetic powders of different meshes, among which Fe 74 Si 6 B 6 Cu 3 Mn 6 Y 5 magnetic powders of -100 mesh to +200 mesh account for 15% of the total mass %, -200 mesh to +300 mesh Fe 74 Si 6 B 6 Cu 3 Mn 6 Y 5 magnetic powder accounts for 70% of the total mass, -300 mesh to +400 mesh Fe 74 Si 6 B 6 Cu 3 Mn 6 Y 5 magnetic powder accounts for 10% of the total mass, -400 mesh Fe 74 Si 6 B 6 Cu 3 Mn 6 Y 5 magnetic powder accounts for 5% of the total mass, after passivation treatment with 0.4wt% phosphoric acid aqueous solution, and 0.5wt% silicone resin The binder is fully mixed and pressed into a magnetic powder core under a pressure of 1.80GPa;
(4)将压制好的磁粉芯置于真空退火炉中500℃保温1h,得到Fe基纳米晶磁粉芯。(4) Place the pressed magnetic powder core in a vacuum annealing furnace at 500° C. for 1 hour to obtain a Fe-based nanocrystalline magnetic powder core.
经检测,目标产物的相关电磁参数如表4:After testing, the relevant electromagnetic parameters of the target product are shown in Table 4:
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310280793.2A CN103310936B (en) | 2013-07-05 | 2013-07-05 | A kind of low-loss Fe base nanometer crystal powder core and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310280793.2A CN103310936B (en) | 2013-07-05 | 2013-07-05 | A kind of low-loss Fe base nanometer crystal powder core and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103310936A true CN103310936A (en) | 2013-09-18 |
CN103310936B CN103310936B (en) | 2016-01-13 |
Family
ID=49136052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310280793.2A Expired - Fee Related CN103310936B (en) | 2013-07-05 | 2013-07-05 | A kind of low-loss Fe base nanometer crystal powder core and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103310936B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103500645A (en) * | 2013-09-29 | 2014-01-08 | 青岛云路新能源科技有限公司 | Method for manufacturing modified silicon iron boron soft magnetic powder core with magnetic conductivity of 50 |
CN103500644A (en) * | 2013-09-29 | 2014-01-08 | 青岛云路新能源科技有限公司 | Method for manufacturing modified silicon iron boron soft magnetic powder core with magnetic conductivity of 75 |
CN103500646A (en) * | 2013-09-29 | 2014-01-08 | 青岛云路新能源科技有限公司 | Method for manufacturing modified silicon iron boron soft magnetic powder core with magnetic conductivity of 26 |
CN103500643A (en) * | 2013-09-29 | 2014-01-08 | 青岛云路新能源科技有限公司 | Method for modified silicon iron boron soft magnetic powder core with magnetic conductivity of 90 |
CN104032241A (en) * | 2014-05-28 | 2014-09-10 | 浙江大学 | Preparation method of amorphous soft-magnetic composite material |
CN104036904A (en) * | 2014-05-28 | 2014-09-10 | 浙江大学 | High saturation magnetic induction intensity iron-based amorphous soft magnetic composite material and manufacturing method thereof |
CN104157441A (en) * | 2014-08-15 | 2014-11-19 | 无锡斯贝尔磁性材料有限公司 | Technology for manufacturing finished magnetic core |
CN106128681A (en) * | 2016-06-08 | 2016-11-16 | 青岛云路先进材料技术有限公司 | A kind of Fe-based amorphous powder core and preparation method thereof |
CN106653278A (en) * | 2016-12-29 | 2017-05-10 | 江西艾特磁材有限公司 | Novel iron-silicon magnetic core and preparation method thereof |
CN104036941B (en) * | 2014-06-10 | 2017-06-13 | 毛圣华 | A kind of wireless charging preparation method of amorphous metal powder antifreeze plate |
CN106890999A (en) * | 2015-12-21 | 2017-06-27 | 北京中科三环高技术股份有限公司 | A kind of preparation method of amorphous or nano-crystal soft-magnetic powder core |
CN109411176A (en) * | 2017-08-18 | 2019-03-01 | 三星电机株式会社 | Fe Based Nanocrystalline Alloys and the electronic building brick for using the Fe Based Nanocrystalline Alloys |
CN109628707A (en) * | 2018-10-08 | 2019-04-16 | 柳州凯通新材料科技有限公司 | A kind of annealing method of high-speed motor core material |
