CN103299032A - 用于使用光纤传感器监控振动的方法和装置 - Google Patents

用于使用光纤传感器监控振动的方法和装置 Download PDF

Info

Publication number
CN103299032A
CN103299032A CN2011800642188A CN201180064218A CN103299032A CN 103299032 A CN103299032 A CN 103299032A CN 2011800642188 A CN2011800642188 A CN 2011800642188A CN 201180064218 A CN201180064218 A CN 201180064218A CN 103299032 A CN103299032 A CN 103299032A
Authority
CN
China
Prior art keywords
optical sensor
signal
fibre optical
sense position
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800642188A
Other languages
English (en)
Other versions
CN103299032B (zh
Inventor
R·G·杜坎
B·A·切尔德斯
R·M·哈曼
A·巴拉高帕尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of CN103299032A publication Critical patent/CN103299032A/zh
Application granted granted Critical
Publication of CN103299032B publication Critical patent/CN103299032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/008Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • E21B47/135Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency using light waves, e.g. infrared or ultraviolet waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35312Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35329Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in transmission, e.g. Mach-Zender interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • G01V8/16Detecting, e.g. by using light barriers using one transmitter and one receiver using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Optical Transform (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

公开了用于监控井下部件的装置。装置包括:光纤传感器,包括沿光纤传感器的长度分布的多个感测位置的;询问组件,被配置为将电磁询问信号传送至光纤传感器并且从多个感测位置中的每一个接收反射信号;处理单元,被配置为接收反射信号,沿光纤传感器选择测量位置,选择与光线传感器中的第一感测位置相关联的第一反射信号,所述第一感测位置对应于测量位置,选择与光纤传感器中的第二感测位置相关联的第二反射信号,估算第一信号与第二信号之间的相位差,以及基于相位差估算测量位置处的井下部件的参数。

Description

用于使用光纤传感器监控振动的方法和装置
相关申请的交叉引用
本申请要求在2011年1月6日提交的申请号为12/985773的美国申请的权益,这里引用其全部内容作为参考。
背景技术
光纤传感器已经被用于许多应用并且已经显示出其具有在恶劣环境中感测参数的特殊用途。
在各种系统(例如钻井、泵送和采油操作)中的井下环境中使用不同类型的电机。例如,在油气勘探中利用电潜泵系统(ESP)以帮助从地层和/或储层去除含烃流体。ESP和其它系统被设置在井眼中的井下,并且因此被暴露于对系统性能和系统的使用寿命有显著影响的恶劣的条件和工作参数下。除了正常电机振动以外,ESP和其它系统由于多个原因而振动。过度的电机振动可能由于各种原因而发生,并且应该被解决以避免电机和其它井下部件的损坏和/或故障。当电动机和发电机(它们本身不容易监控)位于恶劣环境中时,它们带来了特殊的挑战。
发明内容
用于监控井下部件的装置包括:光纤传感器,其具有与井下部件有可操作关系的长度,并且被配置为响应于井下部件的变形而变形,光纤传感器包括沿光纤传感器的长度分布的多个感测位置;询问组件,被配置为将电磁询问信号传送至光纤传感器中并且从多个感测位置中的每一个接收反射信号;处理单元,被配置为接收反射信号,沿光纤传感器选择测量位置,选择与光纤传感器中的第一感测位置相关联的第一反射信号,所述第一感测位置对应于测量位置,选择与光纤传感器中的第二感测位置相关联的第二反射信号,估算第一信号与第二信号之间的相位差,以及基于相位差估算测量位置处的井下部件的参数。
监控井下部件的方法包括:以相对于井下部件的固定关系设置光纤传感器的长度,光纤传感器被配置为响应于井下部件的变形而变形,光纤传感器包括沿光纤传感器的长度分布的多个感测位置;将电磁询问信号传送至光纤传感器中并且从多个感测位置中的每一个接收反射信号;沿光纤传感器选择测量位置;选择与光纤传感器中的第一感测位置相关联的第一反射信号,第一感测位置对应于测量位置;选择与光纤传感器中的第二感测位置相关联的第二反射信号;通过处理器估算第一信号与第二信号之间的相位差;以及基于相位差估算测量位置处的井下部件的参数。
附图简述
现在参考附图,其中相同的元件在若干个附图中使用相同的附图标记:
图1示出了井下钻井、监控、评估、勘探和/或生产系统的实施例的剖视图;
图2示出了图1的系统的光纤传感器的一部分的剖视图;
图3示出了指示振动或者振荡运动的干涉测量信号数据的示意图;以及
图4示出了说明监控井下工具的振动和/或其它参数的方法的流程图。
具体实施方式
提供了用于监控井下部件的装置、系统和方法。在一个实施例中,这种装置和系统被用于评估部件(例如电动机和发电机)中的振动和振动中的变化。在一个实施例中,监控系统包括具有处理单元和光纤传感器的反射计。光纤传感器包括具有设置在其中的多个感测位置(例如被配置为本征地散射传送的电磁信号的位置)的光纤传感器。光纤传感器可以专门用于监控井下部件或者可以与其它光纤部件(例如通信光纤和感测光纤)结合。监控井下部件的方法的实施例包括从多个感测位置接收反射信号,以及评估光纤传感器中第一感测位置与第二感测位置之间的相位差。在一个实施例中,方法包括估算与多个测量位置(其中的每一个可以对应于井下部件上或者井下部件中的位置)相关联的感测位置之间的相位差以及生成可以用于评估和监控井下部件的振动或者其它参数的分布式时变相位差图形。
参照图1,示出了与井眼12相关联的井下钻井、监控、评估、勘探和/或生产系统10的示例性实施例。钻孔管柱14被设置在井眼12中,其穿透至少一个地层16用于促进诸如钻井、从地层提取物质以及在井下对地层16和/或井眼12的性质进行测量的操作。钻孔管柱14包括用于促进地下操作的各种部件中的任何一种。钻孔管柱14由例如管、多个管段或者挠性管道构成。钻孔管柱14包括例如钻井系统和/或井底钻具组件(BHA)。
系统10和/或钻孔管柱14包括针对各种处理的任何数量的井下工具18,所述各种处理包括钻井、油气开采和用于在钻孔中或者钻孔周围测量一个或者多个物理量的地层评估(FE)。例如,工具18包括钻井组件和/或泵组件。可以将各种测量工具合并到系统10中以影响测量机制,例如电缆测量应用或者随钻测井(LWD)应用。
在一个实施例中,工具18中的至少一个包括连接至生产管柱14作为例如井底钻具组件(BHA)的一部分的电潜泵(ESP)组件20。ESP组件20被用于通过生产管柱14将产出流体泵送至地面。ESP组件20包括诸如电机22、密封段24、入口或者进口26和泵28的部件。电机22驱动泵28,所述泵28通过入口26吸入流体(通常为油/水混合物),并且将处于增加的压力下的流体排入生产管柱14中。在一个实施例中,通过电导体(例如可操作地连接至供电系统32的井下电力电缆30)向电机22提供电力。
工具18和其它井下部件不限于本文所述的那些。在一个实施例中,工具18包括在井下经受振动、变形或者应力的任何类型的工具或者部件。经受振动的工具的示例包括电动机或者发电机(例如ESP电机、其它泵电机和钻井电机)以及包括或者利用这种电机的设备和系统。
系统10还包括被配置为执行系统10中各种功能(例如通信和感测各种参数)的一个或者多个光纤部件34。例如,光纤部件34可以作为光纤通信电缆被包括在内,以用于传送井下部件之间和/或井下部件与地面部件(例如地面处理单元36)之间的数据和命令。光纤部件34的其它示例包括被配置为测量井下性质(例如井下部件(例如钻孔管柱14和工具18)的温度、压力、井下流体成分、应力、应变和变形)的光纤传感器。在一个实施例中,光纤传感器部件34被配置作为光纤传感器并且包括具有沿光纤传感器34的长度设置的一个或者多个感测位置的至少一个光纤。感测位置的示例包括光纤布拉格光栅(FBG)、镜、法布里-珀罗谐振腔和本征散射的位置。本征散射的位置包括反射询问信号的光纤中的点或者长度,例如瑞利散射位置、布里渊散射位置和拉曼散射位置。
系统10还包括光纤监控系统,其被配置为询问光纤部件34中的一个或者多个以估算工具18、ESP组件20或者其它井下部件的参数(例如,振动)。在一个实施例中,监控系统被配置为识别参数(例如振动)中的变化。振动中的变化可以指示井下部件已经破损或者已经被损坏,并且监控系统可以允许问题的快速诊断以便可以采取补救措施。在一个实施例中,光纤部件34中的至少一部分与工具18的一个部件结合或者固定到工具18的一个部件(例如ESP电机22或者其它电动机或者发电机)。例如,光纤部件34连附至泵28、ESP组件20的其它部件或者电机22的外壳或者其它部分。
光纤监控系统可以被配置为不同的系统或者合并到其它光纤系统中。例如,监控系统可以合并现有的光纤部件(例如通信光纤以及温度或者应变感测光纤)。监控系统的示例包括非本征法布里-珀罗干涉测量(EFPI)系统、光频域反射测量(OFDR)系统和光时域反射测量(OTDR)系统。
监控系统包括反射计,被配置为将电磁询问信号传送至光纤部件34中并且从光纤部件34中的一个或者多个位置接收反射信号。反射计单元38的示例在图1中示出。反射计单元38可操作地连接至一个或者多个光纤部件34并且包括信号源40(例如,脉冲光源、LED、激光,等)和信号检测器42。在一个实施例中,处理器44与信号源40和检测器42进行可操作通信并且被配置为控制源40以及从检测器42接收反射信号数据。反射计单元38包括例如OFDR和/或OTDR类型的询问器以对ESP组件20和/或工具18进行采样。
参照图2,光纤部件34包括至少一个光纤44。光纤部件34和/或光纤44可以专门用作针对井下部件的监控设备,或者还可以被配置用于其它用途,例如通信设备或者测量设备。例如,光纤44是通信光纤传感器或者压力/温度传感器,并且被另外用作如此处所述的振动监控器。在一个实施例中,光纤44被固定至电机22(或者其它部件)或者被设置在相对于电机22的固定位置中,以便电机22的振动或者其它运动或者变形被传送至光纤44。例如,光纤部件34被粘附至电机22、被设置在电机外壳中的凹槽或者导管中、或者通过支架或者其它机构进行附接。在一个实施例中,光纤部件34包括保护套(例如光缆护套或者金属管),其被配置用于保护光纤44免受井下条件影响和/或减轻光纤44上的应变。
如图2中所示,光纤部件34沿电机22轴向设置。光纤部件34不限于这种配置。例如,光纤部件34可以缠绕在部件周围(例如,成形为围绕ESP组件的一部分和/或工具18成螺旋形的螺旋线)。
光纤44包括设置在光纤44内(例如,在光纤芯中)的一个或者多个反射感测位置48。感测位置48包括沿光纤的长度设置的反射器,所述反射器响应于由例如反射计单元38传送至光纤44的询问信号,返回反射信号。光纤44中的变化导致反射信号中的变化。例如,振动或者其它运动或者变形引起光纤44的有效长度中的变化,其接着改变反射信号。例如,可以通过估算反射信号中的相位变化来估算选定位置处或者沿光纤44的长度分布的光纤44的振动和/或变形。感测位置48的示例包括反射器,例如法布里-珀罗谐振腔、镜、部分反射镜、布拉格光栅以及引起可以促进参数测量的反射的任何其它配置。
在一个实施例中,反射计单元38被配置为检测由于由光纤产生的原生或者本征散射而反射的信号。这种本征散射的示例包括瑞利散射、布里渊散射和拉曼散射。询问单元38被配置为使接收的反射信号与沿光纤44的长度的位置相关联。例如,询问单元38被配置为记录反射信号的时间以及将每个反射信号的到达时间与沿光纤44的长度设置的位置或者区域相关联。这些反射信号可以被建模为弱反射光纤布拉格光栅,并且可以类似地用于这种光栅以估算光纤44和相关部件的各种参数。以这种方式,可以选择沿光纤44的期望位置并且不依赖于预先安装的反射器(布拉格光栅和光纤端面)的位置。
在一个实施例中,反射计单元38被配置为干涉仪。反射计单元38从多个感测位置48接收反射信号,并且被配置为比较来自一对或者多对反射信号的数据,一对或者多对反射信号的每一个由主要感测位置和参考感测位置生成。在一个实施例中,干涉仪由设置在光纤44中的感测位置48构成。例如,可以对来自一对原生散射位置(例如,第一散射位置50和第二散射位置52)的反射信号进行分析以估算来自散射位置50、52的反射信号之间的相移,以及估算相关的变形或者移动。这种位置的示例在图2中示出,但不限于如图所示。在一个实施例中,感测位置48(例如瑞利散射位置)沿光纤44至少基本上连续地分布,并且可以从沿光纤长度的任何期望位置进行选择。连续地或者随时间周期性地询问这些位置可以被用于生成指示组件(例如工具18或者ESP20)的振动的时变数据。
在一个实施例中,利用设置在工具18或者ESP20内或者外部的额外的参考光纤沿钻孔12建立参考光路径。因此,参考光纤形成参考路径并且光纤44形成测量路径。反射计单元38从每个路径接收反射信号并且基于接收每个信号的时间使各位置相关联。可以计算具有相同位置(例如,深度)的测量路径与参考路径中的感测位置之间的相位差,并且相位差随时间的变化可以接着被用于估算相关井下部件的振动(或者其它运动或者变形)。在一个实施例中,测量路径和参考路径被配置为形成马赫—策恩德尔干涉仪。
图3示出了显示为随时间变化的信号波长的信号数据的示意图,其提供了振动运动或者振荡运动的指示。使用询问器生成该示例性数据,所述询问器利用扫频波长干涉测量以询问两个空气隙反射器,在反射器中间具有基于压电的光纤展宽器。光纤展宽器由适度频率的简单正弦函数驱动。当用波长同步数据采集方法收集数据时,以大约10nm/s的扫频速率在大约3nm的频谱范围内扫频询问器的扫频波长源。通过执行快速傅里叶变换(FFT)、对由来自互相干扰的两个反射器的反射信号产生的峰值进行加窗、执行逆变换、展开由该过程产生的相位数据、将直线与展开的相位进行拟合以及减去直线来处理结果数据。残数是图3中示出的正弦波并且表示由光纤展宽器的振动产生的时变信号。
监控系统、光纤部件34、工具18、ESP20和电机不限于此处描述的实施例,并且可以设置在任何合适的载体内。如此处所述的“载体”意味着可以用于传送、容纳、支撑或者促进其它设备、设备组件、设备的组合、介质和/或元件的使用的任何设备、设备部件、设备的组合、介质和/或元件。示例性非限制性载体包括连接管道类型和任何组合或者其中的一部分的盘管类型的钻井管柱。其它载体示例包括套管、电缆、电缆探测器、松线式索道探测器、坠制铅丸、井下潜水器、井底钻具组件和钻井管柱。
图4示出了监控井下工具的振动和/或其它参数的方法60。方法60包括此处描述的阶段61-64中的一个或者多个。可以根据需要连续或者间歇地执行方法60。方法可以由能够接收和处理测量数据的一个或者多个处理器或者其它设备(地面处理单元36和反射计单元38)来执行。在一个实施例中,方法包括按描述顺序的阶段61-64的全部的执行。然而,可以省略特定阶段61-64,可以添加阶段,或者改变阶段的顺序。
在第一阶段61中,部件(例如工具18和/或ESP组件20)被降低到钻孔12中。在一个实施例中,启动ESP电机22并且通过ESP组件20以及通过生产管柱14将产出流体泵送至地面位置。
在第二阶段62中,至少一个询问信号被传送至可操作地连接至井下部件的至少一个光纤部件(例如,光纤44)中。在一个实施例中,例如作为OTDR方法的一部分,多个相干询问信号脉冲被传送至光纤44中。
在第三阶段63中,由针对每个询问信号和/或脉冲的反射计单元38接收从光纤44中的感测位置48(例如,反射器、布拉格光栅和/或瑞利散射位置)反射的信号。反射信号被处理以使反射信号与光纤44中各自的感测位置48相关联。在一个实施例中,感测位置48是本征地散射询问信号和/或脉冲的光纤44各部分。每个感测位置48的宽度可以由脉冲的宽度决定。反射信号可以被处理以生成说明例如随着时间或者沿光纤44的距离而变化的反射信号的振幅和/或相位的散射图形。
在一个实施例中,首先在光纤44和/或井下部件在无干扰或者参考状态中的时候测量反射信号(例如,散射图形)。在干扰或者变化状态中再次测量散射图形。参考状态的示例是当部件不在运行中时进行的反射信号的测量,例如在操作ESP组件20之前的测量。变化状态的示例是当组件在运行中时进行的反射信号的测量,例如在操作ESP组件20期间的测量。
在第四阶段64中,选择沿光纤44的一个或者多个位置(即,测量位置)并且估算来自与每个选定位置相关联的两个感测位置的反射信号之间的相位差。在一个实施例中,反射计单元38被配置为干涉仪,并且通过移除第一反射信号(例如,来自第一散射位置50的反射信号)与第二参考信号(例如,来自第二散射位置52的反射信号)之间的共模路径以及提取所述信号之间的相位差来分析接收的反射信号。可以从例如沿光纤44的长度设置的任何两个感测位置选择第一和第二反射信号。例如,从位于或者邻近选定测量位置的感测位置48选择第一反射信号,以及从设置在光纤44或者额外的光纤中的任何其它感测位置选择第二反射信号。以这种方式,可以根据需要动态地选择和改变针对振动测量的位置。在一个实施例中,反射计单元38选择测量位置对48中的一个或者多个。
在一个实施例中,沿光纤44的长度选择多个测量位置,并且将来自位于或者接近于每个选定测量位置的感测位置48(即,主要感测位置)的反射信号数据与来自一个或者多个参考感测位置的反射信号数据进行比较。参考感测位置针对每个主要感测位置可以是不同的,或者多个主要感测位置可以具有公共参考位置。接着,针对每个主要感测位置估算相位差并且生成沿光纤44反射相位差的分布式相位差图形。在一个实施例中,选定的测量位置与沿光纤44至少基本上连续分布的感测位置相关联,并且相位差图形反射至少基本上连续的相位差测量。在一个实施例中,通过将相位差图形分成与任意长度的光纤部分相关联的组或者仓(bin)以生成分布式相位差测量。这通过例如自举方法来完成,在所述自举方法中,通过从前面的(即,更接近于询问信号源)仓移除相位差数据得到每个仓中的相位差数据。
可以针对在选定时间周期内周期性地传送的多个询问信号生成相位差信息(例如,相位差图形)。以这种方式,针对一个或者多个测量位置生成时变分布式相位差测量。时变相位差图形可以与井下部件(例如,ESP电机22)的振动相关联。另外,可以任意动态地选择和改变光纤44的选定测量位置和/或区域,例如集中在工具18和/或ESP组件20中的不同区域上。
可以在时间周期内生成针对每个选定位置的相位差数据。例如,多个询问脉冲在选定时间周期内被传送至光纤中,并且在时间周期内针对每个脉冲估算选定位置处的相位差以生成相位差迹线或者数据组。该相位差数据组反映选定测量位置之间的光路径中的变化,其可以与对应于选定测量位置的区域中的振动相关联。在一些实施例中,可以从与选定部件或者区域相关联的振动测量减去来自光纤44中的‘较早’(即,来自与钻孔12中的其它部件相关联的测量位置)的测量振动。
在一个实施例中,分别从取自在变化状态中和在无干扰(即,参考)状态中的光纤44的测量的反射信号选择针对选定测量位置的第一反射信号和第二参考反射信号。从变化状态的相位信息减去来自参考状态的相位信息以针对每个选定位置估算相位差。
在一个实施例中,还可以测量与ESP相关联的其它参数。这些参数包括例如温度、应变、压力,等。例如,光纤44还可以包括额外的感测部件(例如布拉格光栅),用于测量温度作为分布式温度感测系统的一部分。
此处描述的系统和方法提供优于现有技术的各种优点。系统和方法提供一种用于以分布式方法沿部件测量振动或者其它移动或者变形的机制。另外,系统和方法允许选定位置处振动的更精确测量,以及允许用户动态地改变期望的测量位置而不需要重新配置监控系统。
为了支持这里的教导,使用了各种分析和/或分析组件,包括数字和/或模拟系统。系统可以具有组件,例如:处理器、存储介质、内存、输入、输出、通信线路(有线、无线、脉冲泥浆、光学或者其它)、用户接口、计算机程序、信号处理器(数字或模拟)以及其他此类组件(例如电阻器、电容器、电感器等),从而以本领域公知的若干方式中的任一种方式提供这里公开的装置和方法的运行和分析。可以认为这些教导可以但并不必须与存储在计算机可读介质上的一组计算机可执行指令结合实施,所述计算机可读介质包括内存(ROM、RAM)、光学介质(CD-ROM)或磁介质(磁盘、硬盘驱动器),或在执行时使得计算机实施本发明方法的其他任何类型。
尽管已经参考示例性实施例对本发明进行了描述,但是,本领域技术人员应当理解,在不背离本发明的保护范围的情况下,可以作出各种变化和使用等价物对示例性实施例部件进行替换。此外,在不脱离本发明的基本范围的情况下,许多修改将被该领域的技术人员所理解,以使本发明的教导适用特定的仪器、场合或材料。因此,本发明并不局限于作为实施本发明的最优方式公开的具体实施方案,本发明包括所有落入所附权利要求范围内的实施方式。

Claims (20)

1.一种用于监控井下部件的装置,所述装置包括:
光纤传感器,其长度与所述井下部件具有可操作的关系,并且被配置为响应于所述井下部件的变形而变形,所述光纤传感器包括沿所述光纤传感器的长度分布的多个感测位置;
询问组件,被配置为将电磁询问信号传送至光纤传感器中并且从所述多个感测位置中的每一个接收反射信号;
处理单元,被配置为接收所述反射信号,沿所述光纤传感器选择测量位置,选择与所述光纤传感器中的第一感测位置相关联的第一反射信号,所述第一感测位置对应于所述测量位置,选择与所述光纤传感器中的第二感测位置相关联的第二反射信号,估算所述第一信号与所述第二信号之间的相位差,以及基于所述相位差估算所述测量位置处的所述井下部件的参数。
2.根据权利要求1所述的装置,其中所述处理单元进一步被配置为针对所述多个感测位置中的每一个估算相位差以及对于所述光纤传感器的长度生成相位差图形。
3.根据权利要求1所述的装置,其中所述处理单元进一步被配置为在时间周期内将多个询问信号传送至所述光纤传感器中,估算与所述多个询问信号中的每一个相关联的所述第一信号与所述第二信号之间的多个相位差,以及生成时变相位差图形。
4.根据权利要求3所述的装置,其中所述参数包括与所述时变相位差图形相关联的所述井下部件的振动。
5.根据权利要求1所述的装置,其中所述井下部件包括电动机和发电机中的至少一个。
6.根据权利要求5所述的装置,其中所述参数包括所述电动机的震动。
7.根据权利要求1所述的装置,其中以相对于所述井下部件的固定的关系设置所述光纤传感器。
8.根据权利要求1所述的装置,其中所述参数包括所述井下部件的移动、应变和变形中的至少一个。
9.根据权利要求1所述的装置,其中所述感测位置被配置为本征地散射所述询问信号。
10.根据权利要求9所述的装置,其中所述感测位置沿所述光纤传感器的长度至少基本上连续地分布。
11.根据权利要求9所述的装置,其中所述反射信号包括瑞利散射信号、布里渊散射信号和拉曼散射信号中的至少一个。
12.一种监控井下部件的方法,所述方法包括:
以相对于井下部件的固定的关系设置光纤传感器的长度,所述光纤传感器被配置为响应于所述井下部件的变形而变形,所述光纤传感器包括沿所述光纤传感器的长度分布的多个感测位置;
将电磁询问信号传送至所述光纤传感器并且从所述多个感测位置中的每一个接收反射信号;
沿所述光纤传感器选择测量位置;
选择与所述光纤传感器中的第一感测位置相关联的第一反射信号,所述第一感测位置对应于所述测量位置;
选择与所述光纤传感器中的第二感测位置相关联的第二反射信号;
通过处理器估算所述第一信号与所述第二信号之间的相位差;以及
基于所述相位差估算所述测量位置处的所述井下部件的参数。
13.根据权利要求12所述的方法,进一步包括针对所述多个感测位置中的每一个估算相位差以及对于所述光纤传感器的长度生成相位差图形。
14.根据权利要求12所述的方法,进一步包括在时间周期内将多个询问信号传送至所述光纤传感器中,估算与所述多个询问信号中的每一个相关联的所述第一信号与所述第二信号之间的多个相位差,以及生成时变相位差图形。
15.根据权利要求14所述的方法,其中所述参数包括与所述时变相位差图形相关联的所述井下部件的振动。
16.根据权利要求12所述的方法,其中所述井下部件包括电动机和发电机中的至少一个并且所述参数包括振动。
17.根据权利要求12所述的方法,其中所述参数包括所述井下部件的移动、应变和变形中的至少一个。
18.根据权利要求12所述的方法,其中所述感测位置被配置为本征地散射所述询问信号。
19.根据权利要求18所述的方法,其中所述感测位置沿所述光纤传感器的长度至少基本上连续地分布。
20.根据权利要求18所述的方法,所述反射信号包括瑞利散射信号、布里渊散射信号和拉曼散射信号中的至少一个。
CN201180064218.8A 2011-01-06 2011-12-06 用于使用光纤传感器监控振动的方法和装置 Active CN103299032B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/985,773 US9200508B2 (en) 2011-01-06 2011-01-06 Method and apparatus for monitoring vibration using fiber optic sensors
US12/985,773 2011-01-06
PCT/US2011/063516 WO2012094086A2 (en) 2011-01-06 2011-12-06 Method and apparatus for monitoring vibration using fiber optic sensors

Publications (2)

Publication Number Publication Date
CN103299032A true CN103299032A (zh) 2013-09-11
CN103299032B CN103299032B (zh) 2018-12-14

Family

ID=46455907

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180064218.8A Active CN103299032B (zh) 2011-01-06 2011-12-06 用于使用光纤传感器监控振动的方法和装置

Country Status (10)

Country Link
US (1) US9200508B2 (zh)
CN (1) CN103299032B (zh)
AU (1) AU2011353668B2 (zh)
BR (1) BR112013017313B1 (zh)
CA (1) CA2823307C (zh)
DK (1) DK179413B1 (zh)
GB (1) GB2500139B (zh)
MY (1) MY170556A (zh)
NO (1) NO345326B1 (zh)
WO (1) WO2012094086A2 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644159A (zh) * 2016-12-21 2017-05-10 中国电子科技集团公司电子科学研究院 光纤传感器、光纤传感器制造方法及光纤传感器测量系统
CN109804135A (zh) * 2016-09-23 2019-05-24 通用电气(Ge)贝克休斯有限责任公司 井下光纤水听器
CN110806258A (zh) * 2019-11-12 2020-02-18 山东省科学院激光研究所 一种三分量光纤光栅振动传感器
CN111108423A (zh) * 2017-08-25 2020-05-05 斯伦贝谢技术有限公司 用于分布压力感测的传感器构造
CN111256809A (zh) * 2020-03-09 2020-06-09 宁夏大学 复合多功能光纤振动测试装置
CN112119201A (zh) * 2018-05-24 2020-12-22 贝克休斯控股有限责任公司 包括激光蚀刻基板的换能器
CN113405647A (zh) * 2021-07-05 2021-09-17 华北科技学院(中国煤矿安全技术培训中心) 一种用于油液振动监测的光纤传感器

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2877194C (en) * 2011-07-06 2020-01-21 Source Rock Energy Partners Inc. Jet pump data tool system
US8537364B2 (en) * 2011-12-07 2013-09-17 Baker Hughes Incorporated Fiber optic measurement of parameters for downhole pump diffuser section
US8891076B2 (en) * 2011-12-07 2014-11-18 Baker Hughes Incorporated Fiber optic measurement of parameters for downhole pump diffuser section
US8830471B2 (en) * 2011-12-07 2014-09-09 Baker Hughes Incorporated Measuring operational parameters in an ESP seal with fiber optic sensors
US8780336B2 (en) * 2011-12-07 2014-07-15 Baker Hughes Incorporated Fiber optic sensors within subsurface motor winding chambers
US8817266B2 (en) 2011-12-07 2014-08-26 Baker Hughes Incorporated Gas separators with fiber optic sensors
US8982354B2 (en) * 2011-12-07 2015-03-17 Baker Hughes Incorporated Subsurface motors with fiber optic sensors
CA2883243C (en) 2012-08-31 2019-08-27 Halliburton Energy Services, Inc. System and method for detecting drilling events using an opto-analytical device
US10006279B2 (en) 2012-08-31 2018-06-26 Halliburton Energy Services, Inc. System and method for detecting vibrations using an opto-analytical device
CA2883253C (en) 2012-08-31 2019-09-03 Halliburton Energy Services, Inc. System and method for measuring gaps using an opto-analytical device
CA2883522C (en) 2012-08-31 2018-01-02 Halliburton Energy Services, Inc. System and method for analyzing downhole drilling parameters using an opto-analytical device
US9885234B2 (en) 2012-08-31 2018-02-06 Halliburton Energy Services, Inc. System and method for measuring temperature using an opto-analytical device
EP2890864A4 (en) 2012-08-31 2016-08-10 Halliburton Energy Services Inc SYSTEM AND METHOD FOR ANALYSIS OF CUTS USING AN OPTO ANALYTICAL DEVICE
WO2014035425A1 (en) 2012-08-31 2014-03-06 Halliburton Energy Services, Inc. System and method for determining torsion using an opto-analytical device
US9512717B2 (en) * 2012-10-19 2016-12-06 Halliburton Energy Services, Inc. Downhole time domain reflectometry with optical components
US20140139225A1 (en) * 2012-11-16 2014-05-22 Halliburton Energy Services, Inc. Well monitoring with optical electromagnetic sensors
US9188694B2 (en) 2012-11-16 2015-11-17 Halliburton Energy Services, Inc. Optical interferometric sensors for measuring electromagnetic fields
US9488786B2 (en) * 2012-11-16 2016-11-08 General Electric Company Fiber optic sensing apparatus including fiber gratings and method for sensing parameters involving different parameter modalities
US9784862B2 (en) 2012-11-30 2017-10-10 Baker Hughes Incorporated Distributed downhole acousting sensing
US20140327915A1 (en) * 2013-05-03 2014-11-06 Baker Hughes Incorporated Well monitoring using coherent detection of rayleigh scatter
US9557195B2 (en) 2013-08-07 2017-01-31 Halliburton Energy Services, Inc. Apparatus and method of multiplexed or distributed sensing
GB2532646B (en) * 2013-08-20 2019-03-20 Baker Hughes Inc Measuring operational parameters in an ESP seal with fiber optic sensors
WO2015026915A1 (en) * 2013-08-20 2015-02-26 Baker Hughes Incorporated Fiber optic sensors disposed within subsurface motor winding chambers
US9739142B2 (en) * 2013-09-16 2017-08-22 Baker Hughes Incorporated Fiber optic vibration monitoring
GB2519376B (en) 2013-10-21 2018-11-14 Schlumberger Holdings Observation of vibration of rotary apparatus
CN103615210B (zh) * 2013-12-06 2016-03-30 西安石油大学 一种光纤传感器随钻下井装置
US10458224B2 (en) * 2014-01-31 2019-10-29 Schlumberger Technology Corporation Monitoring of equipment associated with a borehole/conduit
US9494416B2 (en) * 2014-02-06 2016-11-15 Baker Hughes Incorporated Fiber optic shape sensing system using anchoring points
US9909598B1 (en) * 2014-02-24 2018-03-06 Landtec North America, Inc. Well monitoring and pressure controlled landfill pump
EP3161432B1 (en) 2014-06-26 2021-03-03 Baker Hughes Holdings LLC Ofdr system for localized vibration detection
US9562844B2 (en) * 2014-06-30 2017-02-07 Baker Hughes Incorporated Systems and devices for sensing corrosion and deposition for oil and gas applications
CN104142224B (zh) * 2014-07-22 2015-05-20 河海大学 分布式传感光纤多目标多自由度静动态测试装置及方法
GB2544022B (en) * 2014-10-17 2021-04-21 Halliburton Energy Services Inc Well monitoring with optical electromagnetic sensing system
WO2016112147A1 (en) * 2015-01-07 2016-07-14 Schlumberger Canada Limited Gauge length optimization in distributed vibration sensing
CA2978701A1 (en) * 2015-03-09 2016-09-15 Baker Hughes, A Ge Company, Llc Distributed strain monitoring for downhole tools
WO2016171670A1 (en) * 2015-04-21 2016-10-27 Halliburton Energy Services, Inc. Partially reflective materials and coatings for optical communication in a wellbore
GB2538282B (en) * 2015-05-14 2018-04-11 Schlumberger Holdings Fibre-optic sensing
BR112018011424B1 (pt) 2015-12-14 2022-11-01 Baker Hughes, A Ge Company, Llc Sistema e método para detecção acústica e comunicação
US10316641B2 (en) * 2016-03-31 2019-06-11 Schlumberger Technology Corporation Monitoring wireline coupling and distribution
US11180983B2 (en) 2016-04-28 2021-11-23 Halliburton Energy Services, Inc. Distributed sensor systems and methods
WO2018031039A1 (en) * 2016-08-12 2018-02-15 Halliburton Energy Services, Inc. Auditory monitoring of downhole conditions through a fiber optic cable
WO2018067154A1 (en) * 2016-10-06 2018-04-12 Halliburton Energy Services, Inc. Modular electromagnetic ranging system for determining location of a target well
WO2018209219A1 (en) * 2017-05-12 2018-11-15 Baker Hughes, A Ge Company, Llc Multi-frequency acoustic interrogation for azimuthal orientation of downhole tools
WO2018222539A1 (en) * 2017-05-31 2018-12-06 Corning Research & Development Corporation Strain sensing optical cable with acoustic impedance matched layers
US10914646B2 (en) * 2017-09-11 2021-02-09 Optilab, Llc System and method for monitoring the health of structures and machines using fiber Bragg Grating (FBG)
US20190129062A1 (en) * 2017-10-27 2019-05-02 Baker Hughes, A Ge Company, Llc Environmental impact monitoring for downhole systems
CN107764390A (zh) * 2017-12-05 2018-03-06 广西师范大学 一种基于弱反射光栅的振动测量装置及测量方法
CN111119852B (zh) * 2018-10-31 2022-11-04 航天科工惯性技术有限公司 无线随钻系统探管开关泵状态识别方法
US20220082009A1 (en) * 2018-12-24 2022-03-17 Schlumberger Technology Corporation Esp monitoring system and methodology
US11231315B2 (en) * 2019-09-05 2022-01-25 Baker Hughes Oilfield Operations Llc Acoustic detection of position of a component of a fluid control device
US11681042B2 (en) * 2020-04-07 2023-06-20 Nec Corporation Sparse excitation method for 3-dimensional underground cable localization by fiber optic sensing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881310A (en) * 1990-07-16 1999-03-09 Atlantic Richfield Company Method for executing an instruction where the memory locations for data, operation to be performed and storing of the result are indicated by pointers
CN1258806A (zh) * 1998-12-28 2000-07-05 中国科学院西安光学精密机械研究所 注汽井光纤传感四参数测井仪
CN1558189A (zh) * 2004-01-29 2004-12-29 复旦大学 全光纤应变、振动定位测试方法
CN1635339A (zh) * 2005-01-01 2005-07-06 复旦大学 全光纤定位监测方法及其系统
US20050173111A1 (en) * 2003-03-14 2005-08-11 Bostick Francis X.Iii Permanently installed in-well fiber optic accelerometer-based seismic sensing apparatus and associated method
US20060146337A1 (en) * 2003-02-03 2006-07-06 Hartog Arthur H Interferometric method and apparatus for measuring physical parameters
CN1993533A (zh) * 2004-05-28 2007-07-04 施蓝姆伯格技术公司 利用挠性管中光纤的系统和方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902888A (en) 1987-12-15 1990-02-20 Brother Kogyo Kabushiki Kaisha Optical fiber sensor
JPH0663726B2 (ja) 1988-06-14 1994-08-22 登 中谷 外乱除去型ヘテロダイン干渉法光ファイバセンサ
GB2222247A (en) * 1988-08-23 1990-02-28 Plessey Co Plc Distributed fibre optic sensor system
JPH04355323A (ja) 1991-06-03 1992-12-09 Toshiba Corp 光ファイバセンサ
US5832157A (en) 1996-07-12 1998-11-03 Mcdermott Technology, Inc. Fiber optic acoustic emission sensor
US6787758B2 (en) 2001-02-06 2004-09-07 Baker Hughes Incorporated Wellbores utilizing fiber optic-based sensors and operating devices
JP2002116103A (ja) 2000-10-04 2002-04-19 Oki Electric Ind Co Ltd 光ファイバセンサ
US7028543B2 (en) 2003-01-21 2006-04-18 Weatherford/Lamb, Inc. System and method for monitoring performance of downhole equipment using fiber optic based sensors
US7113659B2 (en) 2004-06-04 2006-09-26 Weatherford/Lamb, Inc. Efficient distributed sensor fiber
US7772541B2 (en) * 2004-07-16 2010-08-10 Luna Innnovations Incorporated Fiber optic position and/or shape sensing based on rayleigh scatter
WO2007087301A2 (en) * 2006-01-23 2007-08-02 Zygo Corporation Interferometer system for monitoring an object
US7740064B2 (en) 2006-05-24 2010-06-22 Baker Hughes Incorporated System, method, and apparatus for downhole submersible pump having fiber optic communications
GB2442745B (en) * 2006-10-13 2011-04-06 At & T Corp Method and apparatus for acoustic sensing using multiple optical pulses
US7946341B2 (en) 2007-11-02 2011-05-24 Schlumberger Technology Corporation Systems and methods for distributed interferometric acoustic monitoring
US7668411B2 (en) 2008-06-06 2010-02-23 Schlumberger Technology Corporation Distributed vibration sensing system using multimode fiber
US7859654B2 (en) 2008-07-17 2010-12-28 Schlumberger Technology Corporation Frequency-scanned optical time domain reflectometry
US8020616B2 (en) 2008-08-15 2011-09-20 Schlumberger Technology Corporation Determining a status in a wellbore based on acoustic events detected by an optical fiber mechanism
US20100207019A1 (en) * 2009-02-17 2010-08-19 Schlumberger Technology Corporation Optical monitoring of fluid flow
CA2753420C (en) * 2009-02-27 2014-09-30 Baker Hughes Incorporated System and method for wellbore monitoring
US20110090496A1 (en) * 2009-10-21 2011-04-21 Halliburton Energy Services, Inc. Downhole monitoring with distributed optical density, temperature and/or strain sensing
DE102009051233B4 (de) * 2009-10-29 2017-11-16 Texas Instruments Deutschland Gmbh Elektronische Vorrichtung und Verfahren zur Impedanzmessung
GB0919899D0 (en) * 2009-11-13 2009-12-30 Qinetiq Ltd Fibre optic distributed sensing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881310A (en) * 1990-07-16 1999-03-09 Atlantic Richfield Company Method for executing an instruction where the memory locations for data, operation to be performed and storing of the result are indicated by pointers
CN1258806A (zh) * 1998-12-28 2000-07-05 中国科学院西安光学精密机械研究所 注汽井光纤传感四参数测井仪
US20060146337A1 (en) * 2003-02-03 2006-07-06 Hartog Arthur H Interferometric method and apparatus for measuring physical parameters
US20050173111A1 (en) * 2003-03-14 2005-08-11 Bostick Francis X.Iii Permanently installed in-well fiber optic accelerometer-based seismic sensing apparatus and associated method
CN1558189A (zh) * 2004-01-29 2004-12-29 复旦大学 全光纤应变、振动定位测试方法
CN1993533A (zh) * 2004-05-28 2007-07-04 施蓝姆伯格技术公司 利用挠性管中光纤的系统和方法
CN1635339A (zh) * 2005-01-01 2005-07-06 复旦大学 全光纤定位监测方法及其系统

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804135A (zh) * 2016-09-23 2019-05-24 通用电气(Ge)贝克休斯有限责任公司 井下光纤水听器
CN109804135B (zh) * 2016-09-23 2023-08-18 通用电气(Ge)贝克休斯有限责任公司 井下光纤水听器
CN106644159A (zh) * 2016-12-21 2017-05-10 中国电子科技集团公司电子科学研究院 光纤传感器、光纤传感器制造方法及光纤传感器测量系统
CN106644159B (zh) * 2016-12-21 2024-02-13 中国电子科技集团公司电子科学研究院 光纤传感器、光纤传感器制造方法及光纤传感器测量系统
CN111108423A (zh) * 2017-08-25 2020-05-05 斯伦贝谢技术有限公司 用于分布压力感测的传感器构造
CN112119201A (zh) * 2018-05-24 2020-12-22 贝克休斯控股有限责任公司 包括激光蚀刻基板的换能器
CN112119201B (zh) * 2018-05-24 2024-02-27 贝克休斯控股有限责任公司 包括激光蚀刻基板的换能器
CN110806258A (zh) * 2019-11-12 2020-02-18 山东省科学院激光研究所 一种三分量光纤光栅振动传感器
CN110806258B (zh) * 2019-11-12 2022-06-28 山东省科学院激光研究所 一种三分量光纤光栅振动传感器
CN111256809A (zh) * 2020-03-09 2020-06-09 宁夏大学 复合多功能光纤振动测试装置
CN111256809B (zh) * 2020-03-09 2021-12-24 宁夏大学 复合多功能光纤振动测试装置及测试方法
CN113405647A (zh) * 2021-07-05 2021-09-17 华北科技学院(中国煤矿安全技术培训中心) 一种用于油液振动监测的光纤传感器

Also Published As

Publication number Publication date
NO345326B1 (no) 2020-12-07
MY170556A (en) 2019-08-19
US20120179378A1 (en) 2012-07-12
BR112013017313B1 (pt) 2020-10-27
NO20130810A1 (no) 2013-07-02
US9200508B2 (en) 2015-12-01
WO2012094086A2 (en) 2012-07-12
GB2500139A (en) 2013-09-11
WO2012094086A3 (en) 2012-09-27
CN103299032B (zh) 2018-12-14
AU2011353668A1 (en) 2013-06-20
AU2011353668B2 (en) 2016-09-29
BR112013017313A2 (pt) 2016-10-04
CA2823307A1 (en) 2012-07-12
CA2823307C (en) 2016-11-29
GB2500139B (en) 2017-03-01
GB201310289D0 (en) 2013-07-24
DK201300373A (en) 2013-06-18
DK179413B1 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
CN103299032A (zh) 用于使用光纤传感器监控振动的方法和装置
AU2017230721B2 (en) Measuring downhole temperature by combining DAS/DTS data
RU2684267C1 (ru) Геонавигация при бурении скважин с использованием распределенного акустического зондирования
US10208586B2 (en) Temperature sensing using distributed acoustic sensing
US10120104B2 (en) Downhole surveillance
US20150129206A1 (en) System for Monitoring Linearity of Down-Hole Pumping Systems During Deployment and Related Methods
US9739142B2 (en) Fiber optic vibration monitoring
WO2017031578A1 (en) Method and system for determining the distance to an acoustically reflective object in a conduit
CN103429847A (zh) 光频域反射测量系统中补偿任意光纤引入线的系统和方法
US11906682B2 (en) Retrievable fiber optic vertical seismic profiling data acquisition system with integrated logging tool for geophone-equivalent depth accuracy
WO2018156099A1 (en) Distributed acoustic sensing system with phase modulator for mitigating faded channels
US20160265905A1 (en) Distributed strain monitoring for downhole tools
WO2016138205A1 (en) Seismic investigations using seismic sensor
US11976552B2 (en) Distributed sensing systems and methods with spatial location correlation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant