CN103245729B - Detection method and device for internal defects of welding seams - Google Patents
Detection method and device for internal defects of welding seams Download PDFInfo
- Publication number
- CN103245729B CN103245729B CN201310176780.0A CN201310176780A CN103245729B CN 103245729 B CN103245729 B CN 103245729B CN 201310176780 A CN201310176780 A CN 201310176780A CN 103245729 B CN103245729 B CN 103245729B
- Authority
- CN
- China
- Prior art keywords
- ultrasonic
- probe
- weld
- weld seam
- metal welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000007547 defect Effects 0.000 title claims abstract description 54
- 238000001514 detection method Methods 0.000 title claims abstract description 50
- 238000003466 welding Methods 0.000 title claims abstract description 42
- 238000012360 testing method Methods 0.000 claims abstract description 49
- 239000000523 sample Substances 0.000 claims abstract description 42
- 230000008878 coupling Effects 0.000 claims abstract description 11
- 238000010168 coupling process Methods 0.000 claims abstract description 11
- 238000005859 coupling reaction Methods 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims abstract description 10
- 239000013078 crystal Substances 0.000 claims description 19
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 3
- 238000013016 damping Methods 0.000 claims description 3
- 230000002950 deficient Effects 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 2
- 239000004576 sand Substances 0.000 claims description 2
- 238000004021 metal welding Methods 0.000 claims 14
- 238000002604 ultrasonography Methods 0.000 claims 6
- 238000005498 polishing Methods 0.000 claims 3
- 244000137852 Petrea volubilis Species 0.000 claims 2
- 239000011324 bead Substances 0.000 claims 2
- 238000004140 cleaning Methods 0.000 claims 2
- 239000002245 particle Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 12
- 230000001066 destructive effect Effects 0.000 abstract description 4
- 238000010835 comparative analysis Methods 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 description 34
- 239000002184 metal Substances 0.000 description 34
- 238000010586 diagram Methods 0.000 description 13
- 229910000853 7075 T6 aluminium alloy Inorganic materials 0.000 description 10
- 229910045601 alloy Inorganic materials 0.000 description 10
- 239000000956 alloy Substances 0.000 description 10
- 238000002592 echocardiography Methods 0.000 description 6
- 238000009659 non-destructive testing Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 2
- 239000006249 magnetic particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
本发明公开了一种焊缝内部缺陷的检测方法和装置,首先建立典型的超声波回波特征与对应的焊缝截面金相组织的对应关系,然后在焊接试块的表面进行超声波检测,通过检测的超声波回波特征与特征波形库峰度系数比对分析来判断焊缝内部是否有缺陷.实施该方法的装置包括依次连接的试验台、待测试块、超声波探伤仪、探头、耦合液组成的试块超声波检测装置和安装MATLAB软件的PC机系统。本发明技术方案简单、快捷、有效,可应用于焊缝缺陷的无损检测。
The invention discloses a detection method and device for internal defects of a weld. Firstly, the corresponding relationship between the typical ultrasonic echo characteristics and the corresponding metallographic structure of the weld cross-section is established, and then the ultrasonic detection is performed on the surface of the welding test block. The comparative analysis of the ultrasonic echo characteristics and the characteristic waveform library kurtosis coefficient is used to determine whether there is a defect inside the weld. The device for implementing this method includes a sequentially connected test bench, a block to be tested, an ultrasonic flaw detector, a probe, and a coupling liquid. Test block ultrasonic testing device and PC system with MATLAB software installed. The technical scheme of the invention is simple, fast and effective, and can be applied to the non-destructive detection of welding seam defects.
Description
技术领域 technical field
本发明涉及无损检测领域,具体涉及焊缝缺陷的无损检测。 The invention relates to the field of non-destructive testing, in particular to the non-destructive testing of welding seam defects.
背景技术 Background technique
目前焊缝质量的无损检测方法主要有磁粉检测法、射线检测法、电磁涡流法、渗透检测法以及超声探伤检测法。磁粉检测法观察缺陷直观快速,能确定缺陷的大小、范围和形状,具有比较高的灵敏度,但只适用于铁磁性材料,;射线检测法能直观的显示缺陷的影像,便于定性、定量分析;电磁涡流法检测速度快,对近表面缺陷有较高的灵敏度,能在高温状态下进行探伤,可用于异形材料和小零件检测;渗透检测法使用方法简单,成本低廉、现实直观、检测灵敏度高,但是只能检出零件表面开口缺陷,不适用于多孔性材料的检测,且污染材料;超声探伤检测方法,它相比以上几种检测方法而言,具有灵敏度高、指向性好、穿透力强、检测速度快、对人体没有伤害以及对试件和环境没有污染,能对缺陷进行定位和定量,适用范围广,且基于超声波的检测方法广泛应用于工业生产,医疗卫生、国防科技等领域,技术成熟。 At present, the non-destructive testing methods for weld quality mainly include magnetic particle testing, radiographic testing, electromagnetic eddy current testing, penetrant testing and ultrasonic flaw testing. The magnetic particle detection method is intuitive and quick to observe the defect, and can determine the size, range and shape of the defect. It has relatively high sensitivity, but it is only suitable for ferromagnetic materials. The ray detection method can intuitively display the image of the defect, which is convenient for qualitative and quantitative analysis; The electromagnetic eddy current method has a fast detection speed, has high sensitivity to near-surface defects, can detect flaws at high temperatures, and can be used for the detection of special-shaped materials and small parts; the penetrant detection method is simple to use, low in cost, realistic and intuitive, and has high detection sensitivity , but it can only detect opening defects on the surface of parts, it is not suitable for the detection of porous materials, and the materials are contaminated; ultrasonic flaw detection detection method, compared with the above detection methods, it has high sensitivity, good directivity, penetrating Strong force, fast detection speed, no harm to the human body and no pollution to the test piece and the environment, can locate and quantify defects, and has a wide range of applications, and the detection method based on ultrasonic is widely used in industrial production, medical and health, national defense technology, etc. field, the technology is mature.
超声波用于研究物体内部结构的方法开始于1930年,到1944年和1946年,分别在美国和英国研制成功脉冲反射式超声波探伤仪,随后超声波探伤广泛进入工业检测领域,成为一种重要的无损检测方法。超声波探伤主要是通过测量信号往返于缺陷的赌约时间的,来确定缺陷和表面间的距离,测量回波信号的幅度和发射换能器的位置来确定缺陷的大小和位置。超声波的声速、衰减、阻抗和散射等特性,为超声波的应用提供了丰富的信息,并成为其广泛应用的条件 The method of using ultrasonic waves to study the internal structure of objects began in 1930. By 1944 and 1946, the pulse reflection ultrasonic flaw detector was successfully developed in the United States and the United Kingdom, and then ultrasonic flaw detection widely entered the field of industrial testing and became an important non-destructive method. Detection method. Ultrasonic flaw detection is mainly to determine the distance between the defect and the surface by measuring the time for the signal to go back and forth to the defect, and to determine the size and position of the defect by measuring the amplitude of the echo signal and the position of the transmitting transducer. The characteristics of ultrasonic sound velocity, attenuation, impedance and scattering provide a wealth of information for the application of ultrasonic waves and become the conditions for its wide application
激光焊接具有能量高度集中,加热冷却过程极其迅速,焊缝深宽比大,可实现高精密防污染的真空环境焊接,还能适用于其他许多传统焊接工艺方法无法完成的技术场合。在高档汽车车身与底座、飞机机翼、航天器等一些特种材料和微小接触点的焊接中,激光焊接正在取代传统的焊接。激光焊接主要分为热导焊和深熔焊两种,前者的激光功率密度等级为105W/cm2,深熔焊的功率密度等级为106W/cm2。 Laser welding has high energy concentration, extremely rapid heating and cooling process, and large depth-to-width ratio of weld seam, which can realize high-precision and anti-pollution vacuum environment welding, and can also be applied to many other technical occasions that cannot be completed by traditional welding methods. In the welding of some special materials and tiny contact points such as high-end automobile body and base, aircraft wing, and spacecraft, laser welding is replacing traditional welding. Laser welding is mainly divided into heat conduction welding and deep penetration welding. The laser power density level of the former is 10 5 W/cm 2 , and the power density level of deep penetration welding is 10 6 W/cm 2 .
发明内容 Contents of the invention
本发明的主要目的是提供一种焊缝内部缺陷的检测方法和装置,提供简单快捷有效的焊接件内部缺陷的无损检测技术。 The main purpose of the present invention is to provide a method and device for detecting internal defects of welds, and provide a simple, fast and effective non-destructive detection technology for internal defects of welded parts.
为了解决以上技术问题,本发明采用的技术方案如下: In order to solve the above technical problems, the technical scheme adopted in the present invention is as follows:
一种焊缝内部缺陷的检测方法,特征在于首先建立典型的超声波回波特征与对应的焊缝截面金相组织的对应关系,然后在焊接试块的表面进行超声波检测,通过检测的超声波回波特征来判断焊缝内部是否有缺陷,具体步骤如下: A method for detecting internal defects of a weld, characterized in that firstly establishing the corresponding relationship between typical ultrasonic echo features and the metallographic structure of the corresponding weld cross-section, and then performing ultrasonic testing on the surface of the welding test block, and passing the detected ultrasonic echo Features to judge whether there is a defect inside the weld, the specific steps are as follows:
(1) 用砂纸将厚度尺寸为5 mm~15 mm之间的金属焊接件表面打磨平整,并用丙酮清洗打磨表面,以去除氧化膜、污垢、毛刺等杂物; (1) Use sandpaper to polish the surface of metal welded parts with a thickness between 5 mm and 15 mm, and clean the polished surface with acetone to remove oxide film, dirt, burrs and other sundries;
(2) 设置超声波探伤仪参数,分别设置扫描方式、探头角度、探头类型(单晶或者双晶探头)、探头频率、阻尼大小、扫描范围,延迟时间、检波模式、脉冲类型等,其次准备好偶合液; (2) Set the parameters of the ultrasonic flaw detector, respectively set the scanning mode, probe angle, probe type (single crystal or dual crystal probe), probe frequency, damping size, scanning range, delay time, detection mode, pulse type, etc., and then prepare coupling liquid;
(3) 对超声波探伤仪探头进行校准,获得超声波在金属焊接件中的传播速度;此时,用超声波在金属焊接件中的传播速度和金属焊接件的厚度,计算出超声波在试块中传播时间; (3) Calibrate the probe of the ultrasonic flaw detector to obtain the propagation speed of the ultrasonic wave in the metal welded part; at this time, use the propagation speed of the ultrasonic wave in the metal welded part and the thickness of the metal welded part to calculate the propagation speed of the ultrasonic wave in the test block time;
(4) 采用双晶直探头对试块进行探伤,将探头放在试块上面,利用超声波探伤仪对焊接试块焊缝区域进行探伤,获得金属焊接件的超声波波形图,并记录测量位置; (4) Use double-crystal straight probes to detect flaws on the test block, place the probes on the test block, use an ultrasonic flaw detector to detect flaws in the weld area of the welded test block, obtain the ultrasonic waveform diagram of the metal welded part, and record the measurement position;
(5) 采用线切割沿测量各处垂直于焊缝切割,获得的焊缝横截面先用由粗到细颗粒的砂纸依次对垂直于焊缝的侧面进行打磨;用丙酮清洗打磨后的表面,除去表面的氧化膜、污垢、毛刺等杂物,按照标准金相试样制备工序对焊缝横截面用砂纸打磨、抛光、镶嵌,放于激光共聚焦显微镜下拍摄焊缝截面图; (5) Use wire cutting to cut perpendicular to the weld along the measurement points, and firstly grind the side perpendicular to the weld with sandpaper from coarse to fine grains to obtain the cross-section of the weld; clean the polished surface with acetone, Remove oxide film, dirt, burrs and other sundries on the surface, sand, polish and inlay the cross-section of the weld seam according to the standard metallographic sample preparation process, and put it under a laser confocal microscope to take a cross-sectional view of the weld seam;
(6) 利用经验波形分析法,对波形图进行分析,建立典型的超声波回波特征与对应的焊缝截面金相组织的对应关系,获得典型焊缝内部结构的超声波回波特征;利用超声波探伤仪对其他金属焊接件进行探伤,根据探伤精度需要,沿金属焊接件焊缝方向等距检测,获得焊接试块沿焊缝方向的波形图集合,与典型缺陷焊缝内部结构的超声波回波特征对比分析,判断金属焊接件的焊缝是否存在缺陷。 (6) Use the empirical waveform analysis method to analyze the waveform diagram, establish the corresponding relationship between the typical ultrasonic echo characteristics and the corresponding weld section metallographic structure, and obtain the ultrasonic echo characteristics of the internal structure of the typical weld; use ultrasonic flaw detection The instrument performs flaw detection on other metal welded parts. According to the requirements of flaw detection accuracy, it detects equidistantly along the weld seam direction of the metal welded parts, and obtains the waveform diagram collection of the welding test block along the weld seam direction, and the ultrasonic echo characteristics of the internal structure of the typical defect weld seam. Comparative analysis to determine whether there are defects in the weld of the metal weldment.
所述经验波形分析法是指通过对超声波的第一次、第二次和第三次回波的波幅和脉宽,超声波在有缺陷的试块中传播特性以及接收波频率实质上是衰减值的一个表征来判断焊缝质量和缺陷类型的。 The empirical waveform analysis method refers to the amplitude and pulse width of the first, second and third echoes of the ultrasonic wave, the propagation characteristics of the ultrasonic wave in the defective test block and the frequency of the received wave are essentially the attenuation value A characterization to judge weld quality and defect type.
所述的金属焊接件为同种金属材料。 The metal welds are of the same metal material.
所述典型超声波回波特征是用以时间为采样点的幅值计算得出的峰度系数特征值KU来表征,KU是时间采样点幅值的统计学数值,由MATLAB手段计算得出。 The typical ultrasonic echo feature is characterized by the kurtosis coefficient eigenvalue KU calculated by taking time as the amplitude of the sampling point, and KU is the statistical value of the amplitude of the time sampling point, calculated by means of MATLAB.
将待检测金属焊接件的波形峰度系数与特征波形库进行的峰度系数比对分析,判别是否与典型超声波回波特征相符,从而确定是否存在缺陷。 Compare and analyze the waveform kurtosis coefficient of the metal weldment to be detected with the kurtosis coefficient of the characteristic waveform library to determine whether it is consistent with the typical ultrasonic echo characteristics, so as to determine whether there is a defect.
所述金属焊接件厚度尺寸确定是根据超声探头的聚焦范围为参考,在聚焦范围之内。 The thickness dimension of the metal weldment is determined based on the focus range of the ultrasonic probe as a reference, within the focus range.
一种实现所述焊缝内部缺陷的检测方法的装置,其特征在于:包括试验工作台1、位于试验工作台1上的金属焊接件2、检测系统;所述的检测系统包括安装MATLAB软件的PC机系统10、超声波探伤仪9、耦合液3、双晶直探头4、超声波回波5、位于金属焊接件2上的焊缝6、焊接区域7和热影响区8;其中双晶直探头是双晶纵波探头,探头同时为发射探头和接收探头,既发射超声脉冲,又接收超声脉冲,双晶直探头和金属焊接件之间是采用通用耦合液进行耦合。 A device for realizing the detection method of the internal defects of the weld is characterized in that: it includes a test bench 1, a metal weldment 2 positioned on the test bench 1, and a detection system; the detection system includes a software for installing MATLAB software. PC system 10, ultrasonic flaw detector 9, coupling liquid 3, double crystal straight probe 4, ultrasonic echo 5, weld 6 on metal weldment 2, welding area 7 and heat affected zone 8; among them, double crystal straight probe It is a dual-crystal longitudinal wave probe. The probe is both a transmitting probe and a receiving probe. It not only transmits ultrasonic pulses, but also receives ultrasonic pulses. The dual-crystal straight probe and the metal weldment are coupled by a universal coupling liquid.
本发明具有原理创新和技术创新,根据特定材料金属焊接件建立典型的超声波回波特征与对应的焊缝截面金相组织的对应关系,获得典型缺陷焊缝内部结构的超声波回波特征,然后根据探伤精度需要,沿金属焊接件焊缝方向等距检测,获得焊接试块沿焊缝方向的波形图集合,与典型缺陷焊缝内部结构的超声波回波特征对比分析,判断金属焊接件的焊缝是否存在缺陷,即无损探伤和焊缝截面金相组织相关联,可以获得金属焊接件焊缝内部微观结构特征,形成一种新的超声波回波无损检测新原理和技术。 The present invention has principle innovation and technological innovation, establishes the corresponding relationship between the typical ultrasonic echo characteristics and the corresponding weld section metallographic structure according to the metal weldment of specific materials, obtains the ultrasonic echo characteristics of the internal structure of the typical defect weld, and then according to Flaw detection accuracy needs to be detected equidistantly along the direction of the weld of the metal weldment, and the waveform diagram collection of the welding test block along the direction of the weld is obtained, compared with the ultrasonic echo characteristics of the internal structure of the typical defect weld, and the weld of the metal weldment is judged Whether there is a defect, that is, the non-destructive testing is associated with the metallographic structure of the weld section, and the internal microstructure characteristics of the metal welded part weld can be obtained, forming a new principle and technology of ultrasonic echo non-destructive testing.
本发明具有有益效果。本发明基于超声波回波探伤焊缝内部缺陷的检测方法,是在获得特定材料金属焊接件典型缺陷焊缝内部结构的超声波回波特征的基础上沿金属焊接件焊缝方向进行无损探伤的新方法,是现有金属焊接件内部缺陷检测方法的一种补充,采用超声波对对接焊试块进行探伤,简单容易操作,具有灵敏度高、指向性好、穿透力强、检测速度快、对人体没有伤害以及对试件和环境没有污染。 The invention has beneficial effects. The invention is based on the detection method of ultrasonic echo flaw detection weld internal defects, which is a new method for non-destructive flaw detection along the direction of the weld seam of the metal weldment on the basis of obtaining the ultrasonic echo characteristics of the internal structure of the typical defect weld of the metal weldment of a specific material , is a supplement to the existing internal defect detection method of metal welded parts. Ultrasonic is used to detect the flaws of the butt welding test block. It is simple and easy to operate, with high sensitivity, good directivity, strong penetration, fast detection speed, and no harm to the human body. damage and no pollution to the specimen and the environment.
附图说明 Description of drawings
图1为金属对接焊试块的超声波检测装置 Figure 1 is the ultrasonic testing device for the metal butt welding test block
图2为7075-T6铝合金激光对接焊焊缝内部无缺陷的焊缝截面图 Figure 2 is a cross-sectional view of the weld without defects inside the 7075-T6 aluminum alloy laser butt welding weld
图3为7075-T6铝合金激光对接焊焊缝内部无缺陷的超声波波形图 Fig. 3 is the ultrasonic wave diagram of 7075-T6 aluminum alloy laser butt welding without defects inside the weld seam
图4为7075-T6铝合金激光对接焊焊缝内部有缩孔缺陷的焊缝截面图 Figure 4 is a cross-sectional view of the weld with shrinkage cavity defects inside the 7075-T6 aluminum alloy laser butt welding weld
图5为7075-T6铝合金激光对接焊焊缝内部有缩孔缺陷的超声波波形图 Figure 5 is the ultrasonic waveform diagram of shrinkage cavity defects inside the 7075-T6 aluminum alloy laser butt welding weld
图中,1. 试验平台 2. 金属焊接件 3. 耦合液 4. 双晶直探头 5. 工件中超声波回波 6. 焊缝 7.对接焊区域 8. 热影响区域 9. 超声波探伤仪显示装备 10. 安装MATLAB程序的PC机系统。 In the figure, 1. Test platform 2. Metal weldment 3. Coupling liquid 4. Double crystal straight probe 5. Ultrasonic echo in workpiece 6. Weld seam 7. Butt welding area 8. Heat affected area 9. Ultrasonic flaw detector display equipment 10. PC system with MATLAB program installed.
具体实施方式 Detailed ways
下面结合附图详细说明本发明提出的具体装置的细节和工作情况。 The details and working conditions of the specific device proposed by the present invention will be described in detail below in conjunction with the accompanying drawings.
实施例一: Embodiment one:
一种基于所述超声波回波探伤的焊缝内部缺陷的检测方法,具体操作步骤如下: A method for detecting internal defects of welds based on the ultrasonic echo flaw detection, the specific operation steps are as follows:
1. 用砂纸将金属焊接件表面打磨平整,并用丙酮清洗打磨表面,以去除氧化膜、污垢、毛刺等杂物; 1. Use sandpaper to smooth the surface of the metal weldment, and clean the polished surface with acetone to remove oxide film, dirt, burrs and other sundries;
2. 设置超声波探伤仪参数,分别设置扫描方式、探头角度、探头类型(单晶或者双晶探头)、探头频率、阻尼大小、扫描范围,延迟时间、检波模式、脉冲类型等,其次准备好偶合液; 2. Set the parameters of the ultrasonic flaw detector, respectively set the scanning mode, probe angle, probe type (single crystal or dual crystal probe), probe frequency, damping size, scanning range, delay time, detection mode, pulse type, etc., and then prepare for coupling liquid;
3. 对超声波探伤仪探头进行校准,并可以获得超声波在金属焊接件中的传播速度;此时,用超声波在金属焊接件中的传播速度和金属焊接件的厚度,可以计算出超声波在试块中传播时间; 3. Calibrate the probe of the ultrasonic flaw detector, and obtain the propagation speed of the ultrasonic wave in the metal welded part; at this time, use the propagation speed of the ultrasonic wave in the metal welded part and the thickness of the metal welded part to calculate Medium propagation time;
4. 采用双晶直探头对试块进行探伤,将探头放在试块上面,利用超声波探伤仪对焊接试块焊缝区域进行探伤,获得金属焊接件的超声波波形图,并记录测量位置; 4. Use double-crystal straight probes to detect flaws on the test block, place the probe on the test block, use an ultrasonic flaw detector to detect flaws in the weld area of the welded test block, obtain the ultrasonic waveform diagram of the metal welded part, and record the measurement position;
5. 采用线切割沿测量各处垂直于焊缝切割,获得的焊缝横截面先用200#、500#、800#、1200#、1500#砂纸依次对垂直于焊缝的侧面进行打磨;用丙酮清洗打磨后的表面,除去表面的氧化膜、污垢、毛刺等杂物,按照标准金相试样制备工序对焊缝横截面用砂纸打磨、抛光、镶嵌,放于OLYMPUS OSL3000型激光共聚焦显微镜下拍摄焊缝截面图; 5. Use line cutting to cut perpendicular to the weld seam along the measurement points, and first use 200#, 500#, 800#, 1200#, 1500# sandpaper to grind the sides perpendicular to the weld seam in sequence; Clean the polished surface with acetone to remove oxide film, dirt, burrs and other sundries on the surface. According to the standard metallographic sample preparation process, the cross-section of the weld is polished, polished, and inlaid with sandpaper, and placed in an OLYMPUS OSL3000 laser confocal microscope. Take a cross-sectional view of the weld below;
6. 利用经验波形分析法,对波形图进行分析,建立典型的超声波回波特征与对应的焊缝截面金相组织的对应关系,选取内部结构存在气孔、夹渣和裂纹缺陷的焊缝的超声波回波,以及焊缝内部结构良好的超声波回波作为特征波形; 6. Use the empirical waveform analysis method to analyze the waveform diagram, establish the corresponding relationship between the typical ultrasonic echo characteristics and the corresponding weld section metallographic structure, and select the ultrasonic wave of the weld with pores, slag inclusions and crack defects in the internal structure. The echo, and the ultrasonic echo with a good internal structure of the weld are used as the characteristic waveform;
7. 将超声波探伤仪提取的四个特征波形数据导入安装MATLAB软件的PC机系统中,建立起特征波形库用MATLAB计算出四个波形的峰度值系数KU; 7. Import the four characteristic waveform data extracted by the ultrasonic flaw detector into the PC system with MATLAB software installed, establish the characteristic waveform library and use MATLAB to calculate the kurtosis coefficient KU of the four waveforms;
8. 利用超声波探伤仪对其他金属焊接件进行探伤,根据探伤精度需要,沿金属焊接件焊缝方向等距检测,获得焊接试块沿焊缝方向的波形图集合,计算出波形的峰度值系数KU,与典型缺陷焊缝内部结构的超声波回波特征对比分析,判断金属焊接件的焊缝是否存在缺陷以及缺陷的类型。 8. Use an ultrasonic flaw detector to detect flaws in other metal welded parts. According to the requirements of flaw detection accuracy, detect equidistantly along the weld direction of the metal welded parts, obtain the waveform diagram set of the welding test block along the weld direction, and calculate the peak value of the waveform The coefficient KU is compared with the ultrasonic echo characteristics of the internal structure of typical defective welds to judge whether there are defects and the types of defects in the welds of metal weldments.
实施例二: Embodiment two:
用本发明进行金属激光对接焊焊缝内部缺陷超声波检测装置,包括:依次相连的试验工作台1、金属焊接件2、检测系统,其中检测系统包括超声波探伤仪9、双晶直探头4、耦合液3、超声波回波5、安装MATLAB软件的PC机系统10、焊缝6、焊接区域7和热影响区8。使用试块超声波检测系统对对接焊完成金属焊接件2进行探伤,使用双晶直探头4对试块进行扫描,探头和试块之间使用耦合液3进行耦合,扫描结果在超声波探伤仪显示屏9上面显示,将超声波探伤仪储存的数据导出到PC机系统10,用MATLAB软件编程计算出峰度值系数KU,与特征波形库进行比对分析,确定是否存在缺陷以及缺陷的类型。 The ultrasonic testing device for internal defects of metal laser butt welding welds of the present invention comprises: a test bench 1 connected in sequence, a metal weldment 2, and a detection system, wherein the detection system includes an ultrasonic flaw detector 9, a double-crystal straight probe 4, a coupling Liquid 3, ultrasonic echo 5, PC system 10 with MATLAB software installed, weld 6, welding area 7 and heat-affected zone 8. Use the test block ultrasonic detection system to detect the flaws of the butt welded metal weldment 2, use the double crystal straight probe 4 to scan the test block, use the coupling liquid 3 to couple the probe and the test block, and scan the results on the display screen of the ultrasonic flaw detector 9 above shows that the data stored by the ultrasonic flaw detector is exported to the PC system 10, and the kurtosis value coefficient KU is calculated by MATLAB software programming, and compared with the characteristic waveform library to determine whether there is a defect and the type of defect.
以下为7075-T6铝合金激光对接焊焊缝内部缺陷检测方法和装置的实例,采用激光对7075-T6铝合金进行激光对接焊试验,利用超声波探伤仪对接焊试块进行探伤并获得焊接试块的波形图,并对波形分析,制备金相组织观察试样,放于OLYMPUS OSL3000型激光共聚焦显微镜拍摄焊缝截面图。 The following is an example of the internal defect detection method and device of the 7075-T6 aluminum alloy laser butt welding weld. The laser is used to conduct the laser butt welding test on the 7075-T6 aluminum alloy, and the ultrasonic flaw detector is used to detect the flaws of the butt welding test block and obtain the welding test block Waveform diagram, and the waveform analysis, the preparation of the metallographic structure observation sample, placed in the OLYMPUS OSL3000 laser confocal microscope to take the cross-sectional view of the weld.
图3为7075-T6铝合金激光对接焊焊缝内部无缺陷的超声波波形图,图2为7075-T6铝合金激光对接焊焊缝内部无缺陷的焊缝截面图。图2表明超声波回波清晰可见,相邻的回波间距几乎相等,并且多次回波幅值呈递减时对应的焊缝没有明显的裂纹和缩孔,焊接质量高; Figure 3 is the ultrasonic wave diagram of the 7075-T6 aluminum alloy laser butt welding seam without defects, and Figure 2 is the sectional view of the 7075-T6 aluminum alloy laser butt welding seam without defects. Figure 2 shows that the ultrasonic echoes are clearly visible, the distance between adjacent echoes is almost equal, and the corresponding welds have no obvious cracks and shrinkage cavities when the amplitude of multiple echoes decreases, and the welding quality is high;
图5为7075-T6铝合金激光对接焊焊缝内部有缺陷的超声波波形图,图4为7075-T6铝合金激光对接焊焊缝内部有缺陷的焊缝截面图。图4表明超声波的第一次、第二次、第三次回波的波形与图5中无缺陷的超声波波形图相比幅度很低、首波平缓、幅值小、向后延迟,从第三次回波之后出现了回波检测不到的现象,这表明超声波在试块传播中遇到了较大的缺陷,出现了很明显的散射和频率衰减。观察发现,对应的金相组织图有明显的宽而深的裂纹和缩孔。 Fig. 5 is an ultrasonic wave diagram of defects inside a 7075-T6 aluminum alloy laser butt welding seam, and Fig. 4 is a cross-sectional view of a defect inside a 7075-T6 aluminum alloy laser butt welding seam. Figure 4 shows that the waveforms of the first, second, and third echoes of the ultrasonic wave are very low in amplitude, gentle in the first wave, small in amplitude, and delayed backwards compared with the flawless ultrasonic waveform in Figure 5. After the second echo, the echo cannot be detected, which indicates that the ultrasonic wave encountered a large defect in the propagation of the test block, and there was obvious scattering and frequency attenuation. Observation found that the corresponding metallographic structure diagram has obvious wide and deep cracks and shrinkage cavities.
实验表明,激光对接焊焊缝的显微金相组织特征可以在对应的超声回波图上反应出来,且不同的缺陷回波具有自己独特的波形特征,存在一定程度上的对应关系。 Experiments show that the microstructure characteristics of laser butt welding seam can be reflected in the corresponding ultrasonic echo images, and different defect echoes have their own unique waveform characteristics, and there is a corresponding relationship to a certain extent.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310176780.0A CN103245729B (en) | 2013-05-14 | 2013-05-14 | Detection method and device for internal defects of welding seams |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310176780.0A CN103245729B (en) | 2013-05-14 | 2013-05-14 | Detection method and device for internal defects of welding seams |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103245729A CN103245729A (en) | 2013-08-14 |
CN103245729B true CN103245729B (en) | 2015-04-08 |
Family
ID=48925381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310176780.0A Expired - Fee Related CN103245729B (en) | 2013-05-14 | 2013-05-14 | Detection method and device for internal defects of welding seams |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103245729B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107505395A (en) * | 2017-08-31 | 2017-12-22 | 北京金风慧能技术有限公司 | Inside workpiece damage detecting method and device |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103901102B (en) * | 2014-03-31 | 2016-08-17 | 北京工业大学 | A kind of forging typical defect recognition methods based on ultrasonic phased array technology |
CN104458909B (en) * | 2014-11-29 | 2018-03-09 | 无锡透平叶片有限公司 | The stellite alloy film weld metal zone ultrasonic detection method of turbine blade |
CN104820018A (en) * | 2015-05-13 | 2015-08-05 | 中国飞机强度研究所 | