CN103278490B - 一种球状的sers活性衬底的制备方法 - Google Patents
一种球状的sers活性衬底的制备方法 Download PDFInfo
- Publication number
- CN103278490B CN103278490B CN201210545926.XA CN201210545926A CN103278490B CN 103278490 B CN103278490 B CN 103278490B CN 201210545926 A CN201210545926 A CN 201210545926A CN 103278490 B CN103278490 B CN 103278490B
- Authority
- CN
- China
- Prior art keywords
- exchange resin
- gold
- active substrate
- ion exchange
- shell particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本发明公开了一种球状的表面增强Raman散射(简称SERS)活性衬底的制备方法,属于化工技术领域。本发明是将水溶性的氯金酸(盐)在阴离子交换树脂微球表面经一步室温还原反应,即可制备得到柱状金颗粒在离子交换树脂微球表面呈阵列排布的核壳微球,可以用作SERS检测用的活性衬底。本发明所述球状的SERS活性衬底的制备方法可以高效率、低成本制备得到增强效果显著、稳定性较好的圆球状SERS活性衬底。
Description
技术领域
本发明涉及一种球状的SERS活性衬底的制备方法,属于化工技术领域。
背景技术
表面增强Raman光谱(SERS)是一种在生命、医药、化学、环境和食品安全等关键科学领域具有重大应用前景的高效分析检测技术。基于长程电磁增强和短程化学增强效应,表面具有Au和Ag等纳米构造的SERS活性衬底可以将微弱的Raman信号放大108倍甚至更大。近来,规整有序的阵列型Au和Ag纳米构造已经成为新一代SERS活性衬底的代表,比如:纳米颗粒的有序自组装体,平版印刷技术结合金属覆镀技术构建的规整结构化表面,机械分割、电化学制备的纳米金属间隙,以阳极氧化铝、嵌段聚合物等为模板组建的各种纳米结构化表面。然而,现有制备步骤繁多、需要特殊仪器设备、所得衬底的面积偏小(通常只有几个平方厘米),难以实现SERS衬底的高通量制备等挑战;此外,现有文献制备技术所得SERS衬底多为平板状结构,使用时往往需要切割成更小面积的衬底,比较麻烦费事。
有鉴于此,本发明采用阴离子交换树脂微球为载体,经过简单的液相化学自限反应,可以直接制备得到外形为圆球状的金-树脂核壳微球,所得每个核壳微球都可以直接用作SERS活性衬底。
发明内容
本发明目的在于提供一种球状的SERS活性衬底的制备方法。
本发明所述一种刺猬状的金-离子交换树脂核壳微球催化剂的制备方法,其特征在于将水溶性的氯金酸(盐)在阴离子交换树脂微球表面经室温一步还原反应,即可制备得到圆球状的金-离子交换树脂核壳微球,制备技术路线如图4所示。
以重量份计,取1-5份氯金酸(盐)、1-5份阴离子交换树脂微球、75-91份去离子水充分混合后,再加入自限还原剂7-15份,室温反应24小时即可得到圆球状的金-离子交换树脂核壳微球。
所述的氯金酸(盐)是水合氯金酸、氯金酸钠或者氯金酸钾中的一种或几种物质的混合物。
所述的阴离子交换树脂微球是市售强碱性阴离子交换树脂微球(平均粒径0.4-0.6毫米)。
所述自限还原剂为抗坏血酸与异丙醇(质量分数比例为1∶1)的组合物。
附图说明
附图1是金-离子交换树脂核壳微球的场发射扫描电镜图。
附图2是金纳米颗粒的X射线粉末衍射图。
附图3是苯硫酚在金-离子交换树脂核壳微球衬底上的SERS图谱。
附图中的主要符号名称:θ、X射线入射角。Intensity、衍射峰强度。Raman shift、拉曼位移(cm-1)。Raman counts、拉曼强度(任意单位a.u.)。
附图4是本发明的制备技术路线图。
具体实施方式
下面结合附图对发明的技术方案和所得核壳微球的SERS性能进行详细说明:
实施例1 金-离子交换树脂核壳微球的制备和结构表征
取1g水合氯金酸、1g阴离子交换树脂微球、91g去离子水充分混合后,再加入自限还原剂7g,室温反应24小时得到金-离子交换树脂核壳微球1.2g。附图1是金-离子交换树脂核壳微球催化剂的场发射扫描电镜图,可见金纳米颗粒总体呈柱状结构,直立在树脂微球的表面,形成非常有规律的刺状阵列。从微球的切口边缘可见,柱状金纳米颗粒在树脂微球的内部有很深的根部结构,其根部结构的长度占纳米金柱总长度的三分之二左右。附图2是金纳米颗粒的X射线粉末衍射图。其衍射峰位置(26)分别出现于38.2、44.4、64.6、77.5和81.7处,属于立方晶系结构,与金的X射线衍射国际标准卡片(PDF 04-0784)完全吻合。
实施例2 金-离子交换树脂核壳微球的制备和SERS性能
取5g氯金酸钠盐、5g阴离子交换树脂微球、80g去离子水充分混合后,再加入自限还原剂10g,室温反应24小时即可得到金-离子交换树脂核壳微球6.1g。附图3是以苯硫酚为模型检测物进行SERS光谱检测的结果。检测方法是:将金-离子交换树脂核壳微球浸泡于5×10-3mol/L的苯硫酚-乙醇溶液5h,取出用乙醇洗去游离苯硫酚后再用N2吹干;Raman光谱测试条件为:激光波长785nm,积分时间10s,累积次数1次,50倍物镜,激光功率0.5mW。所得金-离子交换树脂核壳微球对苯硫酚检测表现出良好的SERS增强效率(增强因子达108-109量级);无论是单个微球表面的点与点之间还是同一批次的微球与微球之间比较,增强因子的相对标准偏差均在35±5%范围内,表明所得金-离子交换树脂核壳微球SERS效应具有很高的重现性和稳定性。
实施例3 金-离子交换树脂核壳微球SERS活性衬底的制备
取1.5g氯金酸和氯金酸钠混合物、2.5g阴离子交换树脂微球、88g去离子水充分混合后,再加入自限还原剂8g,室温反应24小时即可得到金-离子交换树脂核壳微球3.61g。
实施例4 金-离子交换树脂核壳微球SERS活性衬底的制备
取3.5g氯金酸钾、4g阴离子交换树脂微球、84g去离子水充分混合后,再加入自限还原剂8.5g,室温反应24小时即可得到刺猬状的金-离子交换树脂核壳微球5.18g。
实施例5 金-离子交换树脂核壳微球SERS活性衬底的制备
取5g氯金酸钠和氯金酸钾的混合物、5g阴离子交换树脂微球、75g去离子水充分混合后,再加入自限还原剂15g,室温反应24小时即可得到金-离子交换树脂核壳微球7.26g。
Claims (1)
1.一种球状的表面增强Raman散射活性衬底的制备方法,其特征在于:将所得圆球状金-离子交换树脂核壳微球用作检测用活性衬底,将水溶性的氯金酸在阴离子交换树脂微球表面经室温一步还原反应,即可制备得到圆球状的金-离子交换树脂核壳微球,具体为:取1g水合氯金酸、1g阴离子交换树脂微球、91g去离子水充分混合后,再加入自限还原剂7g,室温反应24小时得到金-离子交换树脂核壳微球1.2g;所述的阴离子交换树脂微球平均粒径0.4-0.6毫米;所述自限还原剂为质量分数比例为1∶1的抗坏血酸与异丙醇的组合物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210545926.XA CN103278490B (zh) | 2012-12-17 | 2012-12-17 | 一种球状的sers活性衬底的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210545926.XA CN103278490B (zh) | 2012-12-17 | 2012-12-17 | 一种球状的sers活性衬底的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103278490A CN103278490A (zh) | 2013-09-04 |
CN103278490B true CN103278490B (zh) | 2017-04-12 |
Family
ID=49061072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210545926.XA Expired - Fee Related CN103278490B (zh) | 2012-12-17 | 2012-12-17 | 一种球状的sers活性衬底的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103278490B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103645172B (zh) * | 2013-12-13 | 2017-01-18 | 江南大学 | 一种球状sers活性衬底及其制备方法 |
CN105460971B (zh) * | 2015-12-10 | 2017-10-17 | 江南大学 | 一种微米级柱状硫化银阵列的可控制备方法 |
CN112051253A (zh) * | 2020-07-30 | 2020-12-08 | 北京农业信息技术研究中心 | 一种土壤硝态氮含量测量方法及装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102259038A (zh) * | 2011-06-08 | 2011-11-30 | 江南大学 | 氨基功能化微米金与阴离子交换树脂复合材料的制备方法 |
-
2012
- 2012-12-17 CN CN201210545926.XA patent/CN103278490B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102259038A (zh) * | 2011-06-08 | 2011-11-30 | 江南大学 | 氨基功能化微米金与阴离子交换树脂复合材料的制备方法 |
Non-Patent Citations (2)
Title |
---|
One-step fabrication of gold nanoparticles-silica composites with enhanced catalytic activity;Kang Yeol Lee等;《CHEMICAL PHYSICS LETTERS》;20080111;77-81 * |
Surface-enhanced Raman scatterting for perchlorate detection using cystamine-modified gold nanoparticles;Chuanmin Ruan等;《Analytica Chimica Acta》;20060309;114-120 * |
Also Published As
Publication number | Publication date |
---|---|
CN103278490A (zh) | 2013-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lim et al. | Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly (vinyl pyrrolidone) | |
Polte et al. | Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles | |
Zhang et al. | Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS | |
Zhang et al. | Formation of hollow upconversion rare-earth fluoride nanospheres: nanoscale kirkendall effect during ion exchange | |
Fang et al. | Gold mesostructures with tailored surface topography and their self-assembly arrays for surface-enhanced Raman spectroscopy | |
Zou et al. | Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution | |
Liang et al. | Synthesis of ultrafine SnO2-x nanocrystals by pulsed laser-induced reactive quenching in liquid medium | |
Brumbaugh et al. | Ultrasmall copper nanoparticles synthesized with a plant tea reducing agent | |
Niu et al. | Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals | |
CN101281133B (zh) | 具有大面积微纳树状结构阵列的表面增强拉曼活性基底的制备方法 | |
Motl et al. | Au− Cu alloy nanoparticles with tunable compositions and plasmonic properties: experimental determination of composition and correlation with theory | |
Nhung et al. | Green synthesis of asymmetrically textured silver meso-flowers (AgMFs) as highly sensitive SERS substrates | |
Sheng et al. | Remarkable SERS detection by hybrid Cu2O/Ag nanospheres | |
Lin et al. | Highly monodisperse Au@ Ag nanospheres: synthesis by controlled etching route and size-dependent SERS performance of their surperlattices | |
Garcia et al. | Templated growth of platinum nanowheels using the inhomogeneous reaction environment of bicelles | |
CN106493381A (zh) | 一种银/氧化亚铜微纳结构复合材料的制备方法及其应用 | |
Niu et al. | Pd nanocrystals with single-, double-, and triple-cavities: facile synthesis and tunable plasmonic properties | |
CN103278490B (zh) | 一种球状的sers活性衬底的制备方法 | |
Devaraju et al. | Morphology control of cerium oxide particles synthesized via a supercritical solvothermal method | |
Liu et al. | Grooved nanoplate assembly for rapid detection of surface enhanced Raman scattering | |
Lee et al. | Au nanolenses for near-field focusing | |
Umar et al. | Seedless synthesis of monodisperse cuboctahedral gold nanoparticles with tunable sizes | |
Pangdam et al. | Urchin-like gold microstructures with tunable length of nanothorns | |
CN106216664B (zh) | 一种制备单晶球形银纳米颗粒的方法和由此形成的银纳米颗粒 | |
Canbek Ozdil et al. | Competitive Seeded Growth: An Original Tool to Investigate Anisotropic Gold Nanoparticle Growth Mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170412 Termination date: 20171217 |
|
CF01 | Termination of patent right due to non-payment of annual fee |