CN103276023B - Method for promoting anaerobic fermentation of surplus sludge to produce acid by using biosurfactant - Google Patents

Method for promoting anaerobic fermentation of surplus sludge to produce acid by using biosurfactant Download PDF

Info

Publication number
CN103276023B
CN103276023B CN201310200610.1A CN201310200610A CN103276023B CN 103276023 B CN103276023 B CN 103276023B CN 201310200610 A CN201310200610 A CN 201310200610A CN 103276023 B CN103276023 B CN 103276023B
Authority
CN
China
Prior art keywords
sludge
acid
anaerobic fermentation
alkyl polyglycoside
fermentation
Prior art date
Application number
CN201310200610.1A
Other languages
Chinese (zh)
Other versions
CN103276023A (en
Inventor
孙秀云
陈灿
王连军
沈锦优
李健生
刘晓东
韩卫清
黄诚
孙夏漪
李娜
Original Assignee
南京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京理工大学 filed Critical 南京理工大学
Priority to CN201310200610.1A priority Critical patent/CN103276023B/en
Publication of CN103276023A publication Critical patent/CN103276023A/en
Application granted granted Critical
Publication of CN103276023B publication Critical patent/CN103276023B/en

Links

Abstract

本发明涉及一种利用生物表面活性剂烷基多苷促进污泥水解产酸的方法。 The present invention relates to a method of using biosurfactants promote sludge alkyl polyglycoside acid hydrolyzate. 本发明为了解决现有的化学表面活性剂促进剩余污泥厌氧发酵产酸的方法中,化学表面活性剂存在毒性,且其不可生物降解会造成二次污染等问题。 The method of the present invention to solve the conventional chemical surfactants to promote anaerobic fermentation of acid sludge, the toxicity of the chemical surfactant is present, it is not biodegradable and can cause secondary pollution problems. 以污水处理厂二沉池污泥为原料,在投加生物表面活性剂烷基多苷的条件下,进行厌氧发酵。 In the secondary settling tank sewage treatment plant sludge as a raw material, adding at biosurfactant alkyl polyglycoside of anaerobic fermentation. 本发明方法中的生物表面活性剂烷基多苷兼具普通非离子和阴离子表面活性剂的特性,具有高表面活性、良好的生态安全性和相溶性,可强化有机物的溶出,促进剩余污泥发酵产酸。 Biosurfactant process of the invention is an alkyl polyglycoside common characteristic of both nonionic and anionic surfactants having a high surface activity, good ecological compatibility and safety, can enhance the dissolution of organic matter sludge to promote fermentation acid. 为生物表面活性剂在污泥水解产酸中的实际应用和短链脂肪酸的回用起到很好的借鉴和参考价值。 Biological sludge surfactant in acid hydrolyzate and practical application of short chain fatty acids play back with good reference and reference value.

Description

一种生物表面活性剂促进剩余污泥厌氧发酵产酸的方法 One biologically surfactant method for promoting the anaerobic sludge fermentation acid

技术领域 FIELD

[0001] 本发明属于固体废弃物资源化领域,具体涉及一种利用生物表面活性剂烷基多苷促进剩余污泥厌氧发酵产酸的方法。 [0001] The present invention belongs to the field of solid waste resources, particularly to a method of use of biological alkyl polyglycoside surfactant to promote anaerobic fermentation residual acid.

背景技术 Background technique

[0002] 随着污水处理技术的进一步发展,剩余污泥的妥善处理问题引起越来越多的关注。 [0002] With the further development of wastewater treatment technologies, and properly deal with the problem of excess sludge drawn more and more attention. 由于污泥处置方式存在着各种弊端,如今污泥的资源化受到人们越来越多的重视。 Since there are various disadvantages of sludge disposal, sludge recycling now received more and more attention. 剩余污泥中有机物的含量在60%左右,生物易降解有机组分在40%以上,这些生物易降解有机物都是微生物丰富的营养源。 Organic matter content of about 60% excess sludge, biologically easily degradable organic component in more than 40%, these organisms are easily biodegradable organic nutrient source rich microorganisms. 污泥处理处置方法包括厌氧消化、好氧消化等,而厌氧消化法被认为是经济有效的污泥处理工艺之一。 Sludge treatment method comprising an anaerobic digestion, aerobic digestion, anaerobic digestion and is considered to be one of the sludge treatment process cost-effective.