US12173393B2 (en) | 2017-08-18 | 2024-12-24 | Samsung Electro-Mechanics Co., Ltd. | Fe-based nanocrystalline alloy and electronic component using the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1967736A (en) * | 2006-10-20 | 2007-05-23 | 南昌大学 | A method for preparing iron-base amorphous and nanocrystalline magnetic core |
EP2055797A1 (en) * | 2006-08-23 | 2009-05-06 | Japan Science and Technology Agency | Iron-based alloy and process for producing the same |
CN101871071A (en) * | 2010-06-24 | 2010-10-27 | 湖州微控电子有限公司 | Manufacturing method of soft magnet silicon-aluminum alloy magnetic powder core with small amounts of rare earth element cerium or lanthanum |
CN102936685A (en) * | 2012-11-29 | 2013-02-20 | 浙江大学 | Fe-based magnetically soft alloy with high-saturation magnetic flux density and preparation method of alloy |
-
2013
- 2013-07-05 CN CN201310280793.2A patent/CN103310936B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2055797A1 (en) * | 2006-08-23 | 2009-05-06 | Japan Science and Technology Agency | Iron-based alloy and process for producing the same |
CN1967736A (en) * | 2006-10-20 | 2007-05-23 | 南昌大学 | A method for preparing iron-base amorphous and nanocrystalline magnetic core |
CN101871071A (en) * | 2010-06-24 | 2010-10-27 | 湖州微控电子有限公司 | Manufacturing method of soft magnet silicon-aluminum alloy magnetic powder core with small amounts of rare earth element cerium or lanthanum |
CN102936685A (en) * | 2012-11-29 | 2013-02-20 | 浙江大学 | Fe-based magnetically soft alloy with high-saturation magnetic flux density and preparation method of alloy |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103500644B (en) * | 2013-09-29 | 2016-01-20 | 青岛云路新能源科技有限公司 | A kind of magnetic permeability is the preparation method of the Modified Iron silicon boron soft magnetic-powder core of 75 |
CN103500644A (en) * | 2013-09-29 | 2014-01-08 | 青岛云路新能源科技有限公司 | Method for manufacturing modified silicon iron boron soft magnetic powder core with magnetic conductivity of 75 |
CN103500646A (en) * | 2013-09-29 | 2014-01-08 | 青岛云路新能源科技有限公司 | Method for manufacturing modified silicon iron boron soft magnetic powder core with magnetic conductivity of 26 |
CN103500643A (en) * | 2013-09-29 | 2014-01-08 | 青岛云路新能源科技有限公司 | Method for modified silicon iron boron soft magnetic powder core with magnetic conductivity of 90 |
CN103500645B (en) * | 2013-09-29 | 2016-01-20 | 青岛云路新能源科技有限公司 | A kind of magnetic permeability is the preparation method of the Modified Iron silicon boron soft magnetic-powder core of 50 |
CN103500645A (en) * | 2013-09-29 | 2014-01-08 | 青岛云路新能源科技有限公司 | Method for manufacturing modified silicon iron boron soft magnetic powder core with magnetic conductivity of 50 |
CN103500643B (en) * | 2013-09-29 | 2016-01-20 | 青岛云路新能源科技有限公司 | A kind of magnetic permeability is the preparation method of the Modified Iron silicon boron soft magnetic-powder core of 90 |
CN103500646B (en) * | 2013-09-29 | 2016-01-20 | 青岛云路新能源科技有限公司 | A kind of magnetic permeability is the preparation method of the Modified Iron silicon boron soft magnetic-powder core of 26 |
CN104036904A (en) * | 2014-05-28 | 2014-09-10 | 浙江大学 | High saturation magnetic induction intensity iron-based amorphous soft magnetic composite material and manufacturing method thereof |
CN104032241A (en) * | 2014-05-28 | 2014-09-10 | 浙江大学 | Preparation method of amorphous soft-magnetic composite material |
CN104032241B (en) * | 2014-05-28 | 2015-07-29 | 浙江大学 | A kind of preparation method of amorphous soft magnet matrix material |
CN104036941B (en) * | 2014-06-10 | 2017-06-13 | 毛圣华 | A kind of wireless charging preparation method of amorphous metal powder antifreeze plate |
CN104157441A (en) * | 2014-08-15 | 2014-11-19 | 无锡斯贝尔磁性材料有限公司 | Technology for manufacturing finished magnetic core |
CN106890999A (en) * | 2015-12-21 | 2017-06-27 | 北京中科三环高技术股份有限公司 | A kind of preparation method of amorphous or nano-crystal soft-magnetic powder core |
CN106890999B (en) * | 2015-12-21 | 2019-06-28 | 北京中科三环高技术股份有限公司 | A kind of preparation method of amorphous or nano-crystal soft-magnetic powder core |
CN106128681A (en) * | 2016-06-08 | 2016-11-16 | 青岛云路先进材料技术有限公司 | A kind of Fe-based amorphous powder core and preparation method thereof |
CN106128681B (en) * | 2016-06-08 | 2018-04-13 | 青岛云路先进材料技术有限公司 | A kind of Fe-based amorphous powder core and preparation method thereof |
CN106653278A (en) * | 2016-12-29 | 2017-05-10 | 江西艾特磁材有限公司 | Novel iron-silicon magnetic core and preparation method thereof |
CN109411176A (en) * | 2017-08-18 | 2019-03-01 | 三星电机株式会社 | Fe Based Nanocrystalline Alloys and the electronic building brick for using the Fe Based Nanocrystalline Alloys |
CN109411176B (en) * | 2017-08-18 | 2021-02-05 | 三星电机株式会社 | Fe-based nanocrystalline alloy and electronic component using same |
US12173393B2 (en) | 2017-08-18 | 2024-12-24 | Samsung Electro-Mechanics Co., Ltd. | Fe-based nanocrystalline alloy and electronic component using the same |
CN109628707A (en) * | 2018-10-08 | 2019-04-16 | 柳州凯通新材料科技有限公司 | A kind of annealing method of high-speed motor core material |
Also Published As
Publication number | Publication date |
---|---|
CN103310936B (en) | 2016-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103310936B (en) | A kind of low-loss Fe base nanometer crystal powder core and preparation method thereof | |
CN103310937B (en) | A kind of high saturated magnetic induction iron cobalt-based nano-crystal soft-magnetic powder core and preparation method thereof | |
JP6662436B2 (en) | Manufacturing method of dust core | |
CN104032241B (en) | A kind of preparation method of amorphous soft magnet matrix material | |
KR101060091B1 (en) | Method of manufacturing magnetic core and induction element with magnetic core and magnetic core | |
CN107170575B (en) | A kind of preparation method of soft magnetism composite core | |
CN104078180B (en) | A kind of nano-crystal soft-magnetic composite and preparation method thereof | |
CN102623120B (en) | Said magnetic powder material, low-loss composite magnetic and magnetic element | |
CN103426580B (en) | A kind of composite magnetic powder core and preparation method thereof | |
CN104036902A (en) | Preparing method of metal magnetic powder core | |
CN104505209B (en) | A kind of soft magnetic metal composite core and preparation method thereof | |
JP6530164B2 (en) | Nanocrystalline soft magnetic alloy powder and dust core using the same | |
CN109273185B (en) | Method for preparing magnetic powder core by using iron-based nanocrystalline alloy powder | |
JP2004349585A (en) | Method of manufacturing dust core and nanocrystalline magnetic powder | |
CN103559972B (en) | A kind of preparation method of sintered Nd-Fe-B permanent magnetic material | |
JPH1041120A (en) | Low-loss ferrite operating within frequency range of 1-100mhz and its manufacture | |
CN103440950B (en) | A kind of in-situ preparation method of powder core | |
JPS63304603A (en) | Green compact of fe soft-magnetic alloy and manufacture thereof | |
CN103745791A (en) | Production method of ultrahigh magnetic permeability of iron-based nanocrystalline magnetic powder core | |
TW201738908A (en) | Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein | |
JP6191855B2 (en) | Soft magnetic metal powder and high frequency powder magnetic core | |
CN102969108B (en) | A metal powder for preparing nanocrystalline magnetic core with magnetic permeability μ=60 | |
CN104036903A (en) | Preparation method of Fe-Si-Ni magnetic powder core | |
WO2019053948A1 (en) | Soft magnetic alloy and magnetic component | |
CN104240890A (en) | Fe-6.5% Si magnetic powder core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160113 Termination date: 20180705 |
|
CF01 | Termination of patent right due to non-payment of annual fee |