CN103248052B - Saturated switching control method for three-phase parallel active power filter - Google Patents

Saturated switching control method for three-phase parallel active power filter Download PDF

Info

Publication number
CN103248052B
CN103248052B CN201310182664.XA CN201310182664A CN103248052B CN 103248052 B CN103248052 B CN 103248052B CN 201310182664 A CN201310182664 A CN 201310182664A CN 103248052 B CN103248052 B CN 103248052B
Authority
CN
China
Prior art keywords
msub
mrow
mtd
mfrac
active power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310182664.XA
Other languages
Chinese (zh)
Other versions
CN103248052A (en
Inventor
程新功
宗西举
裴兴华
张静亮
侯广松
白万建
徐珂
殷文月
李石清
王成友
任宏伟
王玉真
邵振振
于明珠
丁冬睿
陈早军
张庆华
张步胜
欧朱建
张梦华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
University of Jinan
Heze Power Supply Co of State Grid Shandong Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
University of Jinan
Heze Power Supply Co of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, University of Jinan, Heze Power Supply Co of State Grid Shandong Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201310182664.XA priority Critical patent/CN103248052B/en
Publication of CN103248052A publication Critical patent/CN103248052A/en
Application granted granted Critical
Publication of CN103248052B publication Critical patent/CN103248052B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种三相并联型有源电力滤波器的饱和切换控制方法,包括步骤:1)根据三相并联有源电力滤波器各工作模态,建立其切换系统模型;2)通过构造公共李雅普诺夫函数得到基于状态反馈的切换规则其中,arg表示取满足表达式的下标;3)三相并联有源电力滤波器存在饱和非线性约束时,引入附加矩阵G,以凸域法将饱和非线性约束线性化,再利用李雅普诺夫函数稳定性理论设计出使得饱和系统达到渐进稳定的饱和切换规则;4)在饱和切换规则作用下,三相并联有源电力滤波器实现对电网谐波电流的补偿。

The invention relates to a saturation switching control method of a three-phase parallel active power filter, comprising the steps of: 1) establishing a switching system model according to each working mode of the three-phase parallel active power filter; 2) constructing a common Lyapunov function to obtain switching rules based on state feedback Among them, arg means to take the subscript that satisfies the expression; 3) When the three-phase parallel active power filter has saturated nonlinear constraints, an additional matrix G is introduced to linearize the saturated nonlinear constraints with the convex domain method, and then Lyapunuo The saturation switching rule is designed to make the saturated system asymptotically stable based on the stability theory of the husband function; 4) Under the action of the saturated switching rule, the three-phase parallel active power filter realizes the compensation of the harmonic current of the grid.

Description

一种三相并联型有源电力滤波器的饱和切换控制方法A Saturation Switching Control Method of Three-phase Parallel Active Power Filter

技术领域technical field

本发明涉及一种三相并联型有源电力滤波器的饱和切换控制方法。The invention relates to a saturation switching control method of a three-phase parallel active power filter.

背景技术Background technique

随着电网中非线性负荷的日益增加,其产生的谐波对配电网造成了严重的负面影响。其间造成各种电气设备不能正常工作、附加谐波损耗、电压畸变、通信干扰等问题。有源电力滤波器被认为是改善电能质量、抑制谐波最有效的设备。With the increasing of non-linear loads in the power grid, the harmonics generated by it have a serious negative impact on the distribution network. In the meantime, various electrical equipment cannot work normally, additional harmonic loss, voltage distortion, communication interference and other problems. Active power filter is considered to be the most effective device for improving power quality and suppressing harmonics.

传统的有源电力滤波器都是以周期平均模型来分析和设计,但是这种近似得到小信号模型的建模方法在存在大信号干扰时,系统会出现不稳定或者补偿效果较差等问题。同时,在实际的APF控制系统中普遍存在饱和非线性限制环节。例如,系统发生短路故障或非线性负载突增时,为保证APF安全运行,小容量的APF(有源滤波器)通常采用限流保护策略(截断限流或按容量极限比例限流策略)。然而,常用的截断限流保护方式中通过饱和非线性限制环节来限制指令谐波电流,该环节可能会使系统的稳定性及动态性能发生变化甚至会导致严重后果。The traditional active power filter is analyzed and designed based on the cycle average model, but this modeling method of approximating the small signal model will cause problems such as instability or poor compensation effect in the presence of large signal interference. At the same time, in the actual APF control system, there is a saturated nonlinear limiting link. For example, when a short-circuit fault or a nonlinear load surge occurs in the system, in order to ensure the safe operation of the APF, the small-capacity APF (active filter) usually adopts a current-limiting protection strategy (cut-off current-limiting or current-limiting strategy proportional to capacity limit). However, in the commonly used truncation current limiting protection method, the command harmonic current is limited through the saturated nonlinear limiting link, which may change the stability and dynamic performance of the system and even lead to serious consequences.

发明内容Contents of the invention

本发明的目的就是为了解决现有有源电力滤波器传统控制方法的精度不高和饱和非线性的稳定对系统稳定的影响等问题。为此本发明提供了一种三相并联型有源电力滤波器的饱和切换控制方法,它具有良好的动态特性和稳态特性。The purpose of the invention is to solve the problems of low precision of the traditional control method of the existing active power filter and the influence of saturation nonlinear stability on system stability and the like. Therefore, the present invention provides a saturation switching control method of a three-phase parallel active power filter, which has good dynamic characteristics and steady-state characteristics.

为实现上述目的,本发明采用了如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:

一种三相并联型有源电力滤波器的饱和切换控制方法,包括以下步骤:A method for controlling saturation switching of a three-phase parallel active power filter, comprising the following steps:

步骤1)首先分析三相并联型有源电力滤波器各工作模态拓扑结构,根据实际电路参数,建立三相有源电力滤波器的切换系统模型其中Aσ(t)为有源电力滤波器工作模态的系数矩阵,B为输入矩阵且是常数阵,这两个矩阵都是由实际电路参数决定,x为状态向量,由三相并联型有源电力滤波器的输出补偿电流和直流侧电压组成,u是输入向量,由系统电源电压组成;Step 1) First analyze the topological structure of each working mode of the three-phase parallel active power filter, and establish the switching system model of the three-phase active power filter according to the actual circuit parameters Among them, A σ(t) is the coefficient matrix of the working mode of the active power filter, B is the input matrix and is a constant matrix, these two matrices are determined by the actual circuit parameters, x is the state vector, and the three-phase parallel type The output compensation current of the active power filter is composed of the DC side voltage, and u is the input vector, which is composed of the system power supply voltage;

步骤2)针对三相有源电力滤波器的切换系统模型设计模型的切换规则σ(t),使得系统在切换平衡点渐进稳定,即实现了三相有源电力滤波器的电压稳定和电流跟踪的统一控制;首先根据线性系统理论的方法计算系统的公共李雅普诺夫函数V(ξ)=ξTPξ,(ξ=x-xe),xe为系统的切换平衡点,即求解其中Q是单位矩阵,Aλ为Hurwitz矩阵,λi∈(0,1),根据该李雅普诺夫函数得到切换规则 σ ( t ) = arg min i ∈ N ξ T P ( A i x + Bu ) , 式中,arg表示下标;Step 2) Switched system model for three-phase active power filter The switching rule σ(t) of the design model makes the system asymptotically stable at the switching balance point, that is, the unified control of voltage stability and current tracking of the three-phase active power filter is realized; firstly, the common Lyapunov function V(ξ)=ξ T Pξ,(ξ=xx e ), x e is the switching equilibrium point of the system, that is, to solve where Q is the identity matrix, A λ is the Hurwitz matrix, λ i ∈ (0,1), According to the Lyapunov function, the switching rule is obtained σ ( t ) = arg min i ∈ N ξ T P ( A i x + Bu ) , In the formula, arg represents the subscript;

步骤3)根据上述方法得到的控制规则,控制三相有源电力滤波器件的开关通断,实现对电网谐波电流的补偿。Step 3) According to the control rule obtained by the above method, control the on-off of the switch of the three-phase active power filter device, and realize the compensation for the harmonic current of the power grid.

所述步骤1)的具体步骤为:The concrete steps of described step 1) are:

(1)根据三相APF的工作原理即通过控制6个开关器件S1~S6的通断,使补偿电流icj跟踪指令电流保证了电网侧只含有正弦有功分量;同时使直流侧电容电压vdc稳定于参考电压 (1) According to the working principle of the three-phase APF, the compensation current i cj can track the command current by controlling the on-off of the six switching devices S 1 ~ S 6 It ensures that the grid side only contains sinusoidal active components; at the same time, the capacitor voltage v dc on the DC side is stabilized at the reference voltage

基于基尔霍夫定律,建立三相有源电力滤波器的电压电流方程:Based on Kirchhoff's law, the voltage and current equation of the three-phase active power filter is established:

ee aa == LL didi caca dtdt ++ RiRi caca ++ Uu anan ++ Uu nNn ee bb == LL didi cbcb dtdt ++ RiRi cbcb ++ Uu bnbn ++ Uu nNn ee cc == LL didi cccc dtdt ++ RiRi cccc ++ Uu cncn ++ Uu nNn -- -- -- (( 11 ))

didi cjcj dtdt == -- RR LL ii cjcj -- 11 LL (( pp jj -- 11 33 ΣΣ jj == aa ,, bb ,, cc pp jj )) vv dcdc ++ ee jj LL ,, jj == aa ,, bb ,, cc -- -- -- (( 22 ))

CC dvdv dcdc dtdt == ΣΣ jj == aa ,, bb ,, cc pp jj ii cjcj -- -- -- (( 33 ))

pj(j=a,b,c)表示j相开关状态,L为三相滤波电感;C为直流侧电容;R为电感等值电阻;ej(j=a,b,c)为系统电源电压;vdc为直流侧电容电压;iLj是非线性负荷电流;isj为电源电流;icj为三相APF的补偿电流;令表示负载电流中的谐波分量和无功分量;Ujn(j=a,b,c)为j相和n点间的电压;UnN是n和中性点N间的电压。p j (j=a,b,c) represents the switch state of phase j, L is the three-phase filter inductance; C is the DC side capacitance; R is the equivalent resistance of the inductor; e j (j=a,b,c) is the system power supply voltage; v dc is the DC side capacitor voltage; i Lj is the nonlinear load current; i sj is the power supply current; i cj is the compensation current of the three-phase APF; Indicates the harmonic component and reactive component in the load current; U jn (j=a,b,c) is the voltage between phase j and point n; U nN is the voltage between n and neutral point N.

定义Sj(j=a,b,c)为开关函数,其定义如下:Define S j (j=a,b,c) as a switch function, which is defined as follows:

SS jj == pp jj -- 11 33 ΣΣ jj == aa ,, bb ,, cc pp jj ,, jj == aa ,, bb ,, cc -- -- -- (( 44 ))

则状态方程(1)和(3)可写为:Then the state equations (1) and (3) can be written as:

didi caca dtdt didi cbcb dtdt didi cccc dtdt dvdv dcdc dtdt == -- RR LL 00 00 -- SS aa LL 00 -- RR LL 00 -- SS bb LL 00 00 -- RR LL -- SS cc LL pp aa CC pp bb CC pp cc CC 00 ii caca ii cbcb ii cccc vv dcdc ++ ee aa LL ee bb LL ee cc LL 00 -- -- -- (( 55 ))

对三相有源电力滤波器而言,不存在某一桥的上下桥臂均关断的情况,用pa,pb,pc对应6种开关组合,即:001、010、011、100、101、110,定义上述组合分别对应6种切换模态σ(t)∈N={1,2,…,6}。根据各工作模态的拓扑结构,式(5)的状态方程可写为:For a three-phase active power filter, there is no case where both the upper and lower bridge arms of a certain bridge are turned off, and pa, p b , and p c correspond to six switch combinations, namely: 001, 010, 011, 100 , 101, 110, define that the above combinations correspond to six switching modes σ(t)∈N={1,2,...,6} respectively. According to the topological structure of each working mode, the state equation of formula (5) can be written as:

xx ·· == AA σσ (( tt )) xx ++ BuBu -- -- -- (( 66 ))

式中,APF的状态向量x=[ica,icb,icc,vdc]T和输入向量u=[ea,eb,ec,0]T;A,B为APF工作模态的系数矩阵;其中Aσ(t)∈{A1,A2,A3,A4,A5,A6},对于输入矩阵B,其不受切换过程的影响,故保持不变;针对每一种开关组合,得到如的状态方程,其中:In the formula, APF state vector x=[i ca ,i cb ,i cc ,v dc ] T and input vector u=[e a ,e b ,e c ,0] T ; A and B are APF working modes coefficient matrix; where A σ(t) ∈{A 1 ,A 2 ,A 3 ,A 4 ,A 5 ,A 6 }, for the input matrix B, it is not affected by the switching process, so it remains unchanged; for For each switch combination, we get as The state equation of , where:

AA σσ (( tt )) == -- RR LL 00 00 -- 11 LL (( pp aa -- 11 33 ΣΣ jj == aa ,, bb ,, cc pp jj )) 00 -- RR LL 00 -- 11 LL (( pp bb -- 11 33 ΣΣ jj == aa ,, bb ,, cc pp jj )) 00 00 -- RR LL -- 11 LL (( pp cc -- 11 33 ΣΣ jj == aa ,, bb ,, cc pp jj )) pp aa CC pp bb CC pp cc CC 00 ,, BB == -- 11 LL 00 00 00 00 -- 11 LL 00 00 00 00 -- 11 LL 00 00 00 00 00 -- -- -- (( 77 )) ..

所述步骤2)的具体步骤为:The concrete steps of described step 2) are:

切换平衡点xe,为三相指令谐波电流及直流侧参考电压,记为指令谐波电流直接测到,直流侧参考电压为一给定的常量;根据三相有源电力滤波器6种工作模态,有Aσ(t)∈{A1,A2,A3,A4,A5,A6};定义子系统的凸组合为其中λi∈Λ,如果凸组合Aλ为Hurwitz矩阵,即Aλ是稳定的,则存在P和Q使得, A λ T P + PA λ = - Q 成立。The switching balance point x e is the three-phase command harmonic current and the reference voltage of the DC side, denoted as The command harmonic current is directly measured, and the reference voltage of the DC side is a given constant; according to the six working modes of the three-phase active power filter, there is A σ(t) ∈{A 1 ,A 2 ,A 3 , A 4 ,A 5 ,A 6 }; define the convex combination of the subsystem as where λ i ∈ Λ, If the convex combination A λ is a Hurwitz matrix, that is, A λ is stable, then there exist P and Q such that, A λ T P + PA λ = - Q established.

当步骤(2)所述的规则在实际工程应用中,为了提高有源电力滤波器对输出补偿电流的有效控制能力和过载能力,通常采用截断限流保护策略,使其安全运行,但是,在该策略中存在饱和非线性限制环节,该环节会使原本稳定系统失稳,因此根据李雅普诺夫稳定性理论以及凸域法,仅当所得正定对称阵P满足不等式When the rules described in step (2) are applied in practical engineering, in order to improve the effective control capability and overload capability of the output compensation current of the active power filter, the truncation current limiting protection strategy is usually adopted to make it operate safely. However, in There is a saturated nonlinear limitation link in this strategy, which will destabilize the originally stable system. Therefore, according to the Lyapunov stability theory and the convex domain method, only when The resulting positive definite symmetric matrix P satisfies the inequality

(( DD. ii AA &lambda;&lambda; ++ DD. ii -- GG )) TT PP ++ PP (( DD. ii AA &lambda;&lambda; ++ DD. ii -- GG )) << 00 ,, DD. ii &Element;&Element; DD. nno ,, ii == 11 ,, 22 ,, .. .. .. ,, 22 nno -- -- -- (( 1414 ))

时,有源电力滤波器可以在截断限流策略中稳定工作。When , the active power filter can work stably in the truncation current limiting strategy.

本发明的有益效果在于:The beneficial effects of the present invention are:

1)由于采用状态反馈的切换控制,实现了直流侧电压和电流补偿的统一控制,省去了单独的电压控制环节,从而使系统简单,避免了控制系统参数的整定。1) Due to the use of state feedback switching control, the unified control of DC side voltage and current compensation is realized, and a separate voltage control link is omitted, thereby making the system simple and avoiding the tuning of control system parameters.

2)饱和非线性限制的加入,解决了有源电力滤波器不具备对输出电流的过载抑制能力,同时引入的状态饱和稳定性设计,保证了系统的稳定性。2) The addition of the saturation nonlinear limit solves the problem that the active power filter does not have the ability to suppress the overload of the output current. At the same time, the introduction of the state saturation stability design ensures the stability of the system.

3)本发明不涉及复杂运算,控制算法简单,运行周期短。3) The present invention does not involve complicated calculation, the control algorithm is simple, and the operation period is short.

附图说明Description of drawings

图1为三相并联型有源电力滤波器的拓扑结构图;Figure 1 is a topological structure diagram of a three-phase parallel active power filter;

图2为有源电力滤波器的控制系统框图;Fig. 2 is a control system block diagram of an active power filter;

图3iL1,iL2及iL波形;Figure 3i L1 , i L2 and i L waveforms;

图4方式1下谐波参考电流及输出电流Figure 4 Mode 1 Harmonic reference current and output current

图5方式1下电网电流、直流侧电压波形;Figure 5 grid current and DC side voltage waveforms under Mode 1;

图6方式2下和ic波形;Figure 6 Mode 2 and ic waveform;

图7方式2下THD_iL,THD_is,电网电流和直流侧电压。Figure 7 THD_i L , THD_i s , grid current and DC side voltage under mode 2.

具体实施方式Detailed ways

下面结合附图与实例对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawings and examples.

三相APF的原理如图1所示。图中:L为三相滤波电感;C为直流侧电容;R为电感等值电阻;ej(j=a,b,c)为系统电源电压;vdc为直流电容电压;iLj是非线性负荷电流;isj为电源电流;icj为三相APF的补偿电流;令表示负载电流中的谐波分量和无功分量。三相APF的工作原理是通过控制6个开关器件S1~S6的通断,使补偿电流icj跟踪指令电流保证了电网侧只含有正弦有功分量;同时使直流侧电压vdc稳定于参考电压根据基尔霍夫定律,建立三相有源电力滤波器的电压电流方程:The principle of the three-phase APF is shown in Figure 1. In the figure: L is the three-phase filter inductor; C is the DC side capacitor; R is the equivalent resistance of the inductor; e j (j=a,b,c) is the system power supply voltage; v dc is the DC capacitor voltage; i Lj is the nonlinear load current; i sj is the power supply current; i cj is the compensation current of the three-phase APF; let Indicates the harmonic component and reactive component in the load current. The working principle of the three-phase APF is to make the compensation current icj track the command current by controlling the on-off of the six switching devices S 1 ~ S 6 It ensures that the grid side only contains sinusoidal active components; at the same time, the DC side voltage v dc is stabilized at the reference voltage According to Kirchhoff's law, the voltage and current equation of the three-phase active power filter is established:

ee aa == LL didi caca dtdt ++ RiRi caca ++ Uu anan ++ Uu nNn ee bb == LL didi cbcb dtdt ++ RiRi cbcb ++ Uu bnbn ++ Uu nNn ee cc == LL didi cccc dtdt ++ RiRi cccc ++ Uu cncn ++ Uu nNn -- -- -- (( 11 ))

didi cjcj dtdt == -- RR LL ii cjcj -- 11 LL (( pp jj -- 11 33 &Sigma;&Sigma; jj == aa ,, bb ,, cc pp jj )) vv dcdc ++ ee jj LL ,, jj == aa ,, bb ,, cc -- -- -- (( 22 ))

CC dvdv dcdc dtdt == &Sigma;&Sigma; jj == aa ,, bb ,, cc pp jj ii cjcj -- -- -- (( 33 ))

pj(j=a,b,c)表示j相开关状态,例如当S1闭合且S2断开,pa=1;否则S1断开S2闭合,pa=0。Sj(j=a,b,c)为开关函数,其定义如下:p j (j=a,b,c) represents the switching state of phase j, for example, when S 1 is closed and S 2 is open, p a =1; otherwise, S 1 is open and S 2 is closed, p a =0. S j (j=a,b,c) is a switching function, which is defined as follows:

SS jj == pp jj -- 11 33 &Sigma;&Sigma; jj == aa ,, bb ,, cc pp jj ,, jj == aa ,, bb ,, cc -- -- -- (( 44 ))

则状态方程(1)和(3)可写为:Then the state equations (1) and (3) can be written as:

didi caca dtdt didi cbcb dtdt didi cccc dtdt dvdv dcdc dtdt == -- RR LL 00 00 -- SS aa LL 00 -- RR LL 00 -- SS bb LL 00 00 -- RR LL -- SS cc LL pp aa CC pp bb CC pp cc CC 00 ii caca ii cbcb ii cccc vv dcdc ++ ee aa LL ee bb LL ee cc LL 00 -- -- -- (( 55 ))

对三相有源电力滤波器而言,不存在某一桥的上下桥臂均关断的情况,用pa,pb,pc对应6种开关组合,即:001、010、011、100、101、110,定义上述组合分别对应6种切换模态σ(t)∈N={1,2,…,6}。根据各工作模态的拓扑结构,式(5)的状态方程可写为:For a three-phase active power filter, there is no case where both the upper and lower bridge arms of a certain bridge are turned off, and pa, p b , and p c correspond to six switch combinations, namely: 001, 010, 011, 100 , 101, 110, define that the above combinations correspond to six switching modes σ(t)∈N={1,2,...,6} respectively. According to the topological structure of each working mode, the state equation of formula (5) can be written as:

xx &CenterDot;&CenterDot; == AA &sigma;&sigma; (( tt )) xx ++ BuBu -- -- -- (( 66 ))

式中,APF的状态向量x=[ica,icb,icc,vdc]T和输入向量u=[ea,eb,ec,0]T;A,B为APF工作模态的系数矩阵;其中Aσ(t)∈{A1,A2,A3,A4,A5,A6},对于输入矩阵B,其不受切换过程的影响,故保持不变;针对每一种开关组合,得到如的状态方程,其中:In the formula, APF state vector x=[i ca ,i cb ,i cc ,v dc ] T and input vector u=[e a ,e b ,e c ,0] T ; A and B are APF working modes coefficient matrix; where A σ(t) ∈{A 1 ,A 2 ,A 3 ,A 4 ,A 5 ,A 6 }, for the input matrix B, it is not affected by the switching process, so it remains unchanged; for For each switch combination, we get as The state equation of , where:

AA &sigma;&sigma; (( tt )) == -- RR LL 00 00 -- 11 LL (( pp aa -- 11 33 &Sigma;&Sigma; jj == aa ,, bb ,, cc pp jj )) 00 -- RR LL 00 -- 11 LL (( pp bb -- 11 33 &Sigma;&Sigma; jj == aa ,, bb ,, cc pp jj )) 00 00 -- RR LL -- 11 LL (( pp cc -- 11 33 &Sigma;&Sigma; jj == aa ,, bb ,, cc pp jj )) pp aa CC pp bb CC pp cc CC 00 ,, BB == -- 11 LL 00 00 00 00 -- 11 LL 00 00 00 00 -- 11 LL 00 00 00 00 00 -- -- -- (( 77 )) ..

系统(6)的切换平衡点xe,为三相指令谐波电流及直流侧参考电压,记为指令谐波电流可以直接测到,直流侧参考电压为一个给定的常量。当系统(6)处在切换平衡点xe时,则有:The switching balance point x e of the system (6) is the three-phase command harmonic current and the reference voltage of the DC side, denoted as The command harmonic current can be directly measured, and the reference voltage of the DC side is a given constant. When the system (6) is at the switching equilibrium point x e , then:

Aλxe+Bu=0    (8)A λ x e + Bu=0 (8)

三相APF的稳定工作过程中,直流侧指令电压为常量,指令谐波电流则是不断发生变化,因而对系统(6)来说其切换平衡点总是处于一个过渡过程;正是这些切换平衡点的不断变化构成了三相AFP的动态补偿。During the stable operation of the three-phase APF, the command voltage on the DC side is constant, and the command harmonic current is constantly changing, so the switching balance point of the system (6) is always in a transition process; it is these switching balance points The constant change of points constitutes the dynamic compensation of the three-phase AFP.

系统Lyapnov函数设为V(ξ)=ξTPξ,式中ξ=x-xe。如果凸组合Aλ是稳定的,则在P和Q使得The Lyapnov function of the system is set to V(ξ)=ξ T Pξ, where ξ=xx e . If the convex combination A λ is stable, then at P and Q such that

AA &lambda;&lambda; TT PP ++ PAPA &lambda;&lambda; == -- QQ -- -- -- (( 99 ))

则显然有V(ξ)>0(x≠xe)。那么:Then it is obvious that V(ξ)>0 (x≠x e ). So:

VV &CenterDot;&Center Dot; (( &xi;&xi; )) == xx &CenterDot;&Center Dot; TT P&xi;P&xi; ++ &xi;&xi; TT PP xx &CenterDot;&Center Dot; == 22 &xi;&xi; TT PP (( AA &sigma;&sigma; xx ++ BuBu )) -- -- -- (( 1010 ))

从式(10)出发,将有源电力滤波器的稳定控制问题转换为系统的镇定问题。通过设计合理的切换规则使得式(10)小于零。因此这里给出切换规则:Starting from formula (10), the stability control problem of the active power filter is transformed into the stability problem of the system. Formula (10) is less than zero by designing a reasonable switching rule. So here are the switching rules:

&sigma;&sigma; (( tt )) == argarg minmin ii &Element;&Element; NN &xi;&xi; TT PP (( AA ii xx ++ BuBu )) -- -- -- (( 1111 ))

那么式(10)将变为:Then formula (10) will become:

VV &CenterDot;&CenterDot; (( &xi;&xi; )) == minmin ii &Element;&Element; NN &xi;&xi; TT [[ Q&xi;Q&xi; ++ 22 PP (( AA ii xx ++ BuBu )) ]] -- &xi;&xi; TT Q&xi;Q&xi; == minmin ii &Element;&Element; NN [[ &xi;&xi; TT (( AA ii TT PP ++ PAPA ii ++ QQ )) &xi;&xi; ++ 22 &xi;&xi; TT PP (( AA ii xx ee ++ BuBu )) ]] -- &xi;&xi; TT Q&xi;Q&xi; minmin &lambda;&lambda; &Element;&Element; &Lambda;&Lambda; [[ &xi;&xi; TT (( AA &lambda;&lambda; TT PP ++ PAPA &lambda;&lambda; ++ QQ )) &xi;&xi; ++ 22 &xi;&xi; TT PP (( AA ii xx ee ++ BuBu )) ]] -- &xi;&xi; TT Q&xi;Q&xi; -- -- -- (( 1212 ))

将式(8)和式(9)代入式(12)可得:Substituting formula (8) and formula (9) into formula (12) can get:

VV &CenterDot;&CenterDot; (( &xi;&xi; )) &le;&le; -- &xi;&xi; TT Q&xi;Q&xi; -- -- -- (( 1313 ))

根据式(13)可知,切换规则σ(t)满足了系统在某个子系统运行时,Lyapnov函数导数始终为负值,即系统总是运行在为最小值的子系统;系统在切换平衡点是稳定的。According to formula (13), it can be seen that the switching rule σ(t) satisfies that when the system is running in a certain subsystem, the derivative of the Lyapnov function is always negative, that is, the system always runs in is the minimum subsystem; the system is stable at the switching equilibrium point.

图(2)为有源电力滤波器的控制框图。在截断限流补偿方式中,饱和非线性限制环节的加入,保证了有源电力滤波器安全运行不过流;但是它对原系统的影响也是相当大,甚至使系统产生极限环或新的平衡点等。因此在研究三相APF的切换控制时这种饱和非线性限制是不可忽略的。Figure (2) is the control block diagram of the active power filter. In the truncated current limiting compensation mode, the addition of the saturated nonlinear limiting link ensures the safe operation of the active power filter without overcurrent; however, it also has a considerable impact on the original system, and even causes the system to produce a limit cycle or a new equilibrium point wait. Therefore, this saturation nonlinear limitation cannot be ignored when studying the switching control of three-phase APF.

前面已设计出三相有源电力滤波器的切换规则,这里我们将利用Lyapunov稳定性定理以及凸域法,研究饱和非线性的切换稳定。当切换规则σ(t)中正定对称阵P,满足:The switching rule of the three-phase active power filter has been designed before, here we will use the Lyapunov stability theorem and the convex domain method to study the switching stability of saturated nonlinearity. When the positive definite symmetric matrix P in the switching rule σ(t) satisfies:

(( DD. ii AA &lambda;&lambda; ++ DD. ii -- GG )) TT PP ++ PP (( DD. ii AA &lambda;&lambda; ++ DD. ii -- GG )) << 00 ,, DD. ii &Element;&Element; DD. nno ,, ii == 11 ,, 22 ,, .. .. .. ,, 22 nno -- -- -- (( 1414 ))

式中,Dn是对角线为1或0的n阶对角阵的集合,含有2n个矩阵;令Di为Dn内一个矩阵,I为n阶单位阵。In the formula, D n is a set of n-order diagonal matrices whose diagonals are 1 or 0, containing 2 n matrices; let D i be a matrix in D n , I is a unit matrix of order n.

那么含有饱和非线性限制的有源电力滤波器将是渐近稳定的。Then the active power filter with saturated nonlinear limit will be asymptotically stable.

由于(14)式中存在未知的矩阵G,不能直接进行计算,为此这里给出了一种可行的计算方法:Since there is an unknown matrix G in formula (14), it cannot be directly calculated, so a feasible calculation method is given here:

步骤(1)选择Q>0,通过下面Lyapunov等式,求解正定对称阵P:Step (1) Select Q>0, and solve the positive definite symmetric matrix P through the following Lyapunov equation:

AA &lambda;&lambda; TT PP ++ PAPA &lambda;&lambda; == -- QQ

如有解,那么置循环次数k=0,转入下一步。If there is a solution, then set the number of cycles k=0 and go to the next step.

步骤(2)使用已得的P,求解如下不等式最优问题,得到矩阵G和α,其中α为变参量:Step (2) Use the obtained P to solve the following inequality optimization problem, and obtain the matrix G and α, where α is a variable parameter:

infinf GG &alpha;&alpha;

sthe s .. tt .. (( DD. ii AA &lambda;&lambda; ++ DD. ii -- GG )) TT PP ++ PP (( DD. ii AA &lambda;&lambda; ++ DD. ii -- GG )) << &alpha;P&alpha;P -- -- -- (( 1515 ))

hiGyi<0h i Gy i <0

i=1,2,…,ni=1,2,...,n

其中, in,

如果α<0或者对比上一次所得的α,即αk,如果有存在k>0和α>αk,转入步骤(4);否则置循环次数k=k+1,αk=α,其中αk为变参量第K次计算值,转入下一步。If α<0 or compare the α obtained last time, i.e. α k , if there is k>0 and α>α k , turn to step (4); otherwise set the number of cycles k=k+1, α k =α, Among them, α k is the Kth calculated value of the variable parameter, and it is transferred to the next step.

步骤(3)使用上一步的G,求解如下不等式最优问题得到P和α:Step (3) Use the G in the previous step to solve the following inequality optimization problem to obtain P and α:

infinf GG &alpha;&alpha;

sthe s .. tt .. (( DD. ii AA &lambda;&lambda; ++ DD. ii -- GG )) TT PP ++ PP (( DD. ii AA &lambda;&lambda; ++ DD. ii -- GG )) << &alpha;P&alpha;P

i=1,2,...,ni=1,2,...,n

P>0P>0

如果α<0或α>αk或者kmax满足时,转入步骤(4);否则置k=k+1,α=αk,返回步骤(2)。If α<0 or α>α k or k max is satisfied, turn to step (4); otherwise, set k=k+1, α=α k , and return to step (2).

步骤(4)如果α<0,那么系统大范围渐近稳定于平衡点,否则不能判断系统是否稳定。因此可以回到步骤(1)通过改变Q值,重新计算。Step (4) If α < 0, then the system is asymptotically stable at the equilibrium point in a large range, otherwise it cannot be judged whether the system is stable. So you can go back to step (1) and recalculate by changing the Q value.

附算例:Additional calculation example:

系统电压为327V/50Hz,R=0.5Ω,L=10mH,C=2200μF,直流侧参考电压APF的额定电流Imax=14A。控制系统的总体结构如图2所示。The system voltage is 327V/50Hz, R=0.5Ω, L=10mH, C=2200μF, DC side reference voltage The rated current I max of the APF is 14A. The overall structure of the control system is shown in Figure 2.

初始APF对整流桥进行谐波补偿,在0.5s时负载发生突变。APF的控制策略分别采用不考虑饱和非线性及考虑饱和非线性两种切换方式。设前者为方式1,后者为方式2。通过仿真,对这两种控制策略的补偿效果进行比较。The initial APF performs harmonic compensation to the rectifier bridge, and the load changes suddenly at 0.5s. The control strategy of APF adopts two switching modes without considering saturated nonlinearity and considering saturated nonlinearity respectively. Let the former be mode 1 and the latter be mode 2. Through simulation, the compensation effects of the two control strategies are compared.

负载突变后电网谐波电流增大,由于APF的自身容量的限制,需要根据额定容量对参考谐波进行抑制。图3中,iL1,iL2及iL分别为整流桥电流,加入的突变电流以及两者之和。图4和图5是在方式1下,APF的谐波参考电流、输出补偿电流、电网电流和直流侧电压波形。从图4和图5可知,饱和非线性限制环节的存在导致原本稳定的系统失稳,此时APF不仅不能补偿谐波电流,甚至对自身和电网造成巨大危害。The grid harmonic current increases after a sudden load change. Due to the limitation of the APF's own capacity, it is necessary to suppress the reference harmonics according to the rated capacity. In Fig. 3, i L1 , i L2 and i L are respectively the rectifier bridge current, the abrupt current added and the sum of the two. Figure 4 and Figure 5 are the harmonic reference current, output compensation current, grid current and DC side voltage waveforms of the APF in Mode 1. It can be seen from Figure 4 and Figure 5 that the existence of the saturated nonlinear limiting link leads to the instability of the originally stable system. At this time, the APF not only cannot compensate the harmonic current, but even causes great harm to itself and the power grid.

图6和图7是加入状态饱和系统稳定性分析后所得的仿真波形。其中,分别为原参考电流和经限值处理后的参考电流,ic为APF实际输出补偿电流,THD_iL和THD_is为负载侧和电网侧的电流总畸变率,is为电网侧电流,vdc为直流侧电压波形。比较图4和图6,以及图5和图7,通过采用基于状态饱和的切换控制策略,三相APF可以有效的补偿电网中谐波电流。Figure 6 and Figure 7 are the simulation waveforms obtained after adding state saturation system stability analysis. in, and are the original reference current and the reference current after limit value processing, i c is the actual output compensation current of APF, THD_i L and THD_i s are the total current distortion rate of load side and grid side, i s is the grid side current, v dc is the DC side voltage waveform. Comparing Figure 4 and Figure 6, and Figure 5 and Figure 7, by adopting the switching control strategy based on state saturation, the three-phase APF can effectively compensate the harmonic current in the power grid.

Claims (4)

1. A saturation switching control method of a three-phase parallel active power filter is characterized by comprising the following steps:
step 1) firstly analyzing the topological structure of each working mode of the three-phase parallel active power filter, and establishing a switching system model of the three-phase active power filter according to actual circuit parametersWherein A isσ(t)Coefficient matrix of active power filter working mode, B is input matrix and is constantThe two matrixes are determined by actual circuit parameters, x is a state vector and consists of output compensation current and direct-current side voltage of a three-phase parallel active power filter, and u is an input vector and consists of system power supply voltage;
step 2) switching system model for three-phase active power filterDesigning a switching rule sigma (t) of the model to ensure that the system is gradually stabilized at a switching balance point, namely realizing the uniform control of voltage stabilization and current tracking of the three-phase active power filter; firstly, a public Lyapunov function V (xi) ═ xi of the system is calculated according to a method of a linear system theoryTPξ,(ξ=x-xe),xeFor switching balance points of the system, i.e. solvingWherein Q is a matrix of units and Q is a unit,according to the Lyapunov function switching ruleWherein arg represents a subscript;
Aλis a Hurwitz matrix and is a Hurwitz matrix, <math> <mrow> <msub> <mi>A</mi> <mi>&lambda;</mi> </msub> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </msubsup> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>,</mo> </mrow> </math> λi∈(0,1), <math> <mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>6</mn> </msubsup> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>;</mo> </mrow> </math>
and 3) controlling the on-off of a switch of the three-phase active power filter according to the control rule obtained by the method, so as to realize the compensation of the harmonic current of the power grid.
2. The saturation switching control method of the three-phase parallel active power filter as claimed in claim 1, wherein the specific steps of the step 1) are:
according to the operating principle of three-phase APF, i.e. by controlling 6 switching devices S1~S6Make and break of (d) to make the compensating current icjTracking command currentThe power grid side is ensured to only contain sine active components; simultaneously make the DC side capacitor voltage vdcStabilized at a reference voltage
Establishing a voltage-current equation of the three-phase active power filter based on kirchhoff's law:
e a = L di ca dt + Ri ca + U an + U nN e b = L di cb dt + Ri cb + U bn + U nN e c = L di cc dt + Ri cc + U cn + U nN - - - ( 1 )
<math> <mrow> <mfrac> <msub> <mi>di</mi> <mi>cj</mi> </msub> <mi>dt</mi> </mfrac> <mo>=</mo> <mo>-</mo> <mfrac> <mi>R</mi> <mi>L</mi> </mfrac> <msub> <mi>i</mi> <mi>cj</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <munder> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mrow> </munder> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>v</mi> <mi>dc</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>e</mi> <mi>j</mi> </msub> <mi>L</mi> </mfrac> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>C</mi> <mfrac> <msub> <mi>dv</mi> <mi>dc</mi> </msub> <mi>dt</mi> </mfrac> <mo>=</mo> <munder> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mrow> </munder> <msub> <mi>p</mi> <mi>j</mi> </msub> <msub> <mi>i</mi> <mi>cj</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
pj(j ═ a, b, c) represents the j-phase switching state, and L is the three-phase filter inductance; c is a direct current side capacitor; r is an inductance equivalent resistance; e.g. of the typej(j ═ a, b, c) is the system supply voltage; v. ofdcIs the DC side capacitor voltage; i.e. icjA compensation current for a three-phase APF; order toRepresenting harmonic and reactive components in the load current; u shapejn(j ═ a, b, c) is the voltage between j phase and n point; u shapenNIs the voltage between N and the neutral point N;
definition of Sj(j ═ a, b, c) is a switching function, defined as follows:
<math> <mrow> <msub> <mi>S</mi> <mi>j</mi> </msub> <mo>=</mo> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <munder> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mrow> </munder> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
then equations of state (1) and (3) are written as:
di ca dt di cb dt di cc dt dv dc dt = - R L 0 0 - S a L 0 - R L 0 - S b L 0 0 - R L - S c L p a C p b C p c C 0 = i ca i cb i cc v dc + e a L e b L e c L 0 - - - ( 5 )
for three-phase active power filter, the upper and lower bridge arms of a bridge are not turned off, and p is useda,pb,pcCorresponding to 6 switch combinations, namely: 001. 010, 011, 100, 101, and 110, defining the combinations corresponding to 6 switching modes σ (t) ∈ N ═ 1,2, …, and 6, respectively; according to the topological structure of each working mode, the state equation of formula (5) is written as:
<math> <mrow> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mi>&sigma;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msub> <mi>x</mi> <mo>+</mo> <mi>Bu</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, the state vector x of APF is ═ ica,icb,icc,vdc]TAnd the input vector u ═ ea,eb,ec,0]T(ii) a A and B are coefficient matrixes of APF working modes; wherein A isσ(t)∈{A1,A2,A3,A4,A5,A6For the input matrix B, the input matrix is not influenced by the switching process and is kept unchanged; for each switch combination, getWherein:
<math> <mrow> <msub> <mi>A</mi> <mrow> <mi>&sigma;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <mi>R</mi> <mi>L</mi> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>a</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <munder> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mrow> </munder> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <mi>R</mi> <mi>L</mi> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>b</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <munder> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mrow> </munder> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <mi>R</mi> <mi>L</mi> </mfrac> </mtd> <mtd> <mo>-</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>c</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <munder> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> </mrow> </munder> <msub> <mi>p</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mi>p</mi> <mi>a</mi> </msub> <mi>C</mi> </mfrac> </mtd> <mtd> <mfrac> <msub> <mi>p</mi> <mi>b</mi> </msub> <mi>C</mi> </mfrac> </mtd> <mtd> <mfrac> <msub> <mi>p</mi> <mi>c</mi> </msub> <mi>C</mi> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>B</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <mn>1</mn> <mi>L</mi> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
3. the saturation switching control method of the three-phase parallel active power filter as claimed in claim 2, wherein the specific steps of the step 2) are:
handoverBalance point xeThree-phase command harmonic current and DC-side reference voltage, are recorded asThe harmonic current is directly detected, and the reference voltage at the direct current side is a given constant; according to 6 working modes of the three-phase active power filter, A is providedσ(t)∈{A1,A2,A3,A4,A5,A6}; defining convex combinations of subsystems asWherein λi∈Λ,If convex combination AλIs a Hurwitz matrix, i.e. AλIs stable, then P and Q are present such that, <math> <mrow> <msubsup> <mi>A</mi> <mi>&lambda;</mi> <mi>T</mi> </msubsup> <mi>P</mi> <mo>+</mo> <msub> <mi>PA</mi> <mi>&lambda;</mi> </msub> <mo>=</mo> <mo>-</mo> <mi>Q</mi> </mrow> </math> this is true.
4. The saturation switching control method of three-phase parallel active power filter as claimed in claim 1, wherein when the rule of step (2) is applied in practical engineering, the active power filter operates stably in the cut-off current-limiting strategy, in order to improve the effective control capability and overload capability of the active power filter to the output compensation current, the cut-off current-limiting protection strategy is usually adopted to make it operate safely, but there is a saturation non-linear restriction link in the strategy, which will destabilize the original stable system, therefore according to the Lyapunov stability theory and the convex domain method, only when the current is in the cut-off current-limiting protection strategy, the current is only stableThe positive definite symmetric array P satisfies the inequality:
<math> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mi>i</mi> </msub> <msub> <mi>A</mi> <mi>&lambda;</mi> </msub> <mo>+</mo> <msubsup> <mi>D</mi> <mi>i</mi> <mo>-</mo> </msubsup> <mi>G</mi> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mi>P</mi> <mo>+</mo> <mi>P</mi> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mi>i</mi> </msub> <msub> <mi>A</mi> <mi>&lambda;</mi> </msub> <mo>+</mo> <msubsup> <mi>D</mi> <mi>i</mi> <mo>-</mo> </msubsup> <mi>G</mi> <mo>)</mo> </mrow> <mo>&lt;</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>D</mi> <mi>i</mi> </msub> <mo>&Element;</mo> <msub> <mi>D</mi> <mi>n</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msup> <mn>2</mn> <mi>n</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
when the active power filter is in the cutoff current-limiting strategy, the active power filter works stably;
wherein D isnIs a set of n-order diagonal arrays with 1 or 0 diagonal, containing 2nA matrix; let DiIs DnThe matrix is a matrix of a plurality of matrices,i is an n-order unit array; g is an unknown matrix.
CN201310182664.XA 2013-05-16 2013-05-16 Saturated switching control method for three-phase parallel active power filter Expired - Fee Related CN103248052B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310182664.XA CN103248052B (en) 2013-05-16 2013-05-16 Saturated switching control method for three-phase parallel active power filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310182664.XA CN103248052B (en) 2013-05-16 2013-05-16 Saturated switching control method for three-phase parallel active power filter

Publications (2)

Publication Number Publication Date
CN103248052A CN103248052A (en) 2013-08-14
CN103248052B true CN103248052B (en) 2015-04-08

Family

ID=48927359

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310182664.XA Expired - Fee Related CN103248052B (en) 2013-05-16 2013-05-16 Saturated switching control method for three-phase parallel active power filter

Country Status (1)

Country Link
CN (1) CN103248052B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618314B (en) * 2013-12-18 2016-05-18 济南大学 A kind of control method of three phase active electric power filter of new consideration saturation limiting
CN105244882A (en) * 2015-11-13 2016-01-13 湖南大学 Compensation method of three-phase three-wire system active power filter for power grid harmonic current
CN106684874B (en) * 2017-03-15 2019-12-27 河南理工大学 Specific subharmonic optimization compensation method for active power filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4328241B2 (en) * 2004-02-26 2009-09-09 東京電力株式会社 Active filter for power
CN202050244U (en) * 2011-05-20 2011-11-23 江西中能电气科技有限公司 Parallel type active power filter
CN102611108B (en) * 2012-03-09 2014-04-16 湖南大学 Three-level three-phase four-wire active power filter and control method thereof
CN102832621B (en) * 2012-09-18 2015-04-01 河海大学常州校区 Adaptive RBF (radial basis function) neural network control technique for three-phase parallel active filters

Also Published As

Publication number Publication date
CN103248052A (en) 2013-08-14

Similar Documents

Publication Publication Date Title
CN104953875B (en) A kind of repetition sliding-mode control of off-network inverter
Yan et al. A study on MMC model and its current control strategies
CN104052059A (en) Active Power Filter Control Method Based on Fuzzy Neural Network PID
CN107908829A (en) Onboard electric systems method for analyzing stability based on unified large-signal model
Kececioglu et al. Advanced configuration of hybrid passive filter for reactive power and harmonic compensation
CN105958515A (en) Fixed time dynamic surface high-order sliding-mode suppression method for chaotic oscillation of power system
CN103441507A (en) Control method of cascade STATCOM on unbalanced working condition
CN103248052B (en) Saturated switching control method for three-phase parallel active power filter
CN106505563A (en) A Method for Resilience Evaluation of Grid-connected Converter under Grid Fault
CN103973143B (en) A kind of control method suppressing three level grid-connected inverter Neutral-point Potential Fluctuations
CN108233397A (en) A kind of control method and system of photovoltaic generation power oscillation damping
Yang et al. Wideband dissipativity enhancement for grid-following VSC utilizing capacitor voltage feedforward
CN104037766B (en) Method for self-adaptive neural inversion control of three-phase parallel connection type active filter
CN103715704A (en) Micro electrical network common bus voltage imbalance inhibition method
CN103515961A (en) Three-phase four-switch APF switching control method based on Lyapunov
CN103457501A (en) SVG modulating method based on PAM+PWM cascading multi-level inverter
CN105515004B (en) A kind of APF harmonic detection and instruction modification method
CN105449678A (en) Power filter control method based on Lyapunov
CN106684874B (en) Specific subharmonic optimization compensation method for active power filter
CN106374490B (en) Control Method of Active Power Filter based on dynamic surface fuzzy sliding mode tracking control
Tomy et al. Power quality improvement strategy for non-linear load in single phase system
CN109361227A (en) A system for optimizing inverter power quality based on LADRC
Huaisheng et al. A novel double hysteresis current control method for active power filter
CN103618314B (en) A kind of control method of three phase active electric power filter of new consideration saturation limiting
Liu et al. An improved active damping control in grid-connected converter system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: STATE GRID CORPORATION OF CHINA

Free format text: FORMER OWNER: JINAN UNIVERSITY

Effective date: 20140808

Owner name: JINAN UNIVERSITY HEZE POWER SUPPLY COMPANY STATE G

Effective date: 20140808

C41 Transfer of patent application or patent right or utility model
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Cheng Xingong

Inventor after: Wang Chengyou

Inventor after: Ren Hongwei

Inventor after: Wang Yuzhen

Inventor after: Shao Zhenzhen

Inventor after: Yu Mingzhu

Inventor after: Ding Dongrui

Inventor after: Chen Zaojun

Inventor after: Zhang Qinghua

Inventor after: Zhang Busheng

Inventor after: Ou Zhujian

Inventor after: Zong Xiju

Inventor after: Zhang Menghua

Inventor after: Pei Xinghua

Inventor after: Zhang Jingliang

Inventor after: Hou Guangsong

Inventor after: Bai Wanjian

Inventor after: Xu Ke

Inventor after: Yin Wenyue

Inventor after: Li Shiqing

Inventor before: Cheng Xingong

Inventor before: Ou Zhujian

Inventor before: Zhang Menghua

Inventor before: Zong Xiju

Inventor before: Pei Xinghua

Inventor before: Zhang Jingliang

Inventor before: Hou Guangsong

Inventor before: Bai Wanjian

Inventor before: Chen Zaojun

Inventor before: Zhang Qinghua

Inventor before: Zhang Busheng

COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 250022 JINAN, SHANDONG PROVINCE TO: 100031 XICHENG, BEIJING

Free format text: CORRECT: INVENTOR; FROM: CHENG XINGONG ZONG XIJU PEI XINGHUA ZHANG JINGLIANG HOU GUANGSONG BAI WANJIAN CHEN ZAOJUN ZHANG QINGHUA ZHANG BUSHENG OU ZHUJIAN ZHANG MENGHUA TO: CHENG XINGONG ZONG XIJU PEI XINGHUA ZHANG JINGLIANG HOU GUANGSONG BAI WANJIAN XU KE YIN WENYUE LI SHIQING WANG CHENGYOU REN HONGWEI WANG YUZHEN SHAO ZHENZHEN YU MINGZHU DING DONGRUI CHEN ZAOJUN ZHANG QINGHUA ZHANG BUSHENG OU ZHUJIAN ZHANG MENGHUA

TA01 Transfer of patent application right

Effective date of registration: 20140808

Address after: 100031 Xicheng District West Chang'an Avenue, No. 86, Beijing

Applicant after: State Grid Corporation of China

Applicant after: University of Jinan

Applicant after: Heze Power Supply Company, State Grid Shandong Electric Power Co., Ltd.

Address before: Ji'nan City Central Jiwei Road No. 106 of 250022 cities in Shandong Province

Applicant before: University of Jinan

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150408

Termination date: 20200516

CF01 Termination of patent right due to non-payment of annual fee