[0003] 近年来,利用剩余污泥厌氧发酵产甲烷越来越受到关注,然而,相对于生物产甲烷,在酸化过程中产生的有机酸,不仅有更高的价值,而且有着广泛的应用和许多潜在的工业用途。 [0003] In recent years, with the remaining anaerobic methane fermentation increasing concern, however, with respect to the biological production of methane, the organic acid produced in the acidification process, not only have a higher value, but has wide application and many potential industrial applications. 此外,在污水处理厂内,利用剩余污泥产酸可以直接用作污水处理厂微生物的内部碳源,用以去除污水中的生物营养物质(磷和氮)。 Further, the sewage treatment plant, sludge using an acid can be directly used as an internal carbon source of microorganisms of sewage treatment plants for removing biological nutrients (nitrogen and phosphorus) in water. 因此,对剩余污泥厌氧消化条件进行优化,最大程度获取有机酸,是剩余污泥减量化资源化的一条有效途径。 Therefore, the remaining sludge anaerobic digestion conditions were optimized to obtain maximum degree of organic acids, is an effective way of excess sludge reduction of resources.

[0004] 水解阶段一直被认为是厌氧消化三阶段中的限速阶段,而提高污泥水解速率的基本原理是促使污泥中颗粒态的有机物分解为小分子溶解态的有机物。 [0004] The hydrolysis stage has been considered the rate-limiting stage of the anaerobic digestion stage three, to improve the rate of hydrolysis of the basic principles of the sludge is organic sludge causes particulate organic matter is decomposed into small molecular dissolved state. 表面活性剂是一种两性化合物,分子的一端为非极性的疏水基,另一端为极性亲水基,因而表面活性剂分子能够通过取代界面的高能体相分子,从而减少系统的自由能。 Surfactant is an amphoteric compound, a non-polar end of the molecule a hydrophobic group, and the other end is a polar hydrophilic group, and therefore the surfactant molecules can be substituted by an interface phase high energy molecules, thereby reducing the free energy . 投加表面活性剂可提高污泥水解速率,为剩余污泥产酸提供大量底物,从而促进短链脂肪酸(SCFAs)的累积,最终实现剩余污泥在污水处理厂内的原位减量化与资源化。 Adding a surfactant can increase the rate of hydrolysis of the sludge, to provide a large amount of excess sludge substrate is an acid, thereby promoting the accumulation of short chain fatty acids (SCFAs), and ultimately the sludge in situ reduction of the sewage treatment plant and resources. 同济大学陈银广等讨论了厌氧条件下利用化学表面活性剂十二烷基硫酸钠(SDS)对污泥水解和酸化的影响,结果表明,当SDS投加量为0.lg/gTSS时,SCFAs最高浓度2243.04mg/L,而未投加SDS的空白组SCFAs最高浓度仅为191.10mg/L。 Chen et Tongji Yinguang The effects of anaerobic conditions using a chemical surfactant sodium dodecyl sulfate (SDS) hydrolysis and acidification of the sludge, the results show that when the dosage of SDS 0.lg / gTSS, SCFAs the highest concentration 2243.04mg / L, the control group without adding SDS SCFAs the highest concentration of only 191.10mg / L. 但是化学表明活性剂往往存在难降解,易导致二次污染的问题。 But chemical agents show that there is often refractory, easy to cause secondary pollution problem. 生物表面活性剂不仅具有化学表面活性剂具有的各种表面性能,而且对环境友好,生物降解性能好,而利用生物表面活性剂烷基多苷强化污泥水解,促进污泥产酸的方法未见报道。 Biosurfactants only having various surface properties with chemical surfactants, and environmentally friendly, good biodegradability, the use of biological alkyl polyglycoside surfactants strengthening hydrolysis of sludge, a method of promoting non-acid sludge reported.

发明内容 SUMMARY

[0005] 本发明的目的是为了解决现有的化学表面活性剂存在毒性,且不可生物降解的问题,而提出利用生物表面活性剂烷基多苷促进剩余污泥厌氧发酵产酸的方法。 [0005] The object of the present invention is to solve the problems existing chemical toxicity of surfactants, and non-biodegradable, proposed the use of biological methods Surfactant Alkyl sludge anaerobic fermentation promoting acid polyglycosides.

[0006] 实现本发明目的的技术解决方案为:一种生物表面活性剂促进剩余污泥厌氧发酵产酸的方法,采用了烷基多苷促进剩余污泥厌氧发酵产酸,具体包括以下步骤: [0006] The purpose of the present invention is a technical solution: a biologically active agent, a method of promoting a surface residual acid anaerobic fermentation, using alkyl polyglycoside promote anaerobic fermentation of acid sludge, particularly comprising step:

[0007] (I)将剩余污泥加入反应瓶中,调节初始pH值为5〜11,投加烷基多苷; [0007] (I) the excess sludge added to the reaction flask to adjust the initial pH value of 5~11, dosing alkyl polyglycoside;

[0008] (2)将反应瓶驱氧充氮1min后,密封反应瓶,恒温振荡培养进行厌氧发酵,完成生物表面活性剂烷基多苷促进剩余污泥厌氧发酵产酸的过程。 After [0008] (2) oxygen nitrogen displacement reaction flask 1min, sealed reaction flask, and cultured with shaking thermostat anaerobic fermentation, complete biosurfactant alkyl polyglycoside facilitate the process of anaerobic fermentation residual acid.

[0009] 其中,步骤(I)中,剩余污泥取自污水处理厂二沉池,剩余污泥总悬浮固体浓度为24000mg/L 〜28700mg/L,挥发性固体浓度为10200mg/L 〜11400mg/L。 [0009] wherein, in step (I), the remaining sludge from the sewage treatment plant secondary sedimentation tank, sludge total suspended solids concentration of 24000mg / L ~28700mg / L, volatile solids concentration 10200mg / L ~11400mg / L.

[0010] 步骤(I)中,调节反应瓶中剩余污泥的pH值选用HCl溶液或NaOH溶液。 [0010] Step (I), adjusting the pH of the reaction flask excess sludge selection HCl solution or NaOH solution.

[0011] 步骤(I)中,烷基多苷的投加量为0.05、.4g/gTSS (TSS:干污泥质量)。 [0011] Step (I), the alkyl polyglycoside dosage is 0.05, .4g / gTSS (TSS: sludge dry mass).

[0012] 步骤(2)中,发酵温度为30〜37°C,发酵时间为12〜48h。 [0012] Step (2), the fermentation temperature is 30~37 ° C, the fermentation time was 12~48h.

[0013] 本发明与现有技术相比,其显著优点:(1)生物表面活性剂烷基多苷促进剩余污泥厌氧发酵产酸的方法中的烷基多苷兼具普通非离子和阴离子表面活性剂的特性,具有高表面活性、良好的生态安全性和相溶性,不存在二次污染的问题。 [0013] Compared with the prior art that significant advantages: (1) biosurfactant alkyl polyglycoside method of promoting anaerobic fermentation of acid sludge in both normal alkyl polyglycoside nonionic and characteristics of anionic surfactant, has a high surface activity, good safety and ecological compatibility, the absence of secondary pollution. (2)生物表面活性剂烷基多苷能强化污泥水解,明显促进蛋白质和可溶性糖等有机物的溶出,显著提高污泥厌氧发酵产酸量。 (2) Biological alkyl polyglycoside surfactants can strengthen the sludge hydrolysis, significantly promoted the dissolution of protein and soluble sugar organic matter, significantly increase the amount of anaerobic fermentation acid.

