CN103306236A - Method for constructing underground reservoir in ancient gully of ancient underground river channel - Google Patents

Method for constructing underground reservoir in ancient gully of ancient underground river channel Download PDF

Info

Publication number
CN103306236A
CN103306236A CN2013102682316A CN201310268231A CN103306236A CN 103306236 A CN103306236 A CN 103306236A CN 2013102682316 A CN2013102682316 A CN 2013102682316A CN 201310268231 A CN201310268231 A CN 201310268231A CN 103306236 A CN103306236 A CN 103306236A
Authority
CN
China
Prior art keywords
underground
water
reservoir
pile
dam
Prior art date
Application number
CN2013102682316A
Other languages
Chinese (zh)
Other versions
CN103306236B (en
Inventor
梁新
Original Assignee
梁新
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 梁新 filed Critical 梁新
Priority to CN 201310268231 priority Critical patent/CN103306236B/en
Publication of CN103306236A publication Critical patent/CN103306236A/en
Application granted granted Critical
Publication of CN103306236B publication Critical patent/CN103306236B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/40Water resources protection or enhancement
    • Y02A20/406Aquifer recharge

Abstract

The invention relates to a method for constructing an underground reservoir in an ancient gully of an ancient underground river channel. The method comprises the following steps: investigating the ancient gully of the ancient underground river channel, designing an underground reservoir dam body, designing an anti-seepage dam body in the reservoir area of the underground reservoir, carrying out stability assessment on the underground reservoir dam body, constructing the underground reservoir dam body, constructing the anti-seepage dam body in the reservoir area of the underground reservoir, surveying and mapping a longitudinal profile of the underground reservoir and calculating the volume of a water-bearing rock-soil layer of the underground reservoir, the water storage capacity of the underground reservoir and the average water separation quantity of an underground water-bearing layer; scientifically utilizing the water storage capacity of the underground reservoir and carrying out recharge and water replenishment on the underground reservoir. The method has the beneficial effect that aiming at the riverbed geology and the landform of the ancient gully of the ancient underground river channel, the characteristics of the water-bearing layer of the ancient gully of the ancient underground river channel as well as the supply conditions of a water source, the anti-seepage problem of various different water-bearing rock-soil layers and problems about the type selection of an underground water dam, the design of dam height and dam crest overflow section elevation, the recharge and the water replenishment of the underground reservoir and the improvement of water supply continuity of the reservoir can be systematically solved.

Description

在地下古河道古冲沟构筑地下水库的方法 Build underground reservoirs in the underground ancient river ancient gullies method

技术领域 FIELD

[0001] 本发明是利用地下古河道古冲沟河床中的特殊地层、地形与地下水条件,构筑地下水坝,拦截与围堵地下含水层中的潜水,而建成地下水库的方法,属于水利工程建设领域。 [0001] The present invention is the use of underground PALEOCHANNEL old gully bed of special strata, terrain and ground conditions, constructing underground dams, intercepting diving containment of underground aquifers, and a method to build underground reservoir, is water conservancy construction field.

背景技术 Background technique

[0002]自上世纪八十年代以来,国内外媒体对我国发生的沙尘暴与旱灾等极端自然灾害进行了大量的报道与评论,其中有报道指出我国被沙漠化的面积已占国土总面积的三分之一。 [0002] Since the 1980's, the domestic and foreign media to extreme natural disasters, storms and droughts occurred in China have done a lot of reporting and commentary, which area is reported that our country is desertification accounted for one-third of the total land one. 在我国,许多省市因旱灾缺水,大量吸取地下水源,致使地下水位急速下降,从而引起地面开裂下陷,给国家造成极大经济损失和人员伤亡。 In our country, many provinces due to drought water shortage, drew heavily on underground water sources, causing the water table rapid decline, causing the ground to crack subsidence, causing great economic losses and casualties to the state. 由于需水量与供水能力的矛盾逐年加大,越来越多的人投入到地下水库的研究中。 Because water demand and water supply capacity of the contradictions increase year after year, more and more people into the groundwater reservoir in.

[0003]目前,尚没有一套较完善的系统方法,能够针对地下古河道古冲沟河床地质、地形及其含水层的特点与水源的补给条件,解决对地下各种不同含水岩土层的防渗问题,以及地下水坝的类型选择,坝高与坝顶溢流断面标高的设计,对地下水库的回灌补水,提高水库供水的持续性等问题。 [0003] Currently, there is no set of relatively complete system approach, able for underground ancient river old gully bed geology, topography, and aquifer characteristics and supply conditions of water sources, to address underground various water rock layers seepage problems, and the type of selection of underground dams, dam with crest overflow section elevation of design, to recharge replenishment of underground reservoirs, increase sustainability issues such as reservoir water supply.

发明内容 SUMMARY

[0004] 本发明的目的在于针对现有技术的不足,提供一种在地下古河道古冲沟构筑地下水库的方法,针对地下古河道古冲沟河床地质、地形及其含水层的特点与水源的补给条件,系统地解决各种不同含水岩土层的防渗问题,以及地下水坝的类型选择,坝高与坝顶溢流断面标高的设计,对地下水库的回灌补水和提高水库供水持续性的问题。 [0004] The object of the present invention is for the deficiencies of the prior art, there is provided a method for constructing underground reservoirs in subterranean ancient river old gully, the characteristics of the underground PALEOCHANNEL old gully bed geological, topographic and aquifers and water the supply conditions, systematically solve seepage problems with different water rock layers, and the type of selection of underground dams, dam with crest overflow section elevation of design, recharge replenishment of underground reservoirs and improving water supply continued Reservoir issues.

[0005] 本发明实现上述目的所采取的技术方案是:在地下古河道古冲沟构筑地下水库的方法,包括如下步骤: [0005] The present invention achieves the above object adopted technical solution: a method underground reservoir in a subterranean ancient river old gully construction, comprising the steps of:

[0006] ( I)对地下古河道、古冲沟的勘察,具体勘察步骤如下: [0006] (I) prospecting underground ancient river, old gully, in particular investigation the following steps:

[0007] (A)勘察地下古河道古冲沟的地名、地层、成因、走向、长度、地下含水层厚度以及地下标闻与地面标闻; [0007] (A) prospecting underground Paleochannel old gully names, formation, genesis, direction, length, aquifer thickness, and underground subscript smell and ground marked smell;

[0008] (B)评估地下水源条件,在步骤(A)的基础上,进一步查明上游补给水源的类型,了解当地年降雨量、大气蒸发量以及库内地下水位的变化情况,包括丰水期最高洪水位标高、枯水期最低水位标高及历时和正常水位标高及历时;测出地下水库水力坡降,估算补给潜水流量,计算地下水库最高洪水位的过水最大流量、地下水库正常水位的过水流量和最低水位的过水流量; [0008] (B) Evaluation groundwater conditions, on the basis of the step (A) on, to further identify the type of upstream supply water to understand local rainfall, atmospheric evaporation and changes in the interior groundwater, comprising wet of the highest flood level elevation, dry season the minimum water level elevation and duration and the normal water level elevation and duration; measured hydraulic gradient of groundwater reservoirs, estimated supply diving flow, calculate the highest flood level underground reservoirs over the water maximum flow rate, the normal water level underground reservoir through over the water flow water flow and the lowest water level;

[0009] (C)根据地下水库坝址基础的地质地形条件,选择较狭窄的壶口河段,地下河床底部为不透水岩土层,两侧为对称的形状呈“U”字型;坝体基础岩土层为完整坚硬,不透水性的岩土层; [0009] (C) according to the geological topographic features at the site based underground reservoir, selected narrower spout reach the bottom of underground riverbed impermeable geotechnical layer, both sides of the symmetrical shape is "U" shaped; dam Basics geotechnical layer is a complete hard, impermeable geotechnical layer;

[0010] (D)根据地下水库库区地质地形条件,选择地下河道较宽阔且较长的,较平缓的,有较厚的含水层的地层,以保证地下水库有较大的蓄水容量;库区内地下河床两侧分水岭标高高于地下水库控制水位设计标高,以保证水库建成蓄水后,库内水不能往库外泄漏;在喀斯特较发育地区,地下水库库区选择在喀斯特发育较弱,基岩较完整的河段,以防库水渗漏; [0010] (D) The geological and topographical conditions underground reservoir area, select underground river are wider and longer, more gradual, with a thicker water layer formation to ensure underground reservoir has a larger storage capacity; after the lower mainland reservoir riverbed on both sides of the watershed elevation above the underground reservoir to control water level design elevation to ensure that the reservoir impounding, bank water can not leak to the outside of the refrigerator; the more developed regions in the karst underground reservoir area selection and development in karst than weak bedrock more complete river to prevent the reservoir water leakage;

[0011] (2)设计地下水库坝体,具体步骤如下: [0011] (2) Design of underground reservoir of the dam, the following steps:

[0012] (A)坝型的选择,采用地下溢流坝的坝体类型; [0012] (A) dam type selection, use of the dam type underground weir;

[0013] (B)设计地下坝高与坝顶溢流断面,具体方法如下: [0013] (B) the design of underground dam and crest overflow cross-section, as follows:

[0014] ①、首先对拟建地下水库库区内地面现有的工、农、林、牧以及房屋和道路各种行业的活动总荷载对地面以下土层持力层承载力的要求进行评估,初步确定从地面至地下水库坝顶过水溢流断面顶部之间的土层厚度,即预留满足地面荷载的土层厚度;然后测出地下水库库区内丰水期最闻地下水位标闻与正常水位标闻,地下水位标闻变化较小保持历时最长时间,以月数计; [0014] ①, first of all the existing industry, agriculture, forestry, animal husbandry as well as houses and roads in various industries activities reservoir area ground proposed underground reservoir the total load on the ground below the soil bearing layer bearing capacity requirements assessment preliminarily determined from the surface to underground reservoirs crest through the soil thickness between the top water overflow section, i.e. the reservation satisfy soil thickness ground load; then measured underground Reservoir area wet of the most heard groundwater standard Wen normal water mark smell, the water table marked hear a small change to maintain lasted the longest, monthly count;

[0015] ②、预留地面荷载持力层土层厚度的设计,用最高地下水位标高作预留地面荷载持力层土层底板标高,以确保在地下水库建成后,地下水库水位对库区地面及周边原有的环境生态,以及各种设施不受影响; [0015] ②, reserved design ground load of soil thickness stratum holding, and with the highest groundwater level as ground load holding soil floor elevation stratum reserve to ensure that after completion of underground reservoirs, underground reservoir water level RESERVOIR ground and surrounding the original ecological environment, as well as various facilities will not be affected;

[0016] ③、坝顶标高设计,以正常水位标高为地下水库坝顶设计标高,确保地下水库蓄水量的正常性与效益的持续性; [0016] ③, crest elevation designed to normal water level elevation crest design elevation underground reservoir, to ensure continuity of normality and effective storage capacity of the underground reservoir;

[0017] ④、坝顶溢流断面设计,以地下水库最高水位标高与正常水位标高之间的断面高为坝顶过水溢流断面,确保丰水期最大过水流量能顺利地从坝顶溢流面通过,不会因洪水期水位上升,影响上部土层产生软化或下陷等现象; [0017] ④, crest overflow section design, underground reservoir maximum water level elevation and normal water level elevation between the section height of the crest over the water overflow section, to ensure that the wet period maximum over the water flow smoothly from the top of the dam overflow surface by, not due to flooding of the water level rises, the influence upper soil produce other softening or sagging phenomenon;

[0018] (C)地下溢流坝体的设计,采用冲孔桩构建成地下连续墙防渗坝体,地下溢流坝主体结构为大直径钢筋砼排桩,桩之间互相紧贴,钢筋砼桩入岩为桩长的1/3桩长;在钢筋砼排桩上游侧紧靠每两条钢筋砼桩之间的接触三角处位置增设一排小直径素砼桩,以御防钢筋砼桩之间渗漏水;利用冲孔桩机在施工过程中,冲锤上、上冲击造孔把孔壁周边岩土层挤实,提高岩土层密实度、内摩擦角以及变形模量; [0018] Design (C) subterranean overflow dam body, using punched piles constructed underground continuous wall impermeable dam, underground Spillway main structure of a large diameter reinforced concrete row of piles, in close contact with each other between the piles, steel concrete piles into the rock as the pile length 1/3 pile length; contacting triangle at a position between the reinforced concrete pile abuts the upstream row piles in reinforced concrete each of two additional row of smaller diameter plain concrete piles, in defense against the reinforced concrete leakage between the piles of water; by punching pile in the construction process, the hammer, the impact pore to pore walls of the surrounding rock and soil layer compaction, improve the density geotechnical layer, internal friction angle, and deformation modulus;

[0019] (3)地下水库库区防渗坝体设计,地下水库库区河床两岸地下分水岭标高要高于地下水库控制水位设计标高,以保证地下水库建成蓄水后,库区水不能往库外泄漏;对于库区局部河段地下分水岭标高低于地下水库控制水位标高的地段,构筑地下水库库区防渗坝;库区防渗坝体,由钢筋砼排桩和防渗排桩组成;钢筋砼排桩的设计如下步骤(A),防渗排桩的设计如下步骤(B): [0019] (3) underground reservoir seepage dam reservoir design, reservoir bed underground reservoirs on both sides of the underground watershed elevation higher than the underground reservoir to control water level design elevation, in order to ensure the completion of water underground reservoirs, the water reservoir can not go Library external leakage; for topical reach Reservoir underground watershed level below the underground reservoir water level control elevation of the lot, to build underground reservoir area impermeable dam; seepage control dam, from reinforced concrete row pile and impermeable row of piles composition; reinforced concrete pile cluster design steps (a), seepage row pile design steps (B):

[0020] (A)钢筋砼排桩的设计,钢筋砼排桩之间互相紧贴,桩径Φ800-1000πιπι,桩端入岩层或地下不透水粘土层中1/3桩长;桩顶高度大于地下水库有效控制水位设计标高 [0020] (A) of reinforced concrete pile cluster design, between the reinforced concrete row of piles close to one another, the pile diameter Φ800-1000πιπι, pile tip into the formation or underground impermeable clay layer 1/3 pile length; top of the pile height is greater than underground reservoir effectively control the water level in the design elevation

2.0_3.0m ; 2.0_3.0m;

[0021] (B)防渗排桩的设计,防渗桩布设于钢筋砼排桩的水库内侧,紧贴钢筋砼桩之间接触的三角处,以防止钢筋砼桩之间空隙漏水; [0021] (B) impermeable pile cluster design, impermeable pile laid inside the reservoir to the reinforced concrete pile cluster, close to the triangle at the contact between the reinforced concrete piles, in order to prevent a gap leakage between the reinforced concrete pile;

[0022] (4)地下水库坝体的稳定评估,通过计算坝体的抗剪强度进行验算; [0022] (4) Stability Assessment underground dam reservoir, for checking by the shear strength calculation dam;

[0023] (5)按照步骤(2)的设计,对地下水库坝体进行施工,采用冲孔桩机或旋挖桩机为施工机械,先安排钢筋砼桩的施工,一个星期后安排坝体素砼桩的施工; Design of [0023] (5) according to step (2), the underground reservoir dam the construction, using punching pile or auger pile of construction machinery, to arrange the construction of reinforced concrete piles, a week after arrangement dam pile of plain concrete;

[0024] (6)按照步骤(3)的设计,对地下水库库区防渗坝进行施工; Design of [0024] (6) according to step (3), the underground Reservoir - impermeable dam for construction;

[0025] (7)测绘地下水库纵剖面图,计算地下水库含水岩土层体积、地下水库蓄水量和地下含水层的平均分离水量; [0025] (7) mapping underground reservoirs longitudinal sectional view, calculating the aqueous geotechnical layer volume, the storage capacity of underground reservoirs average separation of water underground reservoirs and underground aquifers;

[0026] (8)对地下水库蓄水量的科学利用,绘制地下水库水位与蓄水量关系曲线图,以该曲线图为用水抽水的指南和依据,实行计划科学用水;在水库坝体上游侧设一口水位观测井,为水库中观测水位的永久观测井;抽水前,先观测水位,了解水库现存水量情况,然后按计划定时定量抽水;抽水后,把抽水时间迄止与抽水前后水位和抽水量记录立档;每次抽水后,要增加测量水位次数,掌握水位恢复的周期与历时时间;当水位尚未恢复之前,严禁超量抽水; [0026] (8) of the storage capacity of the scientific use of underground reservoirs, underground reservoir water level to draw a graph of the amount of water, pumped to the water guide curve graph and based, a planned water SCIENCES; dam upstream of the reservoir side is provided a water level observation wells, permanent observation well observed water level of the reservoir; before pumping, before the observation level, to understand the existing water situation reservoir, then scheduled time quantitative pumping; after pumping, the pumping time until the stop forward and backward pumping water and pumping capacity recording the file is; after each pumping, to increase the number of measurements water level, master level recovery cycle and elapsed time; before the water level has not been restored, non-excessive pumping;

[0027] (9)在枯水期,当地下水库出现最低水位历时较长时间时,进行地下水库回灌补水措施;补水措施如下: [0027] (9) in the dry season, local lower reservoir when the minimum water level had taken a long time, a recharge replenishment measures underground reservoir; replenishment measures are as follows:

[0028] (A)在地下水库上游或支流建造集水柜、集水圹或集水库,然后将这些储水引入地下水库中; [0028] (A) upstream or tributaries underground reservoir construction set of water tanks, water collecting tomb or collection reservoir, and then these storage introduced into the underground reservoir;

[0029] (B)从库外挖渠引水,把库外水源引给地下水库回灌补水; [0029] (B) dig trenches water from outside the library, the outside-water lead to recharge replenishment underground reservoir;

[0030] (C)在库外打井引水回灌补水; [0030] (C) drilling water recharge replenishment outside the vault;

[0031 ] 步骤(3 )所述的防渗排桩包括深层搅拌桩、高压水泥浆旋喷桩或素砼桩, [0031] Step impermeable (3) of the row of piles include deep mixing pile, high-pressure water slurry jet grouting pile or plain concrete pile,

[0032] ①、当坝体处于沙层或砂砾层,沙和砾石粒径较小,含泥质少,含水量小,地下水没有承压力现象时,防渗排桩宜采用高压水泥浆旋桩;防渗排桩布设于钢筋砼排桩的水库内侧面,防渗排桩与钢筋砼排桩互相平行,间距300mm,利用高压水泥浆旋喷桩的扩散,把钢筋砼排桩与水泥浆旋喷桩固结成一幅地下防渗墙坝体; [0032] ①, when the dam is sand or gravel, sand and gravel small particle size, containing less muddy, small water content, groundwater no bearing pressure phenomenon, impermeable row of piles should be high-pressure grout rotating pile ; inner impermeable row piles laid on the reinforced concrete pile cluster reservoir side, seepage discharge pile and RC row of piles parallel to each other, the pitch 300mm, using a high pressure slurry rotating pile diffusion, the reinforced concrete row piles with grout spin spray staked to form an underground cutoff wall dam;

[0033] ②、当坝体在粉土层、粉质粘土层、淤泥层或杂填土层时,防渗排桩采用深层搅拌桩,两排防渗排桩布设于钢筋砼排桩的水库内侧面,与钢筋砼排桩互相紧贴,防渗桩之间互相御接100mm,连续施工,桩端入不透水土层0.5-1.0m,桩顶高度大于地下水库控制水位设计标高2-3m ; [0033] ②, when the dam fill soil in the silt, silty clay, silt layer or heteroaryl, impermeable row of piles deep mixing pile, two rows impermeable row of piles laid reservoir in reinforced concrete pile cluster inner surface, and RC row of piles close to one another, each Royal connection 100mm between impermeable pile, continuous construction, the pile end of the impermeable soil 0.5-1.0M, the pile height is greater than underground reservoir water level control design elevation 2-3m ;

[0034] ③、当坝体在粉土层或砂砾层,地下水较丰富,但地下水没有承压性时,防渗桩采用素砼桩,素砼桩布设在钢筋砼桩的水库内侧面,紧贴钢筋砼排桩,桩端入地下不透水土层 [0034] ③, when the dam in the silt or gravel, groundwater rich, but groundwater no pressure resistance, impermeable piles using Plain Concrete pile, Plain Concrete piles laid within the reservoir reinforced concrete pile side, tight paste reinforced concrete discharge pile, the end into the ground water impermeable soil

0.5-1.0m,桩长与钢筋砼排桩一致; 0.5-1.0m, the pile length with the RC discharge pile is consistent;

[0035] ④、当坝体在细砂层或砂砾层,砾石层较厚,且粒径较大,地下水很丰富,具有很大的承压力,同时地下水库库内水侧压力较大时,防渗桩采用素砼桩,防渗排桩要紧贴钢筋砼排桩,钢筋砼排桩施工在前,防渗排桩施工在后,防渗排桩桩端入地下不透水土层 [0035] ④, when the dam in a layer of fine sand or gravel, the gravel layer is thick, and a larger particle size, the groundwater is very rich, it has a great bearing pressure, while the underground reservoir compartment water side pressure, seepage piles using plain concrete piles, impermeable row of piles to be close to the reinforced concrete row of piles, reinforced concrete discharge pile front, impervious row of piles after construction, seepage discharge pile ends into the ground water impermeable soil

0.5-1.0m,桩长与钢筋5仝排桩长度相等。 0.5-1.0m, pile length and reinforced 5 Tong row of piles of equal length.

[0036] 本发明与现有技术相比,具有的有益效果如下: [0036] Compared with the prior art, it has an advantageous effect as follows:

[0037] ( I)针对地下古河道古冲沟河床地质、地形及其含水层的特点与水源的补给条件,能够系统地解决各种不同含水岩土层的防渗问题,以及地下水坝的类型选择,坝高与坝顶溢流断面标高的设计,对地下水库的回灌补水和提高水库供水持续性的问题。 [0037] Features and recharge conditions water source (I) for underground PALEOCHANNEL old gully bed geological, topographic and aquifers can solve seepage problem of different aqueous geotechnical layers, and the type of underground dams systematically select the dam height and crest overflow section elevation of design, recharge replenishment of the underground reservoir and raising reservoir persistent problem of water supply.

[0038] (2)水库中的水位变化,能够保证在库区的地面及周边原有的工业、农业、畜牧业、林业、以及房屋、道路等环境生态不受影响,并能得到更好的保护和发展。 [0038] water level changes (2) reservoir, to ensure the ground and around the reservoir area of ​​the original industry, agriculture, animal husbandry, forestry, as well as houses, roads, environment and ecology are not affected, and can get better protection and development.

[0039] (3)坝体强度和稳定性高。 [0039] (3) high dam strength and stability.

[0040] (4)建立水库蓄水量的科学利用模式,使效益合理最大化,地下水库能得到持续性的运作。 [0040] (4) to establish a scientific mode using the storage capacity of the reservoir, to maximize the benefit justifies the underground reservoir can get operational sustainability. 附图说明 BRIEF DESCRIPTION

[0041] 图1为电测剖面勘探线布置图,其中,1、水井点,2、电测剖面线,3、地下古河道通道。 [0041] FIG. 1 is arranged to be electrically sensing sectional prospecting line, wherein 1, wells point 2, the voltage measuring section line, 3, underground ancient river channel.

[0042] 图2为地下水库库区三个水井不同水位标高剖面图,其中,4、3个水井编号,5、3个水井的水位坡降线,6、3个水井之间距离Lp L2。 [0042] FIG. 2 is a elevation cross-sectional views of different three wells Underground Reservoir level, the distance Lp L2 between wherein 4,3 water wells numbered, 5,3 wells water gradient lines, 6,3 wells.

[0043] 图3为地下水库溢流坝与水库纵剖面图,其中,7、地面标高,8、预留地面荷载持力层厚度h1;9、坝顶溢流断面高h2,10、地下水库坝体,11、地下水库丰水期最高洪水位标高线,12、地下水库正常水位标高线。 [0043] FIG. 3 is a underground reservoir overflow dam with a reservoir longitudinal sectional view, wherein, 7, ground elevation, 8 reserved ground load bearing layer thickness hold h1; 9, crest overflow section high h2,10, underground reservoir dam, 11, wet period underground reservoir highest flood level elevation line, 12 underground reservoir normal water level elevation line.

[0044] 图4为水位与水库蓄水量关系曲线图。 [0044] FIG. 4 is level with the reservoir storage capacity curve of FIG.

[0045] 图5为坝体钢筋砼桩与素砼桩布置平面图,其中,13、为钢筋砼桩,14、素砼桩。 [0045] FIG 5 is arranged dam reinforced concrete pile and Plain Concrete piles plan view, wherein, 13, reinforced concrete piles, 14, plain concrete pile.

[0046] 图6为地下水库库区防渗钢筋砼桩与深层搅拌桩平面图,其中,15、深层搅拌桩。 [0046] FIG. 6 is impermeable reservoir area of ​​reinforced concrete piles and deep underground reservoirs stirred pile plan view, wherein, 15, deep pile.

[0047] 图7为库区钢筋砼桩与高压水泥浆旋喷桩平面图,其中,16、高压水泥浆旋喷桩。 [0047] FIG. 7 is a reinforced Reservoir concrete pile and high pressure slurry jet grouting pile plan view, wherein, 16, high-pressure water slurry jet grouting pile.

[0048] 图8为地下水库库区纵剖面图,其中,“0-0”为地下水库控制水位设计标高,长度为L0,“aa”、“bb”、“cc”和“d_d”为水库水位等高线,长度分别为U、L2、L3和L4。 [0048] FIG. 8 is a underground reservoir longitudinal sectional view of the reservoir area, wherein, "0-0" for the underground reservoir water level control design elevation, the length L0, "aa", "bb", "cc" and "D_D" is RESERVOIR level contour lines, lengths of U, L2, L3 and L4.

[0049] 图9为图8的AA横断面面积图。 [0049] FIG. 9 is an AA cross-sectional area of ​​FIG. 8.

[0050] 图10为图8的BB横断面面积图。 [0050] FIG. 10 is a BB cross-sectional area of ​​FIG. 8.

[0051] 图11为图8的CC横断面面积图。 [0051] FIG. 11 is a diagram CC cross-sectional area of ​​FIG. 8.

[0052] 图12为地下含水岩土层含水量模拟计量器剖面图,其中,17、计量器砂样槽,18、活动隔水板,19、钢网渗漏板,20、集水桶。 [0052] FIG. 12 is a sectional view of the water content of the aqueous analog meter geotechnical ground layer, which, 17, meter sand sample tank 18, the movable plate impermeable, 19, leakage of steel plate, 20, collecting bucket.

具体实施方式 Detailed ways

[0053] 发明人出于职业的责任感与兴趣,从上世纪八十年代初期,就开始对地下古河道、古冲沟构筑地下水库的研究,对地下古河道古冲沟河床地质、地形及其含水层的特点与水源的补给条件,对地下各种不同含水岩土层的防渗方法,地下水坝的类型选择,坝高与坝顶溢流断面标高的设计,以及对地下水库的回灌补水,提高水库供水的持续性等问题,都进行了针对性的研究与实验。 [0053] The inventors sense of duty and interest career, from the early eighties of the last century, began to study the underground reservoir to build underground ancient river, the ancient gullies, underground ancient river old gully bed geology, topography and characteristics and recharge conditions water aquifers, impermeable on underground various aqueous geotechnical layers, select the type of underground dams, dam and crest overflow sectional elevation design, and recharge replenishment underground reservoir to improve the sustainability of water supply and other issues, we have carried out targeted research and experiments.

[0054] 经过多年的研究与实验,从理论到具体对工程的勘察、设计、施工,以及对地下含水岩土层含水量的分离方法等技术难关,已全面的创出一套可行的方法。 [0054] After years of research and experiment, from theory to specific survey for engineering, design, construction, and separation methods of underground water rock layer water content and other technical difficulties, we have been fully create a set of feasible method. 同时在研究与实验过程中,感到地下水库工程与地面水利工程建设,虽然它们是两种不同理论,开发条件与利用水源方式不同,但它们的建设程序、要求与目的是一致的,彼此都是为了解决人类的用水问题,可说是“殊途同归”。 While research and experiment, feel underground reservoir engineering and water conservancy construction ground, although they are two different theories, development conditions and utilization of water resources in different ways, but their construction procedures, requirements and the purpose is the same, are each other in order to solve human problems with water, it can be said to be "the same thing." 因此笔者对水利工程建设,以及水利学这门学科,从中悟出了一个新的内涵,认为建设地下水库,从理论上应称为“地下水利学”,地面水利工程,应称为“地面水利学”。 Therefore, the author of the water conservancy construction and water conservancy science discipline, which realize a new meaning, that the construction of underground reservoirs, in theory, should be called "underground hydraulics", ground water conservancy projects, should be called "Ground Water Resources learn". 水利学是总称,包含有“地面水利学”与“地下水利学”两门不同的学科。 Hydraulics is the general term, includes two different disciplines, "Ground Water Conservancy" and "underground hydraulics." 从而在理论上给地下水库创出了一个名份与地位。 Thus, in theory, to the underground reservoir reaching a higher status and position.

[0055] 下面结合具体实施例对本发明的技术方案做进一步说明。 [0055] Specific embodiments below with further description of the technical solution of the present invention.

[0056] 本发明所述的在地下古河道古冲沟构筑地下水库的方法,具体设计和实施按照如下步骤进行: [0056] The method of constructing an underground reservoir in a subterranean ancient river old gully according to the present invention, the specific design and implementation according to the following steps:

[0057] 1、地下古河道、古冲沟地层与地下水的特征 [0057] wherein 1, underground ancient river, old gully formation and groundwater

[0058] (I)地貌单元[0059] 地下古河道、古冲沟地层,属于河流堆积地貌的冲积平原与河口三角洲单元。 [0058] (I) geomorphic units [0059] underground ancient river, the ancient gully formation, belonging to the alluvial plains and river deltas unit rivers accumulation landforms.

[0060] (2)地层的成因 (2) Causes of formation [0060]

[0061] 由于河流堆积地貌的冲积平原与河口三角洲时期,受到河流中上游水流的作用,大量的砂、砾石等物质把河谷低丘陵、低洼地或前期形成的小河沟掩盖,成为暗浜或暗沟,称为地下古河道或古冲沟。 [0061] As the alluvial plains and river deltas during the river accumulation landform, by the action of the river upstream of the water flow, a lot of sand, gravel and other substances to a small brook valley low hills, lying or pre-formed cover up, become hidden creek or underground drain called underground ancient river or old gully. 这些古河道或古冲沟的冲积物均为第四纪冲积地层。 These ancient river or the old gully alluvial deposits are Quaternary alluvial formations.

[0062] (3)地下水的特点 [0062] (3) groundwater characteristics

[0063] 古河道或古冲沟中的第四纪冲积层,从地面自上而下,岩土层分布依序,多见为粉质粘土、粉土、粉沙、砂、砾石等。 [0063] ancient rivers or ancient gullies in the Quaternary alluvium from the ground from top to bottom, rock layer distribution in sequence, more common silty clay, silt, silt, sand, gravel and so on. 但有的河段地面被一层透水性较差的粘性土硬壳层所覆盖,以下的各含水层成为地下水的渗透通道。 However, some reach the ground was covered poor layer permeable clayey soil crust layer, the following aqueous layer becomes groundwater permeate channel. 地下水源主要由上游水源与周边大气雨水补给。 Underground water main supply of water upstream of the surrounding atmosphere rain. 水源比较丰富,地下水位受到季节的影响较大。 Water is relatively abundant, greater impact on the water table by season.

[0064] 2、对地下古河道、古冲沟的勘察 [0064] 2, survey of underground ancient river, the ancient gullies

[0065] 地下古河道、古冲沟的形成较复杂,地层亦较复杂,而且它们均深藏于地下,从地面很难看出它们的具体位置、走向、长度、以及其含水层厚度等。 [0065] underground ancient river, old gully formed more complex, the formation Yijiao complex, and they are buried in the earth, is difficult to see their specific location, direction, length, as well as the aquifer thickness from the ground. 对这些条件的了解,对构筑地下水库很重要。 Understanding these conditions, it is important to build an underground reservoir.

[0066] (A)对地下古河道、古冲沟潜水通道勘察 [0066] (A) underground ancient river, old gully diving channel INVESTIGATION

[0067] 当今我国勘察的主要方法有: [0067] the main method of our survey are:

[0068] (I)从国家区域地质构造图与水文地质图上可找到地下古河道、古冲沟的有关资料。 [0068] (I) from the national, regional geological structure and hydrogeological maps can be found in the information underground ancient river, the ancient gullies. 如地名、地层、成因、走向、长度、地下含水层厚度,以及地下标闻与地面标闻等。 The names, formation, genesis, direction, length, aquifer thickness, and underground marked smell and ground marked smell like.

[0069] (2)遥感卫星勘察资料的应用。 [0069] (2) the application of remote sensing satellite reconnaissance data. 遥感卫星勘察是近代较先进的勘察技术,对地下古河道、古冲沟潜水通道走向、长度、含水层厚度等勘察效果都很好。 Remote Sensing Survey modern times more advanced survey techniques, underground ancient river, Investigate old gully diving channel to the length, thickness of the aquifer and the like are very good. 可在地矿、石油、交通、水电、以及国土等科研、设计部门找到有关资料。 You can find information on mining, petroleum, transportation, electricity, water, and land and other research and design department.

[0070] (3)从前人现成的地下水井点探索解决。 [0070] (3) the former human existing groundwater wells point to explore solutions. 如图1所示,具体程序是: As shown in FIG. 1, the specific procedure is:

[0071] ①电测剖面勘探法。 [0071] ① measuring sectional prospecting method. 以水井点为中心,在水井的四个方向各布设数条电测剖面勘探线。 In wells point as the center, in the four directions wells each laid number of measuring prospecting line profile. 当电测剖面一旦发现地下含水层互相连续成一小段延伸走向时,即逐步延伸与增加电测剖面勘探,继续追索它的走向、长度,一直追索至上游的支流发源地终点为止。 When measuring cross-sectional Once aquifer continuous with each other to a short extension direction, i.e. gradually extended with an increased electrical measurement sectional exploration continues recourse its direction, length, has recourse until tributary cradle end upstream.

[0072] ②电测深法勘探。 [0072] ② electrical sounding prospecting. 当电测剖面勘探测出古河道、古冲沟的地下潜水通道的走向、宽度、含水层厚度等初步资料后,再以电测深法来进行验证。 When measuring cross-sectional view illustrating the initial exploration data measured ancient river, underground water passage to ancient gullies, width, thickness of the aquifer, and then to electrical sounding method for authentication. 主要验证地下含水层的厚度与埋藏深度,以及含水层底部不透水岩土层面的标高。 Primary verified aquifer thickness and burial depth, and a bottom aqueous layer impermeable geotechnical level elevation.

[0073] (4)地质钻探是当今较准确,最直观常用的勘探方法。 [0073] (4) geological drilling today more accurate, the most intuitive common exploration methods. 用它对以上遥感卫星与电法勘探等几种勘探成果检验,主要是对地下潜水层厚度与含水层底部岩土层性质与透水性的鉴定,以及不透水层岩面标高等。 With its more sensing several exploration results verify satellite and electrical prospecting, it is primarily water permeable identification of aquifer thickness and rock layer properties The bottom aqueous layer was ground with, and the impermeable layer of rock surface elevation and the like.

[0074] (B)地下水源条件评估 [0074] (B) ground water sources condition evaluation

[0075] (I)在以上几种勘探取得大量成果基础上,还要进一步查明上游补给水源的类型,主要分为大气雨水与冰雪融水等。 [0075] (I) made a lot of achievements over several exploration basis, but also to further identify the type of upstream supply source of water, divided into atmospheric rain and snow melt water.

[0076] (2) 了解当地年降雨量与大气蒸发量等资料。 [0076] (2) understand the local annual rainfall and atmospheric evaporation and other information.

[0077] (3) 了解库内地下水位的变化情况。 [0077] (3) understand the changes in the interior of the water table. 如①丰水期最闻洪水位标闻;②枯水期最低水位标高及历时(月)正常水位标高及历时(月)。 Such as ① the wet period most smell flood level mark smell; ② dry season the minimum water level elevation and duration (months) of normal water level elevation and duration (months). 为地下水库坝顶溢流断面与回灌补水的设计提供可靠的依据。 Crest overflow section and recharge the replenishment of the underground reservoir is designed to provide a reliable basis.

[0078] ①测出地下水库水力坡降及估算补给潜水流量。 [0078] ① measure the hydraulic gradient and estimates of underground reservoirs supply diving traffic. [0079] 在拟建地下水库的库内地段,钻探2-3个地下水井,每个水井之间有一定间距。 [0079] In the interior area of ​​the proposed underground reservoirs, underground drilling wells 2-3, there is a spacing between each of the wells. 然后测出各水井的水位标高。 It is then measured for each well of the water level. 最后绘制地下水库内的水力坡度图,如图2所示。 FIG groundwater hydraulic gradient drawn last compartment, as shown in FIG. 2.

[0080] 库区地下水力坡度计算,计算公式如下: [0080] Reservoir groundwater gradient force calculation formula is as follows:

[0081] [0081]

Figure CN103306236AD00101

[0082] 从上游入库区内的潜水流量计算公式,达西公式: [0082] calculated from the diving flow upstream storage region formula, Darcy formula:

[0083] [0083]

Figure CN103306236AD00102

[0084]式中: [0084] wherein:

[0085] h——地下水在渗流途径L长度上的水头损失(m) [0085] Groundwater head loss h-- in the flow pathway length L (m) of

[0086] L——地下水在渗流途径L长度(m) [0086] L-- groundwater seepage paths L length (m)

[0087] W——地下水渗流的过水横断面面积(m2) [0087] W-- over the water cross-sectional area of ​​a groundwater flow (m2)

[0088] K——渗透系数,反映各种岩土透水性能参数(米/日) [0088] K-- permeability coefficient, reflecting various geotechnical water permeation performance parameter (m / day)

[0089] ②计算地下水库最高洪水位的过水最大流量。 [0089] ② calculate the highest flood level underground reservoirs of water over the maximum flow.

[0090] 计出最高水位的过水横断面面积Ws(m2) [0090] count the highest water level over the water cross-sectional area Ws (m2)

[0091 ] 最闻洪水流量为: [0091] The most smell flood flow:

[0092] [0092]

Figure CN103306236AD00103

[0093] ③计算地下水库正常水位(库内水位变化少,历时月数多)的过水流量Q常。 [0093] ③ calculating normal level underground reservoir (the interior water level less change over several months poly) over the water flow rate Q constant. (Hi3) (Hi3)

[0094] 计出正常水位过水横断面面积W常。 [0094] count a normal level over the water cross-sectional area W constant. Cm2) Cm2)

[0095] 正常水位的过水流量为: [0095] normal water level over the water flow rate:

[0096] [0096]

Figure CN103306236AD00104

[0097] ④计算最低水位的过水流量Qis(m3) [0097] ④ calculate the lowest water level over the water flow Qis (m3)

[0098] 最低水位的过水横断面面积为Wffi(m2) Over the water cross-sectional area of ​​the [0098] minimum water level is Wffi (m2)

[0099] 最低水位的过水流量为: [0099] over the water flow of the lowest water level is:

[0100] [0100]

Figure CN103306236AD00105

[0101] (C)地下水库坝址基础的地质地形条件。 [0101] Geology topography dam base (C) of underground reservoirs.

[0102] (I)选择较狭窄的“壶口”河段。 [0102] (I) selecting a narrow "spout" reach.

[0103] (2)地下河床底部为不透水岩土层,两侧为对称的形状呈“U”字型。 [0103] (2) the bottom of the riverbed impermeable geotechnical ground layer, the shape is symmetrical on both sides of "U" shaped.

[0104] (3)坝体基础岩土层为完整较坚硬的,不透水性的岩土层。 [0104] (3) dam base geotechnical layer is a complete relatively rigid, impermeable geotechnical layer.

[0105] (D)地下水库库区地质、地形条件。 [0105] (D) Underground Reservoir Geology, terrain conditions.

[0106] (I)选择地下河道较宽阔且较长的,较平缓的,有较厚的含水层的地层。 [0106] (I) selected relatively wide and long underground river, more gradual, with a thicker water layer formation. 以保证地下水库有较大的蓄水容量。 In order to ensure underground reservoir has a larger storage capacity.

[0107] (2)库区内地下河床两侧分水岭标高要高于地下水库控制水位设计标高,以保证水库建成蓄水后,库内水不能往库外泄漏。 Bed on both sides of the watershed elevation the interior [0107] (2) Reservoir than underground reservoir water level control design elevation, to ensure that the reservoir impounding, the interior water can not leak to the outside of the refrigerator.

[0108] (3)在喀斯特较发育地区,地下水库库区要尽量选择在喀斯特发育较弱,基岩较完整的河段,以防库水渗漏。 [0108] (3) more developed regions in karst, to try to choose the underground reservoir area in karst development is weak, bedrock more complete river to prevent the reservoir water leakage.

[0109] 3、对地下古河道、古冲沟、地下水库坝体设计 [0109] 3, underground ancient river, the ancient gullies, underground reservoir dam design

[0110] A、构筑地下水库的特殊条件与要求 [0110] A, special conditions to build a subterranean reservoir and requirements

[0111] ①在地下古河道、古冲沟建筑地下水库,坝体深埋于地下,利用坝体拦截与围堵第四纪冲积层中的地下潜水,于是形成地下水库。 [0111] ① underground ancient river, old gully building underground reservoir, dam buried in the ground, using a dam to intercept and containment Quaternary alluvium in the underground water, thereby forming underground reservoir.

[0112] ②地下水库建成后,水库中的水位变化,对地面不受影响,保证在库区的地面及周边原有的工业、农业、畜牧业、林业、以及房屋、道路等环境生态,不受影响,并能得到更好的保护与发展的要求。 [0112] ② after the completion of the underground reservoir, the water level changes in reservoir, the ground is not affected, to ensure that existing environmental and ecological industry, agriculture, animal husbandry, forestry, as well as houses and roads on the ground and around the reservoir area, not affected, and can get better claimed and development.

[0113] ③当地下水库建成后,对水库蓄水量的利用与效益,能得到持续性的运作。 [0113] ③ the local building of the reservoir, the use and benefit of reservoir storage capacity, and can get operational sustainability.

[0114] B、坝型的选择 [0114] B, dam type selection

[0115] 基于建坝所处的第四纪冲积物的地层特点与建筑地下水库的条件与要求特殊,在古河道、古冲沟地下地层建筑水库坝型的选择,宜采用“地下溢流坝”的坝体类型。 [0115] Based on the conditions and requirements dam which Quaternary alluvial formation characteristics and constructing an underground reservoir particular, in the ancient river, old gully subterranean formation building reservoir dam type selection, should adopt the "underground Spillway "the dam types.

[0116] C、地下坝高与坝顶溢流断面的设计 [0116] Design of C, underground dam with the crest overflow cross section

[0117] 要满足构筑地下水库的几点特殊条件,地下水库的坝高与坝顶溢流断面两项设计的方案是一道难关。 [0117] To meet and build a few special conditions underground reservoir, dam and the crest overflow underground reservoir section two design solution is a storm. 但是只要能弄清地下水的自然规律,就能制定出符合科学的设计方案。 But as long as understand the laws of nature groundwater, we will be able to develop designs in line with science.

[0118] 主要方法是: [01] The main method is:

[0119] ①、首先了解拟建地下水库库区内地面现有的工、农、林、牧、以及房屋、道路等各种行业活动总荷载对地面以下土层持力层承载力的要求进行评估。 [0119] ①, first understand the proposed underground reservoir area reservoirs ground existing industry, agriculture, forestry, animal husbandry, as well as houses, roads and other industry events, the total load on the ground below the soil bearing layer bearing capacity requirements evaluation. 初步确定从地面至地下水库坝顶过水溢流断面顶部之间的土层厚度(即预留满足地面荷载的土层厚度)。 Initially identified from the ground to the underground reservoir crest through the soil thickness between the top water overflow cross section (i.e., reserved satisfy soil thickness ground load).

[0120] 然后测出地下水库库区内丰水期最高地下水位标高与正常水位标高(地下水位标高变化较小保持历时最长时间,以月数计)。 [0120] and then measure the reservoir area underground reservoir in flood season maximum water table elevation and normal water level elevation (water table elevation changes less to maintain over the maximum time in a few months).

[0121] ②、预留地面荷载持力层土层厚度的设计。 [0121] ②, reserved ground load bearing layers of soil thickness design.

[0122] 用最高地下水位标高作预留地面荷载持力层土层底板标高。 [0122] with the highest groundwater level as reserved ground load holding soil floor elevation stratum. 以确保在地下水库建成后,地下水库水位对库区地面及周边原有的环境生态,以及各种设施不受影响。 To ensure that after the completion of underground reservoirs, underground reservoir water level of the reservoir floor and surrounding the original ecological environment, as well as various facilities will not be affected. 见图3所示的4。 Figure 4 is shown in FIG.

[0123] ③、坝顶标高设计 [0123] ③, crest elevation design

[0124] 以正常水位标高为地下水库坝顶设计标高。 [0124] level to the normal water level crest design elevation of underground reservoir. 确保地下水库蓄水量的正常性与效益的持续性。 Ensure continuity of normal and effective storage capacity of underground reservoirs.

[0125] ④、坝顶溢流断面设计 [0125] ④, crest overflow section design

[0126] 以地下水库最高水位标高与正常水位标高之间的断面高为坝顶过水溢流断面。 [0126] In the highest level elevation of the normal level underground reservoir section between the elevation height of crest over the water overflow section. 确保丰水期,最大过水流量能顺利地从坝顶溢流面通过,不会因洪水期水位上升,影响上部土层产生软化或下陷等现象。 To ensure that the wet period, the maximum flow smoothly over the water from the surface through the crest overflow, the flood stage water level will not rise, affecting the upper soil layer softened or subsidence phenomenon. 如图3所示的h2。 h2 as shown in Fig.

[0127] D、地下溢流坝体的设计 [0127] design D, underground overflow dam body

[0128] ①、因地下古河道、古冲沟地下第四纪冲积物砂、砾、卵石层较松散,施工难度大,宜采用冲孔桩构建成地下连续墙防渗坝体。 [0128] ①, because underground ancient river, old gully underground Quaternary alluvial sand, gravel, gravel layer looser construction difficult, should be adopted punched piles constructed underground continuous wall impermeable dam.

[0129] ②、地下溢流坝主体结构为大直径钢筋砼排桩,桩之间互相紧贴。 [0129] ②, underground Spillway main structure of a large diameter reinforced concrete row of piles, in close contact with each other between the piles. 钢筋砼桩入岩为桩长的1/3桩长。 Reinforced concrete piles into the rock to the pile length of 1/3 pile length. [0130] ③、在钢筋砼排桩上游侧紧靠每两条钢筋砼桩之间的接触三角处位置增设一排小直径素砼桩,以御防钢筋砼桩之间渗漏水。 [0130] ③, in the upstream row piles in reinforced concrete against the contact cam at a location between each of the two reinforced concrete piles addition of a row of small diameter Plain Concrete pile, so as to guard against leakage of water between the reinforced concrete piles.

[0131] ④、利用冲孔桩机在施工过程中,冲锤上、上冲击造孔把孔壁周边岩土层挤实,提高岩土层密实度、内摩擦角以及变形模量等物理性力学指标,大大提高了对坝体的抗倾覆与抗剪等强度的特点,为坝体结构设计方案提供了更好、更省的依据与条件。 [0131] ④, by punching pile in the construction process, the hammer, the impact pore to pore walls of the surrounding rock and soil layer Compaction, improve the physical properties of geotechnical layer density, angle of internal friction and deformation modulus mechanical index, greatly improving the characteristics of the strength of the anti-dam body of overturning and shear, to provide better for the dam structure design, according to the conditions of more provinces.

[0132] 要获得坝体(桩基)施工前后岩土层密实度、内摩擦角以及变形模量等物理性力学指标两个变化不同的数据,可通过桩体施工前后对桩体周边两侧岩土层进行两次动力触探检测,即可获得两个不同的数据。 [0132] To get the dam (pile) Geotechnical layer density before and after construction, internal friction angle, and deformation modulus and other physical properties and mechanical indexes two different changes of data, may be both pile perimeter before and after pile construction for Geotechnical layer dynamic sounding detected twice, to obtain two different data.

[0133] ⑤、坝体是由冲孔钢筋砼排桩连结组成的地下坝体,坝体的上、下游两个侧面,从坝顶至坝脚已形成垂直线,不需再做直线或拆线形状设计,如图2所示。 [0133] ⑤, dam by punching RC discharge pile coupling underground dam, the dam, two downstream side composition has formed a vertical line from the crest to the dam foot without do straight or demolition line shape design, as shown in FIG.

[0134] ⑥、由于地下水库坝顶上、下游溢流段标高相差较小,含水层过水渗流速度较慢,对坝后冲刷力较小,因此对坝顶与坝后,不需做成曲线形状设计,如图3所示。 [0134] ⑥, since the underground reservoir crest, a downstream overflow section elevation difference is small, the aqueous layer over the water flow is slow, on the dam erosion force is small, so the crest and the dam, without made curve shape design, as shown in FIG.

[0135] 4、地下水库库区防渗坝体设计 [0135] 4, Underground Reservoir impermeable dam design

[0136] 地下水库库区河床两岸地下分水岭标高要高于地下水库控制水位设计标高,以保证地下水库建成蓄水后,库区水不能往库外泄漏。 [0136] Reservoir riverbed underground reservoirs on both sides of the underground watershed elevation higher than the underground reservoir to control water level design elevation to ensure that the underground reservoir impounding water reservoir can not leak to the outside of the refrigerator. 对于库区局部河段地下分水岭标高低于地下水库控制水位标高的地段,一定要构筑地下防渗坝,称为地下水库库区防渗坝。 For local river reservoir underground watershed elevation below the underground reservoir to control water level elevation of the lot, we must build underground seepage dam, called Underground Reservoir seepage dam. 库区防渗坝体,由钢筋砼排桩与防渗排桩组成。 Impermeable dam reservoir area, from reinforced concrete rows of pile and impermeable row of piles composition.

[0137] A、钢筋砼排桩的设计 [0137] A, reinforced concrete pile cluster design

[0138] 基于考虑到处在较低地下分水岭地段构筑防渗坝,坝体会受到地下水库内水的侧压力影响,因此防渗坝体需使用抗滑与抗倾覆的钢筋砼桩为主体结构。 [0138] Based on considerations around building impervious dam in the lower underground watershed area, the dam will be side pressure affects groundwater library water, so the seepage of the dam need to use anti-slide and anti-overturning of reinforced concrete piles for the main structure.

[0139] 钢筋砼排桩,桩之间互相紧贴,桩径Φ800-1000πιπι,桩端入岩层或地下不透水粘土层中1/3桩长。 [0139] Reinforced concrete row of piles, close contact with each other pile, pile diameter Φ800-1000πιπι, pile tip into the formation or underground impermeable clay layer 1/3 pile length. 桩顶高度大于地下水库有效控制水位设计标高2.0-3.0m,钢筋配制按设计 The pile height is greater than the underground reservoir effective control-level design elevation 2.0-3.0m, steel formulated in the design

需要确定。 You need to determine.

[0140] B、防渗排桩的设计 [0140] B, impermeable pile cluster design

[0141] 防渗桩布设于钢筋砼排桩的水库内侧,紧贴钢筋砼桩之间接触的三角处,以防止钢筋砼桩之间空隙漏水。 [0141] the inner reservoir seepage pile laid in reinforced concrete pile cluster, close to the triangle at the contact between the reinforced concrete piles, in order to prevent a gap leakage between the reinforced concrete piles. 防渗排桩有深层搅拌桩,高压水泥浆旋喷桩、素砼桩等。 Seepage row of piles with a deep mixing pile, high-pressure water slurry jet grouting pile, plain concrete pile. 根据不同的土层性质与不同的含水状态,选择不同的防渗固结方法。 Depending on the soil properties with different water content, to select a different seepage consolidation method.

[0142] ①、处于沙层、砂砾层。 [0142] ①, in sand, gravel. 当沙、砾石粒径较小,含泥质较少,另外含水量较小,而且地下水没有承压力现象等条件,防渗桩宜采用高压水泥浆旋喷固结排桩方法。 When sand, gravel, small particle size, containing less muddy, further, smaller water content, and the groundwater is no bearing pressure phenomenon conditions impermeable pile should adopt a high pressure slurry jet grouting consolidation row of piles method. 防渗排桩布设于钢筋砼排桩的水库内侧面。 Seepage row of piles laid within the reservoir reinforced concrete pile cluster side. 防渗排桩与钢筋砼排桩互相平行,间距300mm,利用高压水泥浆旋喷桩的扩散,把钢筋砼排桩与水泥浆旋喷桩固结成一幅地下防渗墙坝体。 Seepage row pile and RC row of piles parallel to each other, the pitch 300mm, by diffusion high pressure grout rotating pile, the RC discharge pile grout Churning Pile consolidated into an underground impervious wall dam. 如图7所示。 As shown in FIG.

[0143] ②、在粉土层、粉质粘土层、淤泥层、杂填土层等混合软弱土层。 [0143] ②, powder soil, silty clay, silt layer, heteroaryl fill soil and other mixed soft soil layer. 防渗排桩宜采用两排深层搅拌桩固结方法。 Seepage row of piles should adopt consolidation method in two rows of deep pile. 两排防渗排桩布设于钢筋砼排桩的水库内侧面,与钢筋砼排桩互相紧贴,防渗桩之间要求互相御接100mm,要求连续施工,桩端入不透水土层0.5-1.0m (或至基岩面上)。 Two rows impermeable row of piles laid on the reinforced concrete pile cluster within the reservoir side, the RC row of piles close to each other, requires Royal mutually connected 100mm between impermeable pile, requires continuous construction, the pile ends into a water-impermeable soil 0.5 1.0m (or to bedrock side). 桩顶高度大于地下水库控制水位设计标高2-3m。 The pile height is greater than the underground reservoir water level control design elevation 2-3m. 如图6所示。 As shown in Figure 6.

[0144] ③、在粉土层、砂砾层,当地下水较丰富,但地下水没有承压性时,防渗桩则采用钻孔素砼灌注桩排桩施工方案。 [0144] ③, in the silt, gravel, when groundwater rich, but groundwater no pressure resistance, impermeable pile is used construction scheme bored Plain Concrete Pile row of piles. 素砼桩布设在钢筋砼桩的水库内侧面,紧贴钢筋砼排桩。 Plain Concrete piles laid within the reservoir reinforced concrete pile side, close to the reinforced concrete row of piles. 桩端入地下不透水土层0.5—1.0m,桩长与钢筋砼排桩一致。 Pile tip into the ground impermeable soil 0.5-1.0m, the pile length and RC row of piles consistent. 如图5所示。 As shown in FIG.

[0145] ④、在细砂层、砂砾层、砾石层较厚,且粒径较大,地下水很丰富,具有很大的承压力,同时地下水库库内水侧压力较大时,防渗桩要采用冲孔桩素砼排桩方案。 [0145] ④, the layer of fine sand, gravel, the gravel layer is thick, and a larger particle size, the groundwater is very rich, has a great bearing pressure, simultaneously the water side pressure underground reservoir compartment is large, impermeable pile to use punching pile plain concrete row of piles solutions. 防渗排桩要紧贴钢筋砼排桩。 Seepage row of piles to be close to the reinforced concrete row of piles. 钢筋砼排桩施工在前,防渗排桩施工在后。 RC discharge pile front, impervious row after pile on. 防渗排桩桩端入地下不透水土层0.5一1.0m,桩长与钢筋轮排桩长度相等。 Seepage row pile tip into the ground water impermeable soil 0.5 a 1.0m, the pile length and reinforced wheel row of piles equal length. 如图5所不。 5 is not shown in FIG.

[0146] 5、地下水库坝体的稳定计算 [0146] 5, a stable underground reservoir dam Calculation

[0147] 在地下古冲沟、古河道地层构建地下水库对坝型的选择时,我们均选用“地下溢流坝”型。 [0147] In the underground ancient gullies, ancient river strata build underground reservoir for when the dam type selection, we are using the "underground spillway dam" type. 在地下水库库区防渗坝选用的“地下防渗坝”,虽然两种坝型不同,用途不同,但在坝的主体结构上是大同小异。 Impermeable dam in the underground reservoir area selection "underground impermeable dam", while both dam type different, different purposes, but the main structure of the dam is similar.

[0148] 由于以上两种坝型构筑条件要求特殊,地质条件复杂。 [0148] Since two or more type of dam constructed conditions require special, complicated geological conditions. 在考虑坝体设计与施工方案时,已采用了相应的措施,对坝体的稳定已得到一定的增强作用,同时因地下水库工程规模较小,故对以上两种坝型的坝体稳定评估,可不需作坝体的倾覆验算,只作坝体的抗剪强 In considering the dam design and construction program, has adopted corresponding measures, the stability of the dam has been a certain degree of enhancement, and because of the underground reservoir project a smaller scale, so the stability assessment of these two dam type of dam shear may need for overturning checking the dam, only for the dam strong

度验算。 Of checking.

[0149] 抗剪强度公式为: [0149] Shear Strength formula:

Figure CN103306236AD00131

[0151] K 一按抗剪强度计算的抗滑稳定安全系数(按表采用) [0151] K a stability safety factor by the shear strength calculated (Table employed)

[0152] f 一坝体与坝基岩接触面的抗剪摩擦系数 [0152] Shear friction coefficient f a dam and foundation rock contact surface

[0153] Σ W—作用于坝体上全部荷载对滑动平面的法向分值(包括扬压力) [0153] Σ W- acting on the dam all load method the slide plane of the value (including the uplift pressure)

[0154] Σ P—作用于坝体上全部荷载对滑动平面的切向分值(包括扬压力KN) [0154] Σ P- acting on the dam all the loads on the cut plane of sliding of the value (including the uplift pressure KN)

[0155] 6、地下水库坝体施工 [0155] 6, underground reservoir dam construction

[0156] ①、施工机械。 [0156] ①, construction machinery. 主要是采用冲孔桩机、旋挖桩机。 Mainly used punching pile driver, rotary drilling pile driver.

[0157] ②、钢筋砼桩先安排施工。 [0157] ②, to arrange the construction of reinforced concrete piles. 桩径一般800-1000mm,桩端嵌入岩基(或不透水岩土层),深度为桩长的1/3,桩的配筋按设计确定。 Pile diameter generally 800-1000mm, pile tip embedded rock group (or impermeable geotechnical layer), depth of pile length 1/3 reinforcement pile is determined by the design.

[0158] ③、在桩身施工造孔时容易塌孔,要注意加入适量粘土、水泥,或采用护筒施钻。 [0158] ③, building construction Kongshi Rong pile hole collapse easily, to be noted that adding an appropriate amount of clay, cement, or using casing drilling application.

[0159] ④、钢筋砼桩顶标高按设计确定预留负桩长度。 [0159] ④, reinforced concrete top pile elevation is determined by the design of the reserved negative pile length.

[0160] ⑤、坝体素砼桩,在钢筋砼排桩完成施工后一个星期施工。 [0160] ⑤, dam plain concrete pile, row of piles after the completion of construction of one week construction in reinforced concrete. 素砼排桩布设在钢筋砼排桩上游侧面,素砼桩位紧贴钢筋砼桩两桩之间的接触三角处。 Plain Concrete row piles laid in the RC discharge pile upstream side, plain concrete pile against the contact triangle between the two reinforced concrete piles. 桩径Φ600-800πιπι。 Pile diameter Φ600-800πιπι. 桩端入岩基0.5m,砼强度C15-C20。 Pile end of the rock group 0.5m, concrete strength C15-C20. 如图5所示。 As shown in FIG.

[0161] 7、地下水库库区防渗坝的施工 [0161] 7, impervious dam underground Reservoir Construction

[0162] 库区防渗坝体,由钢筋砼排桩与防渗排桩组成。 [0162] impermeable dam reservoir area, from reinforced concrete rows of pile and impermeable row of piles composition.

[0163] (I)钢筋砼排桩的施工 [0163] Construction (I) of reinforced concrete pile cluster

[0164] ①、钢筋砼排桩安排在防渗排桩施工之前进行。 [0164] ①, reinforced concrete row piles arrangements before impervious construction row of piles.

[0165] ②、钢筋砼桩之间互相紧贴布设。 [0165] ②, reinforced concrete piles between each other close to the layout.

[0166] ③、根据库区地下分水领土层性质与地下水状态而选择适合施工条件的桩机,如钻孔粧机、冲孔粧机、旋挖粧机等。 [0166] ③, according to the territorial layer properties and groundwater state underground trap Reservoir selected pile suitable construction conditions, such as drilling makeup machine, punching makeup machine, rotary drilling makeup machines.

[0167] ④、钢筋砼桩直径Φ800-1000πιπι,桩端入地下不透水土层深为桩长的1/3,入基岩层中0.5m,砼强度为C20-C25。 [0167] ④, reinforced concrete diameter Φ800-1000πιπι pile, the end into the ground water impermeable soil deep pile length 1/3, the group formation 0.5m, concrete strength of C20-C25.

[0168] ⑤、钢筋笼配筋按设计要求定,桩长按设计标高确定。 [0168] ⑤, steel cage reinforcement according to design requirements may be, pile length according to the design elevation determined.

[0169] (2)防渗排桩的施工 [0169] (2) impermeable construction pile cluster

[0170] 库区防渗排桩根据不同的土层性质与不同的含水状态,选择不同的防渗固结方法。 [0170] Impervious Reservoir row piles depending on soil properties with different water content, to select a different seepage consolidation method.

[0171] 根据以上第4条B设计,防渗固结方法有高压水泥浆旋喷桩,深层搅拌桩、钻孔素砼灌注桩与冲孔素砼灌注桩等4种。 [0171] According to the above design article 4 B, seepage consolidation method of high-pressure slurry jet grouting piles, deep mixing pile, 4 bored plain concrete pile and punching plain concrete piles and the like. 有关施工方面,在设计上,已有说明,这里不需多赘。 Related construction aspects in the design, there are instructions here do not need more than superfluous.

[0172] 8、地下水库蓄水量的计算方法 [0172] 8, calculated volume of water underground reservoir

[0173] A、测绘地下水库纵剖面图 [0173] A, a longitudinal sectional view mapping underground reservoir

[0174] ①、首先从坝址至水库尾,进行河床地质钻探,并绘制成地下水库纵剖面图。 [0174] ①, first from the dam to the end of the reservoir, a bed geological drilling, and drawn into the underground reservoir longitudinal sectional view. 如图8所示。 As shown in FIG. 然后根据库区地下河床地形不同标高点,绘制与计算出几个横断面面积。 Then depending on elevation points Reservoir underground bedforms, drawing and calculate the number of cross-sectional area. 如AA、BB、CC的横断面图,分别为图9、图10和图11。 Such as AA, BB, CC of the cross-sectional view, respectively, of FIG. 9, FIG 10 and FIG 11.

[0175] ②、算出坝体至水库尾各个不同水位等高线(U、L1, L3、L4)的长度,以及其平均长度(L〒)。 [0175] ②, calculates the dam to the reservoir end of the respective water level contour lines (U, L1, L3, L4) of the length, and the average length (L〒). 如图8所示。 As shown in FIG.

[0176] B、计算地下水库含水岩土层体积 [0176] B, calculates the aqueous geotechnical layer volume underground reservoir

[0177] ①、计出地下水库水位0-a、a_b、b_c、c_d之间含水岩土层的体积 [0177] ①, work out the underground reservoir water level 0-a, a_b, b_c, c_d between aqueous rock layer volume

[0178] [0178]

Figure CN103306236AD00141

[0180] ②、计出地下水库含水岩土层体积(V总沙) [0180] ②, count the aqueous geotechnical layer volume underground reservoir (V total sand)

[0181] (V 总沙)=Vi 沙+乂2 沙+乂3 沙+乂4 沙(4) [0181] (V overall sediment) = Vi sand + qe 2 sand + qe 3 Sand + qe 4 Sand (4)

[0182] C、计算地下水库蓄水量 [0182] C, calculates storage capacity of underground reservoir

[0183] 计算公式: [0183] formula:

[0184] V总水=V总沙XV平水 [0184] V total water = V total sediment XV flat water

[0185]式中: [0185] wherein:

[0186] V总水-地下水库蓄水总量(m3) [0186] V Total Water - total Underground Reservoir (m3)

[0187] V总沙——地下水库含水层总体积(m3) [0187] V Total sand - Total volume of underground reservoir aquifer (m3)

[0188] νψ7Κ——综合多层含水层平均每立方米分离出水量的平均值(ν〒#) (m3) [0188] νψ7Κ-- integrated Multiaquifer average separated per cubic meter an average value of the amount of water (ν〒 #) (m3)

[0189] D、地下含水层含水量的分离方法 [0189] separation method D, the water content of the aquifer

[0190] 本文所说的地下水库,是在地下含水层中建筑地下水库,准确的说应称为“地下含水层库”。 [0190] As referred to herein underground reservoirs, in aquifers in building underground reservoirs, to be exact should be called "underground aquifers library." 地下水库的蓄水量,指的是从地下含水层中所含的水量(m3)。 Underground reservoir storage capacity, the amount of water contained in the finger from an underground aquifer (m3).

[0191] 地下水库的含水层,是由多种不同岩土层组成的混合地层。 The aqueous layer was [0191] subterranean reservoir, a mixture of formation of a variety of different geotechnical layers. 因每层含水层的岩性、颗粒直径大小、级配、密度等条件的不同,含水量都有很大的差异。 Due to the different conditions of lithology each aquifer, the particle diameter size, gradation, density, moisture content are very different.

[0192] 对于地下含水层的含水量分离研究,多年来人们创造了几种方法: [0192] For the Separation of water content in underground aquifers, over the years it has created several ways:

[0193] (I)、样简烘干法; [0193] (I), like simple drying method;

[0194] (2)、离心机分离法; [0194] (2), a centrifuge separation method;

[0195] ( 3 )、笔者推荐采用模拟计量法。 [0195] (3), I recommend analog measurement method.

[0196] 模拟计量法的测验程序: [0196] Analog Measurement method Test procedure:

[0197] ①、首先通过地质钻探资料弄清拟建地下水库控制水位设计标高以下有多少层含水层,每层含水层的岩土性质,及其分布层序,土层结构颗粒直径、密度、每层土厚度等要素。 [0197] ①, first geological drilling data to ascertain the proposed underground reservoir water level control design elevation of the many tiers of the aqueous layer, each of geotechnical properties of the aqueous layer, and the distribution sequence, the soil layer structure particle diameter, density, each element of soil thickness.

[0198] ②、模拟计量器的制作。 [0198] ②, analog meter fabrication. 计量器可制成长方体,其体积V=abc, a=长度,b=宽度,C=高度。 Measurement may be made a rectangular parallelepiped, the volume V = abc, a = length, b = width, C = height. 制作计量器内空体积2.0-3.0 (m3)。 The produced meter empty volume 2.0-3.0 (m3). 板料可用木板或铁皮。 Sheet available wood or metal. 在计量器另一端为排泄水钢网板,在钢网板之前紧贴一块活动防渗水板。 At the other end the meter is a drain water stencil plate, close to an active water impermeable sheet before the steel plate. 防渗板后为集水槽,集水槽底部设一个可开、闭的排水管孔。 After impermeable plate sump collection tank bottom is provided an opening, the drain hole closed.

[0199] ③、计量器制作完成后,然后按地下水库的水力坡度的比例安放计量器的倾斜坡度。 After [0199] ③, meter finished, then, to hydraulic gradient underground reservoir mounted gauge incline slope. 计量器的排水端朝向倾斜坡脚,令其近似于河床地下水的自然坡度渗流态势。 The drain terminal of the meter inclined towards the toe, make the natural slope of flow momentum approximating bed groundwater.

[0200] ④、采样机械,可选用旋挖桩机的挖斗钻头施工。 [0200] ④, the sampling machine, the choice of rotary drilling pile bucket drill construction. 挖斗直径Φ1.0-2.0 (m)。 Bucket diameter Φ1.0-2.0 (m). 或采用人工挖孔桩施工方法采样。 Or construction method hand-dug pile sampling.

[0201] ⑤、采样与测验层序,从上而下,分层采样与测验,试验成果记录要层序分清,不得混乱。 [0201] ⑤, sampling and test sequence, from the top down, stratified sampling and test, test results recorded to sequence distinguish, not chaos.

[0202] ⑥、把试样(地下含水层)装进计量器后,先把试样表面铺平整,然后就地利用水源,注入计量器中。 [0202] ⑥, after the sample (aquifer) loaded into the meter, first sample surface spread flat, and local use of water injected into the metering vessel. 当试样表面水位稳定呈饱和状态后,即测出计量器含水层在饱和状态下的体积V(m3)。 When the surface level of the sample stability was saturated, i.e., the measured meter aquifer in saturation volume V (m3). 最后开启活动隔水板与集水槽底部的排水管孔,待计量器中水排干后,算出计量器中分离出水的体积V# (m3),即为每立方米饱和含水岩土层的含水量体积V#(m3)。 Finally, opening drain hole activity impermeable plate collector bottom of the tank, and to be the meter in the water drained, calculates meter separating effluent volume V # (m3), that is, containing per cubic meter of saturated aqueous geotechnical layer volume of the water V # (m3).

[0203] ⑦、最后算出综合多层含水层平均每立方米分离出水量的平均值 [0203] ⑦, the Composite multilayer aquifer per cubic meter of the separated water is finally calculated

[0204] E、对地下含水层含水量几种分离成果的评价。 [0204] E, evaluation of several underground separation results aquifer water content.

[0205] 从以上三种分离方法所得的V#值对比来看,烘干法比离心机分离法大,模拟计量法最小。 [0205] From the V # comparative value of these three resulting separation process point of view, the drying method is larger than the centrifuge method, the minimum analog measurement method. 即烘干法>离心机分离法>摸拟计量法。 I.e. drying method> centrifuge method> simulation of measurement.

[0206] 虽然烘干法与离心机分离法分离出的水量V#值较大。 [0206] While the drying method is separated with a centrifuge separation of water V # larger value. 凡经过烘干法与离心机法分离过的含水层,已变成松·散的干沙、干土。 Where after separation too drying method and the centrifuge method aquifer, it has become a loose-loose dry sand, dry soil. 但从当今现实对地下含水层抽水的手段与设备来看,主要是采用地下大口径水井与机钻小口径水井,用水泵抽水的手段与设备,对饱和含水层每立方米能吸取的水量,亦远远达不到烘干法与离心机从每立方米饱和含水层中分离出的水量。 But today the reality of the underground aquifer pumping means and equipment point of view, is mainly used underground large diameter wells and machine drilling small diameter wells with pumps pumping means and equipment, saturated aquifer per cubic meter can absorb the water, also far water than drying separation centrifuge from each cubic meter of saturated aqueous layers out. 但是,当水井抽水停止一定时间后,上游的潜水即慢慢从含水层中渗透流来补充,使含水层的含水量又获得恢复原状。 However, when the well pumping stopped for a certain time, dive upstream, i.e. slowly permeate stream to replenish the aqueous layer, so that the water content of the aqueous layer and obtain restitution. 这种的变化过程,与模拟计量法的分离过程更近似于地下水渗流的自然状态。 The separation process of this change process, the analog measurement approach more akin to the natural state groundwater flow. 另外,模拟计量法的分离过程与分离出来的水量与效果,与目前利用水井抽水的效果近似,对于地下水库蓄水量的评估更具指导意义与实用意义。 In addition, the separation process analog measurement approach and separated the water and effect, and the current results using the wells pumping approximation for the evaluation of water storage capacity of underground reservoirs more significance and practical significance.

[0207] F、地下水库蓄水量计算实例 [0207] F, the storage capacity of underground reservoir calculation example

[0208] ( I)以图8-图11为例 [0208] (I) at 8-11 Example

[0209] 1、设坝体至水库尾各水位等高线长度为: [0209] 1, provided the dam to the reservoir end of each level contours length:

[0210] “O”水位等高线长度Ltl = 1200m [0210] "O" level contour length Ltl = 1200m

[0211] “a”水位等高线长度L1 = 1050m [0211] "a" level contour length L1 = 1050m

[0212] “b”水位等高线长度L2 = 900m [0212] "b" level contour length L2 = 900m

[0213] “c”水位等高线长度L3 = 750m [0213] "c" level contour length L3 = 750m

[0214] “d”水位等高线长度L4 = 600m [0214] "d" level contour length L4 = 600m

[0215] 2、设地下水库几个横断面宽度为 [0215] 2, disposed underground reservoir several cross width

[0216] ①AA横断面如图9。 [0216] ①AA cross section in FIG. 9.

[0217] L' ο = 70m ;L,x = 60m ;L,2 = 53m ;L,3 = 40m ;L,4 = 20m [0217] L '= 70m ο; L, x = 60m; L, 2 = 53m; L, 3 = 40m; L, 4 = 20m

[0218] ②BB横断面如图10。 [0218] ②BB cross section in FIG. 10.

[0219] L' ◦ = 50m ;L,x = 40m ;L,2 = 36m ;L,3 = 32m ;L,4 = IOm [0219] L '◦ = 50m; L, x = 40m; L, 2 = 36m; L, 3 = 32m; L, 4 = IOm

[0220] ③CC横断面如图11。 [0220] ③CC cross section in FIG. 11. [0221] L,ο = 30m ;L,x = 20m ;L,2 = IOm [0221] L, ο = 30m; L, x = 20m; L, 2 = IOm

[0222] 3、设每级水位0—a、a一b、b一c、c一d之间的间距为2.0 (m)0 [0222] 3, provided each grade level 0-a, a a b, b a c, the spacing between the c-d to 2.0 (m) 0

[0223] 4、设模拟计量法综合多层含水层平均每立方米分离出水量平均值0.25(m3) [0223] 4, provided simulated metrology integrated Multiaquifer average separated per cubic meter of the water mean value 0.25 (m3)

[0224] (2)算出水位O —a、a一b、b一C、c一d之间含水层体积(V1沙、V2^Λ V3沙、V4沙)。 [0224] (2) was calculated level O -a, a a b, b a C, the aqueous layer volume between c-d (V1 sand, V2 ^ Λ V3 sand, V4 sand).

[0225] ①、O— I之间含水层体积V1^ [0225] ①, between O- I aqueous layer volume V1 ^

[0226] [0226]

Figure CN103306236AD00161

[0232] V1*= Wl¥ XLl¥= 90X 1125 = 101250 (m3) [0232] V1 * = Wl ¥ XLl ¥ = 90X 1125 = 101250 (m3)

[0233] ②、以同样的计算方法算出 [0233] ②, the same calculation method of calculating

^2沙、V3沙、V4沙。 ^ 2 sand, V3 sand, V4 sand.

[0234] V2沙=71175 Cm3) [0234] V2 Sediment = 71175 Cm3)

[0235] V3沙=47025 Cm3) [0235] V3 Sediment = 47025 Cm3)

[0236] V4沙=34425 Cm3) [0236] V4 Sediment = 34425 Cm3)

[0237] (3)地下水库含水层总体积为 [0237] (3) the total volume of underground reservoir aquifer

[0238] V 总沙=Vi 沙+V2 沙+乂3 沙+乂4 沙 [0238] V total sand = Vi sand + V2 Sand + qe 3 Sand + qe 4 Sand

[0239] = 101250+71175+47025+34425 = 253875 Cm3) [0239] = 101250 + 71175 + 47025 + 34425 = 253875 Cm3)

[0240] (4)地下水库蓄水总量为: [0240] (4) the total amount of water underground reservoirs is:

[0241] V总水=V总沙父乂平水=253875X0.25 = 63469 Cm3) [0241] V total water = V total sediment parent qe flat water = 253875X0.25 = 63469 Cm3)

[0242]其中: [0242] wherein:

[0243] V1 水=V# 父乂平水=101250X0.25 = 25312 Cm3) [0243] V1 water = V # Parent qe flat water = 101250X0.25 = 25312 Cm3)

[0244] 乂2水=V2沙父丫平水=71175X0.25 = 17794 (m3) [0244] qe 2 water = V2 sediment parent Ah level Water = 71175X0.25 = 17794 (m3)

[0245] V3水=V3沙XV¥*= 47025X0.25 = 11756 (m3) [0245] V3 water = V3 sand XV ¥ * = 47025X0.25 = 11756 (m3)

[0246] 乂4水=V4沙父乂平水=34425X0.25 = 8606 Cm3)[0247] 9、对地下水库蓄水量的科学利用 [0246] qe 4 water = V4 sediment parent qe flat water = 34425X0.25 = 8606 Cm3) [0247] 9, scientific utilization of the storage capacity of the underground reservoir

[0248] ①、绘制地下水库水位与蓄水量关系曲线图,如图4所示。 [0248] ①, draw water level and storage capacity graph of reservoir, as shown in FIG.

[0249] a、参见图8与步骤8的第(4)点。 [0249] a, see FIG. 8 and step (4) 8 points.

[0250] b、已知地下水库蓄水量为V总水=63469 Cm3) [0250] b, a known volume of water underground reservoir is V total water = 63469 Cm3)

[0251] 因地下水库蓄水量总量即为“O”水位标高水库蓄水总量。 [0251] the total amount of water due to the total storage capacity of underground reservoir is the "O" level elevation of the reservoir.

[0252] 则各水位标高的水库蓄水量体积为: [0252] the respective water level of reservoir storage volume:

[0253] “O” = 63469 (m3) [0253] "O" = 63469 (m3)

[0254] “a”水位标高的水库蓄水量为: [0254] "a" reservoir storage water level is:

[0255] 63469 — V1*= 63469 — 25312 = 38157 (m3) [0255] 63469 - V1 * = 63469 - 25312 = 38157 (m3)

[0256] “b”水位标高的水库蓄水量为: [0256] "b" reservoir storage water level is:

[0257] 38157 — V2*= 38157-17794 = 20363 (m3) [0257] 38157 - V2 * = 38157-17794 = 20363 (m3)

[0258] “b”水位标高的水库蓄水量为: [0258] "b" reservoir storage water level is:

[0259] 20363 — V3*= 20363 — 11756 = 8607 (m3) [0259] 20363 - V3 * = 20363 - 11756 = 8607 (m3)

[0260] “d”水位标高的水库蓄水量为: [0260] "d" reservoir storage water level is:

[0261] 8607—V4*= 8607 - 8607 = O [0261] 8607-V4 * = 8607 - 8607 = O

[0262] C、绘制水位与水库蓄水量关系曲线图 [0262] C, draw water impoundment volume relationship graph

[0263] 用以下几个水位标高与其相关的水库蓄水量值绘制成《水位与水库蓄水量关系曲线图》 [0263] Reservoir magnitude with the following water level associated therewith plotted as "water impoundment amount of a graph"

[0264] “O” = 63469 (m3) [0264] "O" = 63469 (m3)

[0265] “a” = 38157 (m3) [0265] "a" = 38157 (m3)

[0266] “b” = 20363 (m3) [0266] "b" = 20363 (m3)

[0267] “c”= 8607 (m3) [0267] "c" = 8607 (m3)

[0268] “d” = 0.0 (m3) [0268] "d" = 0.0 (m3)

[0269] ②、以“水位与水库蓄水量曲线图”为用水抽水的指南与依据,实行计划、科学用 [0269] ②, the "water level and reservoir storage plot" for the water pumping guidelines and basis for the implementation plan, the scientific use

水,克服盲目性。 Water, overcome blindness.

[0270] ③、在水库坝体上游侧设一口水位观测井,为水库中观测水位的永久观测井。 [0270] ③, the dam upstream reservoir side is provided a water level observation wells, permanent observation well observed water level of the reservoir.

[0271] ④、每次抽水后,要增加测量水位次数,掌握水位恢复的周期与历时时间。 [0271] ④, after each pumping, to increase the number of measurements water level, master level recovery cycle and elapsed time.

[0272] ⑤、当水位尚未恢复之前,严禁超量抽水,不准搞“揭泽而渔”的错误做法。 [0272] ⑤, when before the water level has not been restored, non-excessive pumping, are not allowed to engage in "exposing Ze and fishing" wrong practices.

[0273] ⑥、抽水前,先观测水位,了解水库现存水量情况。 [0273] ⑥, before pumping, the first observation level, to understand the existing water situation reservoir. 然后按计划定时定量抽水。 Then according to plan regular meals pumping. 抽水后,要把抽水时间迄止与抽水前后水位、抽水量等要记录立档。 After pumping, should the pumping time until the stop forward and backward pumping water, pumping amount to be recorded the file is.

[0274] ⑦、水库有专人管理,抽水用电与机械设备专人负责。 [0274] ⑦, reservoir expert management, pumping electrical and mechanical equipment attended.

[0275] 10、地下水库回灌补水措施 [0275] 10 underground reservoirs recharge replenishment measures

[0276] 在枯水期,有的地下水库会出现最低水位历时较长时间,影响了水库用水运行的持续性。 [0276] In the dry season, some underground reservoirs will be the lowest water level had taken a long time, affecting the sustainability of water running in the reservoir. 因此,在建筑地下水库时,就应该同时考虑到构建回灌补水工程的事宜。 Therefore, when building underground reservoirs, it should also take into account the construction of issues recharge replenishment project.

[0277] A、回灌补水工程有以下几种方法: [0277] A, there are several ways to recharge replenishment project:

[0278] (I)在地下水库上游、支流建造集水柜、圹、库。 [0278] (I) in underground reservoirs upstream tributaries construction set water tank, Kuang, library. 然后将这些储水引入地下水库中。 And then these storage into an underground reservoir.

[0279] 这部份水源均属地面水资源,流动于地下水库的上游地面。 [0279] This part of the water belong to the ground water flows in the upstream surface of underground reservoirs. 主要水源为: The main source of water is:

[0280] ①地下水库库区内与水库上游的地面集雨面积的雨水量; [0280] ① the amount of rainwater ground catchment area of ​​the reservoir area underground reservoir and upstream of the reservoir;

[0281] ②上游山上、高岭地表冰雪溶水;[0282] ③地表小泉涌水。 [0281] ② upstream mountains, kaolin surface ice water soluble; [0282] ③ surface Koizumi gushing.

[0283] (2)从库外挖渠引水。 [0283] (2) dig trenches water from outside the library. 把库外水源引来给地下水库回灌补水。 The outside-the water attracted to recharge replenishment of groundwater reservoirs.

[0284] (3)在库外打井引水回灌补水。 [0284] (3) wells water recharge replenishment outside the library.

[0285] B、几种回灌补水工程的设计与施工 [0285] B, design and construction of several recharge replenishment project

[0286] ①以上的集水柜、圹、库工程,用引水渠道与地下水库连通。 [0286] ① above set water tank, tomb, library projects, communicating with the diversion channel and ground water reservoir. 这些集水工程从地面开始往地下挖成长方体,深度大于顶宽,坑内回填粗砂与砾石,砂砾石层面比地面坑口低500-1000mm,然后在砂碌石层面上回填粘土层厚500-1000mm,粘土层经夯实后与坑口地面标高持平。 These catchment project starting from the ground deepened dug into rectangular, the depth is greater than the top width, pit backfill sand and gravel, sand and gravel level pit lower than the ground 500-1000mm, then backfill on the sand busy stone level clay layer thickness 500-1000mm clay layer after compaction and pit ground level flat. 以减少水分蒸发与影响地面交通。 In order to reduce evaporation and influence of ground transportation. 但集水坑在回填粘土时,要留出补充水源流入集水坑的进水口。 However, the sump when the clay backfill, leaving a supplemental source of water flows into the inlet sump.

[0287] ②从库外打井或引水渠道之地下坑渠道,亦要回填粗砂与砾石层,以及回填粘土层500-1000mm,夯实后与地面标高持平。 [0287] ② drilling from outside the library or underground pit water diversion channels, but we also want to backfill sand and gravel, and clay backfill layer 500-1000mm, after compaction and ground level flat. 目的与作用,也是为了减少水分蒸发与影响地面交通。 The purpose and function, but also to reduce evaporation and effects of ground transportation.

[0288] 11、对地下水库的保护 [0288] 11, protection of underground reservoir

[0289] ①地下水库的勘测、设计、施工等原始资料,要立档长期保存。 [0289] ① survey, design and construction of underground reservoir of raw data to the file is long-term preservation.

[0290] ②在构筑地下水库的场地地面,要标出坝体、库区边沿、库尾等实地位置,并树牌宣示给予保护。 [0290] ② in building underground reservoirs site ground to mark the actual location of the dam, the edge of the reservoir area, Tail, etc., and tree card declared for protection.

[0291] ③严禁超过预留土层持力层允许承载力的各种大型道路与建筑物基础横跨库区地面。 [0291] ③ shall not exceed the reserved basis of a variety of large roads and buildings soil bearing layer allows the carrying capacity across the ground reservoir. 如没有选择余地,则采用桥梁跨越方式,从库区地面上空通过。 If there is no choice, the use of a bridge spanning the way, from above ground Reservoir through.

Claims (2)

1.在地下古河道古冲沟构筑地下水库的方法,其特征在于,包括如下步骤: (1)对地下古河道、古冲沟的勘察,具体勘察步骤如下: (A)勘察地下古河道古冲沟的地名、地层、成因、走向、长度、地下含水层厚度以及地下标闻与地面标闻; (B)评估地下水源条件,在步骤(A)的基础上,进一步查明上游补给水源的类型,了解当地年降雨量、大气蒸发量以及库内地下水位的变化情况,包括丰水期最高洪水位标高、枯水期最低水位标高及历时和正常水位标高及历时;测出地下水库水力坡降,估算补给潜水流量,计算地下水库最高洪水位的过水最大流量、地下水库正常水位的过水流量和最低水位的过水流量; (C)根据地下水库坝址基础的地质地形条件,选择较狭窄的壶口河段,地下河床底部为不透水岩土层,两侧为对称的形状呈“U”字型;坝体基础岩土层为完整坚硬 1. Underground Paleochannel old gully constructing a subterranean reservoir, characterized by comprising the steps of: (1) underground ancient river, old gully investigation, the specific investigation the following steps: (A) prospecting underground Paleochannel ancient gullies names, formation, genesis, direction, length, aquifer thickness, and underground subscript smell ground mark; (B) evaluation groundwater conditions, on the basis of the step (a), the further identification of the upstream supply water source type, understand the local annual rainfall, atmospheric evaporation and changes in library groundwater level, including the wet period the highest flood level elevation, dry season the minimum water level elevation and duration and the normal water level elevation and duration; measured hydraulic gradient of groundwater reservoirs, estimate supply diving flow, calculate the highest flood level underground reservoirs over the water maximum flow rate, the normal water level underground reservoirs over the water flow rate and the lowest water level over the water flow; (C) based on geological and topographical conditions dam foundation of reservoir, choose a more narrow the spout of the river bottom underground riverbed impermeable geotechnical layer, both sides of the symmetrical shape is "U" shaped; dam base geotechnical layer is a complete solid 、不透水性的岩土层; (D)根据地下水库库区地质地形条件,选择地下河道较宽阔且较长的,较平缓的,有较厚的含水层的地层,以保证地下水库有较大的蓄水容量;库区内地下河床两侧分水岭标高高于地下水库控制水位设计标高,以保证水库建成蓄水后,库内水不能往库外泄漏;在喀斯特较发育地区,地下水库库区选择在喀斯特发育较弱,基岩较完整的河段,以防库水渗漏; (2)设计地下水库坝体,具体步骤如下: (A)坝型的选择,采用地下溢流坝的坝体类型; (B)设计地下坝高与坝顶溢流断面,具体方法如下: ①、首先对拟建地下水库库·区内地面现有的工、农、林、牧以及房屋和道路各种行业的活动总荷载对地面以下土层持力层承载力的要求进行评估,初步确定从地面至地下水库坝顶过水溢流断面顶部之间的土层厚度,即预留满足地面荷载的土层厚度 , Water impermeable geotechnical layer; (D) according to the geological subsurface terrain Reservoir, select underground river are wider and longer, more gradual, with a thick stratum aqueous layer to ensure there is more underground reservoir large storage capacity; riverbed on both sides of the watershed under the Mainland reservoir elevation above the underground reservoir to control water level design elevation to ensure that after the reservoir impounding, bank water can not leak to the outside of the refrigerator; the more developed regions in the karst underground Reservoir zone selection karst development is weak, bedrock more complete river to prevent reservoir water leakage; (2) design of underground reservoir dam, the following steps: (a) dam type selection, using underground weir dam type; (B) the design of underground dam with the crest overflow section, as follows: ①, first of all library-area ground proposed underground reservoir of existing industry, agriculture, forestry, animal husbandry as well as houses and roads in each trades activities total load on the ground the soil bearing layers bearing capacity requirements be evaluated initially determined from the surface to underground reservoirs crest through the soil thickness between the top water overflow section, i.e. the reservation satisfy ground load soil thickness ;然后测出地下水库库区内丰水期最闻地下水位标闻与正常水位标闻,地下水位标闻变化较小保持历时最长时间,以月数计; ②、预留地面荷载持力层土层厚度的设计,用最高地下水位标高作预留地面荷载持力层土层底板标高,以确保在地下水库建成后,地下水库水位对库区地面及周边原有的环境生态,以及各种设施不受影响; ③、坝顶标高设计,以正常水位标高为地下水库坝顶设计标高,确保地下水库蓄水量的正常性与效益的持续性; ④、坝顶溢流断面设计,以地下水库最高水位标高与正常水位标高之间的断面高为坝顶过水溢流断面,确保丰水期最大过水流量能顺利地从坝顶溢流面通过,不会因洪水期水位上升,影响上部土层产生软化或下陷等现象; (C)地下溢流坝体的设计,采用冲孔桩构建成地下连续墙防渗坝体,地下溢流坝主体结构为大直 ; Then measure the Underground Reservoir area wet period most smell the water table marked smell normal water mark smell, the water table marked hear a small change to maintain lasted the longest time, the number of months count; ②, set aside ground load holding force design soil thickness of the layer, elevation as a reserve with the highest groundwater level ground load holding soil floor elevation bearing layer, in order to ensure that after the completion of underground reservoirs, underground reservoir water level of the reservoir floor and surrounding the original ecological environment, as well as kinds of facilities will not be affected; ③, crest elevation design, the normal water level elevation of the underground reservoir crest design elevation, to ensure continuity of normality and effective storage capacity of underground reservoir; ④, crest overflow section designed to section between the highest water level elevation underground reservoir with a normal water level elevation height crest over the water overflow section to ensure maximum too wet season water flows smoothly from the top of the dam overflow surface through, it will not rise because of flood water level, Effect of the upper soil layers to produce other softening or sagging phenomenon; design (C) subterranean overflow dam body, using punched piles constructed underground continuous wall impermeable dam, underground Spillway main structure Tachih 径钢筋砼排桩,桩之间互相紧贴,钢筋砼桩入岩为桩长的1/3桩长;在钢筋砼排桩上游侧紧靠每两条钢筋砼桩之间的接触三角处位置增设一排小直径素砼桩,以御防钢筋砼桩之间渗漏水;利用冲孔桩机在施工过程中,冲锤上、上冲击造孔把孔壁周边岩土层挤实,提高岩土层密实度、内摩擦角以及变形模量; (3)地下水库库区防渗坝体设计,地下水库库区河床两岸地下分水岭标高要高于地下水库控制水位设计标高,以保证地下水库建成蓄水后,库区水不能往库外泄漏;对于库区局部河段地下分水岭标高低于地下水库控制水位标高的地段,构筑地下水库库区防渗坝;库区防渗坝体,由钢筋砼排桩和防渗排桩组成;钢筋砼排桩的设计如下步骤(A),防渗排桩的设计如下步骤(B): (A)钢筋砼排桩的设计,钢筋砼排桩之间互相紧贴,桩径Φ800-1000πιπι,桩端入岩层或 Diameter reinforced concrete row of piles, in close contact with each other between the piles, reinforced concrete piles into the rock as the pile length 1/3 pile length; abutting contact position cam between the reinforced concrete pile every two upstream rows of piles in reinforced concrete adding a row of small diameter plain concrete piles to between defense against the reinforced concrete pile leak water; by punching pile in the construction process, the hammer, the impact pore to pore walls of the surrounding rock and soil layer Compaction improve Geotechnical layer density, angle of internal friction and deformation modulus; impermeable reservoir area (3) underground reservoir dam design, reservoir area bed underground reservoir both sides of the underground watershed elevation than underground reservoir water level control design elevation, in order to ensure underground reservoir after the completion of water, the water reservoir area not leak to the outside of the refrigerator; for topical reach Reservoir underground watershed level below the underground reservoir water level control elevation of the lot, to build impermeable dam underground reservoir area; impermeable Reservoir dam by reinforced concrete row pile and impermeable row pile composition; reinforced concrete pile cluster design steps (a), seepage row pile design steps (B): (a) of reinforced concrete pile cluster design, reinforced concrete row of piles of between close contact with each other, the pile diameter Φ800-1000πιπι, pile tip into the formation or 下不透水粘土层中1/3桩长;桩顶高度大于地下水库有效控制水位设计标高2.0-3.0m ; (B)防渗排桩的设计,防渗桩布设于钢筋砼排桩的水库内侧,紧贴钢筋砼桩之间接触的三角处,以防止钢筋砼桩之间空隙漏水; (4)地下水库坝体的稳定评估,通过计算坝体的抗剪强度进行验算; (5)按照步骤(2)的设计,对地下水库坝体进行施工,采用冲孔桩机或旋挖桩机为施工机械,先安排钢筋砼桩的施工,一个星期后安排坝体素砼桩的施工; (6)按照步骤(3)的设计,对地下水库库区防渗坝进行施工; (7)测绘地下水库纵剖面图,计算地下水库含水岩土层体积、地下水库蓄水量和地下含水层的平均分离水量; (8)对地下水库蓄水量的科学利用,绘制地下水库水位与蓄水量关系曲线图,以该曲线图为用水抽水的指南和依据,实行计划科学用水;在水库坝体上游侧设一口水位 The impermeable clay layer 1/3 pile length; pile height greater than the top-level design effectively control the underground reservoir elevation 2.0-3.0m; (B) impermeable pile cluster design, impermeable reinforced concrete pile row laid in piles inside the reservoir , close to the triangle at the contact between the reinforced concrete piles, in order to prevent a gap leakage between the reinforced concrete pile; (4) stability assessment underground reservoir dam, for checking by the shear strength calculation dam; (5) following the procedure of (2) design of underground reservoir dam the construction, using punching pile or auger pile of construction machinery, to arrange reinforced concrete pile construction, a week after arrange the construction of the dam plain concrete piles; (6 design) according to step (3), the underground reservoir impermeable dam in the construction; vertical sectional view (7) mapping underground reservoirs, in calculation layer volume underground reservoir containing water, the average volume of water and underground aquifers underground reservoir separating water; (8) for the scientific utilization of storage capacity of the reservoir, drawing water level and storage capacity of underground reservoir in a graph, in which the curve graph water pumping guide and basis, a planned SCIENCE water; at the dam upstream reservoir side set up a level 测井,为水库中观测水位的永久观测井;抽水前,先观测水位,了解水库现存水量情况,然后按计划定时定量抽水;抽水后,把抽水时间迄止与抽水前后水位和抽水量记录立档;每次抽水后,要增加测量水位次数,掌握水位恢复的周期与历时时间;当水位尚未恢复之前,严禁超量抽水; (9)在枯水期,当地下水库出现最低水位历时较长时间时,进行地下水库回灌补水措施;补水措施如下: (A)在地下水库上游或支流建造集水柜、集水圹或集水库,然后将这些储水引入地下水库中; (B)从库外挖渠引水,把库外水源引给地下水库回灌补水; (C)在库外打井引水回灌补水。 Logging, for the reservoir observed permanent observation well water level; before pumping, before the observation level, to understand the existing water situation reservoir, then scheduled time quantitative pumping; After pumping, the pumping time until the stop forward and backward pumping water and pumping amount of the recording Li file; after each pumping, to increase the number of measurements water level, master level recovery cycle and elapsed time; before the water level has not been restored, non-excessive pumping; the lowest level over a longer time (9) appear in the dry season, local lower reservoir , a recharge replenishment measures underground reservoir; replenishment measures are as follows: (A) upstream or tributaries underground reservoir construction set of water tanks, water collecting tomb or collection reservoir, and then these storage introduced into the underground reservoir; (B) from outside the library dig trenches water, the outside-water lead to recharge replenishment underground reservoir; (C) drilling water recharge replenishment outside the library.
2.根据权利要求1所述的在地下古河道古冲沟构筑地下水库的方法,其特征在于,步骤(3)所述的防渗排桩包括深层搅拌桩、高压水泥浆旋喷桩或素砼桩, ①、当坝体处于沙层或砂砾层,沙和砾石粒径较小,含泥质少,含水量小,地下水没有承压力现象时,防渗排桩宜采用高压水泥浆旋桩;防渗排桩布设于钢筋砼排桩的水库内侧面,防渗排桩与钢筋砼排桩互相平行,间距300mm,利用高压水泥浆旋喷桩的扩散,把钢筋砼排桩与水泥浆旋喷桩固结成一幅地下防渗墙坝体; ②、当坝体在粉土层、粉质粘土层、淤泥层或杂填土层时,防渗排桩采用深层搅拌桩,两排防渗排桩布设于钢筋砼排桩的水库内侧面,与钢筋砼排桩互相紧贴,防渗桩之间互相御接100mm,连续施工,桩端入不透水土层0.5-1.0m,桩顶高度大于地下水库控制水位设计标高2_3m ; ③、当坝体在粉土层或 2. The method of constructing an underground reservoir in a subterranean ancient river old gully according to claim 1, wherein the step (3) of the impermeable row of piles including deep mixing pile, high-pressure water slurry jet grouting pile or plain concrete piles, ①, when the dam is sand or gravel, sand and gravel small particle size, containing less muddy, small water content, groundwater no bearing pressure phenomenon, impermeable row of piles should be high-pressure grout rotating pile ; seepage row of piles laid on reinforced concrete pile cluster reservoir inner side, seepage row of piles and reinforced concrete row of piles parallel to each other, spacing 300mm, using high pressure water slurry jet grouting pile of diffusion, the reinforced concrete piles in row and grout spin solid form an underground pile discharge cutoff wall dam; ②, when in the silt dam fill soil, silty clay, silt layer or heteroaryl, impermeable pile row deep mixing pile, two rows of seepage row of piles laid on the reinforced concrete pile cluster within the reservoir side, the RC row of piles close to one another, each Royal connection 100mm between impermeable pile, continuous construction, the pile end of the impermeable soil 0.5-1.0M, the pile height greater than underground reservoir water level control design elevation 2_3m; ③, when the dam in the silt or 砾层,地下水较丰富,但地下水没有承压性时,防渗桩采用素砼桩,素砼桩布设在钢筋砼桩的水库内侧面,紧贴钢筋砼排桩,桩端入地下不透水土层0.5-1.0m,桩长与钢筋砼排桩一致; ④、当坝体在细砂层或砂砾层,砾石层较厚,且粒径较大,地下水很丰富,具有很大的承压力,同时地下水库库内水侧压力较大时,防渗桩采用素砼桩,防渗排桩要紧贴钢筋砼排桩,钢筋砼排桩施工在前,防渗排桩施工在后,防渗排桩桩端入地下不透水土层0.5-1.0m,桩长与钢筋轮排桩长度相等。 Gravel, groundwater rich, but when groundwater is no pressure resistance, impermeable piles using Plain Concrete pile, Plain Concrete piles laid within the reservoir reinforced concrete pile side, close to the reinforced concrete discharge pile, the end into the ground water impermeable soil layer 0.5-1.0M, the pile length with the RC discharge pile consistent; ④, when the dam in a layer of fine sand or gravel, the gravel layer is thick, and a larger particle size, the groundwater is very rich, has a great bearing pressure, simultaneously underground reservoir compartment water side pressure, seepage piles using plain concrete piles, impermeable row of piles to be close to the reinforced concrete row of piles, reinforced concrete discharge pile front, impervious row after pile in, impermeable row pile ends into the ground impermeable soil 0.5-1.0m, equal to the pile length with steel wheel row of piles length. ` `
CN 201310268231 2013-06-28 2013-06-28 Method for constructing underground reservoir in ancient gully of ancient underground river channel CN103306236B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201310268231 CN103306236B (en) 2013-06-28 2013-06-28 Method for constructing underground reservoir in ancient gully of ancient underground river channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201310268231 CN103306236B (en) 2013-06-28 2013-06-28 Method for constructing underground reservoir in ancient gully of ancient underground river channel

Publications (2)

Publication Number Publication Date
CN103306236A true CN103306236A (en) 2013-09-18
CN103306236B CN103306236B (en) 2015-04-08

Family

ID=49131923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201310268231 CN103306236B (en) 2013-06-28 2013-06-28 Method for constructing underground reservoir in ancient gully of ancient underground river channel

Country Status (1)

Country Link
CN (1) CN103306236B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018459A (en) * 2014-06-05 2014-09-03 中国神华能源股份有限公司 Silt removing method for coal mine underground reservoir
RU2621268C1 (en) * 2016-06-20 2017-06-01 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Device for regulation of fresh water reserves
RU2621265C1 (en) * 2016-06-23 2017-06-01 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Method of regulating atmospheric precipitation runoff
RU2621267C1 (en) * 2016-06-20 2017-06-01 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Device for regulation of atmospheric precipitation runoff reserves
RU2683512C1 (en) * 2018-02-06 2019-03-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" Device for regulation of freshwater resources
RU2685135C1 (en) * 2018-02-06 2019-04-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" Method for regulating freshwater resources

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165307A (en) * 1979-06-12 1980-12-23 Kimura Kiso Koji:Kk Constructing method for underground dam
JPH09144072A (en) * 1995-11-17 1997-06-03 Kankyo Asesumento Center:Kk Underground dam
CN1888319A (en) * 2006-07-31 2007-01-03 谷成 River reservoir underground water watershed intercepting method
US20110229267A1 (en) * 2004-02-24 2011-09-22 Ps Systems Inc. Direct recharge injection of underground water reservoirs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165307A (en) * 1979-06-12 1980-12-23 Kimura Kiso Koji:Kk Constructing method for underground dam
JPH09144072A (en) * 1995-11-17 1997-06-03 Kankyo Asesumento Center:Kk Underground dam
US20110229267A1 (en) * 2004-02-24 2011-09-22 Ps Systems Inc. Direct recharge injection of underground water reservoirs
CN1888319A (en) * 2006-07-31 2007-01-03 谷成 River reservoir underground water watershed intercepting method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吴忱等: "河北平原的古河道及其在地下水库选址中的意义", 《水文地质工程地质》, no. 1, 31 January 1988 (1988-01-31) *
孙晓明等: "环渤海地区地下水库开发利用前景", 《地质调查与研究》, no. 1, 31 March 2007 (2007-03-31) *
徐建国等: "环渤海山东地区地下水库建设条件分析", 《地质调查与研究》, no. 3, 30 September 2004 (2004-09-30) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018459A (en) * 2014-06-05 2014-09-03 中国神华能源股份有限公司 Silt removing method for coal mine underground reservoir
RU2621268C1 (en) * 2016-06-20 2017-06-01 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Device for regulation of fresh water reserves
RU2621267C1 (en) * 2016-06-20 2017-06-01 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Device for regulation of atmospheric precipitation runoff reserves
RU2621265C1 (en) * 2016-06-23 2017-06-01 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" Method of regulating atmospheric precipitation runoff
RU2683512C1 (en) * 2018-02-06 2019-03-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" Device for regulation of freshwater resources
RU2685135C1 (en) * 2018-02-06 2019-04-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный аграрный университет имени И.Т. Трубилина" Method for regulating freshwater resources

Also Published As

Publication number Publication date
CN103306236B (en) 2015-04-08

Similar Documents

Publication Publication Date Title
Davis et al. Ground-water conditions and storage capacity in the San Joaquin Valley, California
Waltham et al. Sinkholes and subsidence: karst and cavernous rocks in engineering and construction
Dutcher et al. Geologic and hydrologic features of the San Bernardino area, California
Waltham et al. Engineering classification of karst ground conditions
Galloway et al. Land subsidence in the United States
Ortega‐Guerrero et al. Analysis of long‐term land subsidence near Mexico City: Field investigations and predictive modeling
Davidson Geohydrology and water resources of the Tucson Basin, Arizona
Konikow Groundwater depletion in the United States (1900-2008)
Engelen et al. Hydrological systems analysis: methods and applications
Bartolino et al. Ground-water resources of the middle Rio Grande basin, New Mexico
Eakin Silting of reservoirs
Zhan et al. Field study of rainfall infiltration into a grassed unsaturated expansive soil slope
Tolman et al. Ground‐water, salt‐water infiltration, and ground‐surface recession in Santa Clara Valley, Santa Clara County, California
Panabokke et al. Groundwater resources of Sri Lanka
Dunkerley et al. Flow behaviour, suspended sediment transport and transmission losses in a small (sub‐bank‐full) flow event in an Australian desert stream
Wallace et al. Contribution to regional water table from transmission losses of ephemeral streambeds
McAda et al. Simulation of ground-water flow in the Middle Rio Grande basin between Cochiti and San Acacia, New Mexico
Stephenson Lake Bungunnia—a plio-pleistocene megalake in southern Australia
Hanson et al. Ground‐Water Dams for Rural‐Water Supplies in Developing Countries
Wood et al. Geology and ground-water features of the Edison-Maricopa area, Kern County, California
Tanchev Dams and appurtenant hydraulic structures
Naik et al. Groundwater resources assessment of the Koyna River basin, India
Weir Geology and availability of ground water in the northern part of the White Sands Missile Range and vicinity, New Mexico
Jones The development of piping erosion
Bussi et al. Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model