附图说明 BRIEF DESCRIPTION

[0014] 图1是实施例1中不同烷基多苷投加量下,酸浓度随发酵时间的变化; [0014] FIG. 1 is different from Example 1 under alkylpolyglycosides dosing quantity, acid concentration variation over time of fermentation embodiment;

[0015] 图2是实施例2中pH对剩余污泥厌氧发酵产酸的影响; [0015] Example 2 Effect of the pH 2 is the residual anaerobic fermentation acid embodiment;

[0016] 图3是实施例3中温度对剩余污泥厌氧发酵产酸的影响。 [0016] Example 3 Effect of temperature is the remaining 3 anaerobic fermentation acid embodiment.

具体实施方式 Detailed ways

[0017] 下面的实施例可以使本专业技术人员更全面地理解本发明。 [0017] The following examples may enable those skilled in the art to more fully understand the present invention.

[0018] 一种利用生物表面活性剂烷基多苷促进剩余污泥厌氧发酵产酸的方法,其特征在于利用生物表面活性剂降低表面张力,促进污泥水解产酸,通过控制条件提高剩余污泥厌氧发酵产酸量,具体步骤: [0018] A group of biosurfactants using the method of anaerobic digestion of acid sludge promoting polyglycosides, wherein the use of biological surfactants reduce the surface tension, promote the hydrolysis of an acid sludge, by improving the residual control condition anaerobic fermentation acid production, specific steps:

[0019] (I)将剩余污泥加入反应瓶中,调节初始pH值为5〜11,投加0.05、.4g/gTSS烷基多苷; [0019] (I) the excess sludge added to the reaction flask to adjust the initial pH value of 5~11, adding 0.05, .4g / gTSS alkyl polyglycoside;

[0020] (2)将反应瓶驱氧充氮1min后,密封反应瓶,于3(T37°C下恒温振荡培养,进行厌氧发酵,经过12〜48h后完成生物表面活性剂烷基多苷促进剩余污泥厌氧发酵产酸的过程。 After [0020] (2) oxygen nitrogen displacement reaction flask 1min, sealed reaction flask, at 3 (T37 ° C thermostatic shaking culture, anaerobic fermentation, after completion of biosurfactants 12~48h alkyl polyglycoside facilitate the process of anaerobic fermentation of acid sludge.

[0021] 实施例1: [0021] Example 1:

[0022] 为了确定生物表面活性剂烷基多苷促进污泥水解产酸的最佳条件,讨论不同投加量和发酵时间对污泥水解产酸的影响。 [0022] In order to determine the biological alkyl polyglycoside surfactant to promote optimal conditions for acid sludge hydrolyzate, discuss the impact of different dosage and fermentation time of the sludge-acid hydrolysis.

[0023] (I)分别取10mL剩余污泥加入6个反应瓶中,剩余污泥总悬浮固体浓度为28700mg/L,挥发性固体浓度为11400mg/L,2-6号瓶分别投加投加不同量(0.05,0.1,0.2,0.3,0.4g/gTSS)的烷基多苷,同时设置I号瓶为空白对照组(不投加烷基多苷)。 [0023] (I) are of 10mL sludge reaction flask was added 6, total suspended solids concentration of residual sludge 28700mg / L, volatile solids concentration 11400mg / L, respectively, 2-6 dosage dosing bottle different amounts (0.05,0.1,0.2,0.3,0.4g / gTSS) alkylpolyglycosides, I, bottle and set blank control group (without adding alkyl polyglycoside).

[0024] (2)将反应瓶驱氧充氮1min后,密封反应瓶,放入恒温振荡培养箱中于30°C进行厌氧发酵,经过48h后完成生物表面活性剂烷基多苷促进剩余污泥厌氧发酵产酸的过程。 [0024] (2) the nitrogen oxide reaction flask prop 1min, reaction vial was sealed, placed in a thermostatic shaking incubator anaerobic fermentation at 30 ° C, 48h after completion of biosurfactants alkyl polyglycoside promoting remaining acid anaerobic fermentation process. 由图1可以看出,在厌氧发酵过程中,SCFAs最高浓度随着烷基多苷投加量的增加而增加,当投加量为0.4g/gTSS时,SCFAs最高浓度为2485.3 mg/L,而空白组最高浓度仅为1609.9mg/L0 As can be seen from Figure 1, the anaerobic fermentation process, with the increase of SCFAs highest concentration of the polyglycoside dosage administered group increased, when the dosage of 0.4g / gTSS, SCFAs highest concentration of 2485.3 mg / L , while the control group the highest concentration of only 1609.9mg / L0

[0025] 实施例2: [0025] Example 2:

[0026] 为了确定生物表面活性剂烷基多苷促进污泥水解产酸的最佳条件,讨论不同pH对污泥水解产酸的影响。 [0026] In order to determine the biological alkyl polyglycoside surfactant to promote optimal conditions for acid sludge hydrolyzate, discussed the effects of different pH on the acid sludge hydrolyzate.

[0027] (I)分别取10mL剩余污泥加入8个反应瓶中,剩余污泥总悬浮固体浓度为24000mg/L,挥发性固体浓度为10200mg/L,1_4号瓶调节pH值分别到5、7、9和11,投加烷基多苷0.2g/gTSS,5-8为对照组(即调节pH值分别到5、7、9和11但不加烷基多苷)。 [0027] (I) are of 10mL sludge reaction flask was added 8, total suspended solids concentration of residual sludge 24000mg / L, volatile solids concentration 10200mg / L, 1_4 number pH were adjusted to the bottle 5, 7, 9 and 11, adding an alkyl polyglycoside 0.2g / gTSS, 5-8 of the control group (i.e., adjusting the pH to 5,7,9 and 11 respectively but without the alkyl polyglycoside).

[0028] (2)将反应瓶驱氧充氮1min后,密封反应瓶,分别放入恒温振荡培养箱中于30°C进行厌氧发酵,经过12h后完成生物表面活性剂烷基多苷促进剩余污泥厌氧发酵产酸的过程。 [0028] (2) the nitrogen oxide reaction flask prop 1min, sealed reaction flask, were placed in a thermostatic shaking incubator anaerobic fermentation at 30 ° C, 12h after completion of biosurfactants promote alkyl polyglycoside acid sludge anaerobic fermentation process. 由图2可知,在实验范围内,pH值越高,污泥在烷基多苷作用下的水解产酸效果越好,在PH=Il的条件下,投加量为0.4g/gTSS时SCFAs最高浓度比空白组实验高出156.2mg/L。 As seen from FIG. 2, in the experimental range, the higher the pH, the better the sludge hydrolysis in acid-generating efficiency of an alkyl polyglycoside action, at PH = Il, the dosage of 0.4g / gTSS SCFAs The highest concentration test higher 156.2mg / L compared with control.

[0029] 实施例3: [0029] Example 3:

[0030] 为了确定生物表面活性剂烷基多苷促进污泥水解产酸的最佳条件,讨论不同温度对污泥水解产酸的影响。 [0030] In order to determine the biological alkyl polyglycoside surfactant to promote optimal conditions for the acid hydrolyzate sludge, sludge discuss the impact of different temperature on the acid hydrolyzate.

[0031] (I)分别取10mL剩余污泥加入6个反应瓶中,剩余污泥总悬浮固体浓度为24000mg/L,挥发性固体浓度为10200mg/L,调节pH值为9,1_3号瓶投加烷基多苷0.2g/gTSS,4-6为对照组,不加烷基多苷。 [0031] (I) are of 10mL sludge reaction flask was added 6, total suspended solids concentration of residual sludge 24000mg / L, volatile solids concentration 10200mg / L, adjusted to pH administered bottles No. 9,1_3 APG plus 0.2g / gTSS, 4-6 for the control group without the alkyl polyglycoside.

[0032] (2)将反应瓶驱氧充氮1min后,密封反应瓶,分别放入恒温振荡培养箱中,I号和4号于15°C进行厌氧发酵,2号和5号于25°C厌氧发酵,3号和6号于35°C厌氧发酵,经过12h后完成生物表面活性剂烷基多苷促进剩余污泥厌氧发酵产酸的过程。 After [0032] (2) oxygen nitrogen displacement reaction flask 1min, sealed reaction flask, were placed in a thermostatic shaking incubator, and the I number 4 anaerobic fermentation at 15 ° C, 2 and 5 to 25 anaerobic fermentation ° C, 3 and 6 to 35 ° C, anaerobic fermentation is completed after 12h biosurfactant alkyl polyglycoside facilitate the process of anaerobic digestion of acid sludge. 由图3可知,实验范围内,温度越高,污泥在烷基多苷作用下的水解产酸效果越好,在T=35°C的条件下,投加量为0.4g/gTSS时SCFAs最高浓度比空白组实验高出340.2mg/L。 As seen from FIG. 3, the experimental range, the higher the temperature, the better the sludge hydrolysis in acid-generating efficiency of an alkyl polyglycoside action, at T = 35 ° C conditions, the dosage of 0.4g / gTSS SCFAs The highest concentration test higher 340.2mg / L compared with control.

Claims (5)

1.一种生物表面活性剂促进剩余污泥厌氧发酵产酸的方法,其特征在于,采用了烷基多苷促进剩余污泥厌氧发酵产酸,具体包括以下步骤: (O将剩余污泥加入反应瓶中,调节初始PH值为5〜11,投加烷基多苷; (2)将反应瓶驱氧充氮1min后,密封反应瓶,恒温振荡培养进行厌氧发酵,完成生物表面活性剂烷基多苷促进剩余污泥厌氧发酵产酸的过程。 CLAIMS 1. A method of promoting biosurfactants anaerobic fermentation of acid sludge, characterized in that the alkyl polyglycoside employed to promote anaerobic fermentation of acid sludge, comprises the steps of: (O sewage remaining mud added to the reaction flask to adjust the initial PH value 5~11, adding alkylpolyglycosides; (2) the nitrogen oxide reaction flask drive 1min, sealed reaction flask, and cultured with shaking thermostat anaerobic fermentation, to complete a biological surface alkyl polyglycosides agents facilitate the process of anaerobic digestion of acid sludge.
2.根据权利要求1所述的方法,其特征在于:步骤(I)中,剩余污泥取自污水处理厂二沉池,剩余污泥总悬浮固体浓度为24000mg/L〜28700mg/L,挥发性固体浓度为10200mg/L〜11400mg/L。 2. The method according to claim 1, wherein: step (I), the remaining sludge from the sewage treatment plant secondary sedimentation tank, sludge total suspended solids concentration of 24000mg / L~28700mg / L, volatilization solids concentration of 10200mg / L~11400mg / L.
3.根据权利要求1所述的方法,其特征在于:步骤(I)中,调节反应瓶中剩余污泥的pH值选用HCl溶液或NaOH溶液。 3. The method according to claim 1, wherein: step (I), adjusting the pH of the reaction flask excess sludge selection HCl solution or NaOH solution.
4.根据权利要求1所述的方法,其特征在于:步骤(I)中,烷基多苷的投加量为0.05〜0.4g/gTSS。 4. The method according to claim 1, wherein: step (I), the alkyl polyglycoside dosage is 0.05~0.4g / gTSS.
5.根据权利要求1所述的方法,其特征在于:步骤(2)中,发酵温度为3(T37°C,发酵时间为12〜48h。 5. The method according to claim 1, wherein: step (2), the fermentation temperature is 3 (T37 ° C, the fermentation time was 12~48h.
CN201310200610.1A 2013-05-27 2013-05-27 Method for promoting anaerobic fermentation of surplus sludge to produce acid by using biosurfactant CN103276023B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310200610.1A CN103276023B (en) 2013-05-27 2013-05-27 Method for promoting anaerobic fermentation of surplus sludge to produce acid by using biosurfactant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310200610.1A CN103276023B (en) 2013-05-27 2013-05-27 Method for promoting anaerobic fermentation of surplus sludge to produce acid by using biosurfactant

Publications (2)

Publication Number Publication Date
CN103276023A CN103276023A (en) 2013-09-04
CN103276023B true CN103276023B (en) 2015-01-14

Family

ID=49058641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310200610.1A CN103276023B (en) 2013-05-27 2013-05-27 Method for promoting anaerobic fermentation of surplus sludge to produce acid by using biosurfactant

Country Status (1)

Country Link
CN (1) CN103276023B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103773817B (en) * 2014-01-10 2016-06-15 同济大学 The method of utilizing residual tea saponin promote anaerobic fermentation acid
CN104099380A (en) * 2014-06-27 2014-10-15 同济大学 Method utilizing sludge anaerobic fermentation to produce fatty acid
CN104404090A (en) * 2014-11-10 2015-03-11 南京理工大学 Method for promoting residual sludge to carry out anaerobic fermentation to produce acid
WO2016097857A1 (en) * 2014-12-15 2016-06-23 Gfs Corporation Aus Pty Ltd Compositions and methods of use
CN104743760A (en) * 2015-03-09 2015-07-01 同济大学 Method for synchronously implementing sludge strengthened dewatering and increasing bio-adsorbent yield
CN105506003A (en) * 2016-01-05 2016-04-20 井冈山大学 Method for promoting ferment acid production of excess sludge through soapnut saponin production leftovers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334286A (en) * 1993-05-13 1994-08-02 The Procter & Gamble Company Tissue paper treated with tri-component biodegradable softener composition
CN101613640B (en) * 2009-07-03 2011-06-22 沈阳师范大学 Natural surface active agent for cleaning fruits and vegetables and preparation method thereof

Also Published As

Publication number Publication date
CN103276023A (en) 2013-09-04

Similar Documents

Publication Publication Date Title
Angelidaki et al. Biomethanation and its potential
Zhang et al. New sludge pretreatment method to improve methane production in waste activated sludge digestion
Chipasa et al. Behavior of lipids in biological wastewater treatment processes
Verma et al. Biogas production from plant biomass used for phytoremediation of industrial wastes
Li et al. Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal
Jiang et al. Effect of sodium dodecyl sulfate on waste activated sludge hydrolysis and acidification
Driessen et al. Experience on anaerobic treatment of distillery effluent with the UASB process
Li et al. An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid
Ahring et al. State of the art and future perspectives of thermophilic anaerobic digestion
Li et al. Effect of temperature on short chain fatty acids (SCFAs) accumulation and microbiological transformation in sludge alkaline fermentation with Ca (OH) 2 adjustment
Ji et al. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation
JP4982789B2 (en) Waste water treatment method and apparatus according to the methane fermentation
Wu et al. Alkaline fermentation of primary sludge for short-chain fatty acids accumulation and mechanism
CN101306867A (en) High-efficiency purifier of biological enzyme
CN101759316B (en) Method for treating wastewater containing molasses alcohol
Zhou et al. Volatile fatty acids accumulation and rhamnolipid generation in situ from waste activated sludge fermentation stimulated by external rhamnolipid addition
Fang et al. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)
CN101157510A (en) Process for treating antibiotic waste water and usage thereof
Zhao et al. Effect of initial pH on short chain fatty acid production during the anaerobic fermentation of membrane bioreactor sludge enhanced by alkyl polyglcoside
CN102583903B (en) Method for treating antibiotic wastewater
Chen et al. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH
CN101698555A (en) Integrated up-flow reactor and advanced treatment method of fermentation industrial effluent
Jeong et al. Facilitated UASB granule formation using organic–inorganic hybrid polymers
Ma et al. Free nitrous acid pretreatment of wasted activated sludge to exploit internal carbon source for enhanced denitrification
Zhang et al. Waste activated sludge hydrolysis and short-chain fatty acids accumulation in the presence of SDBS in semi-continuous flow reactors: effect of solids retention time and temperature

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted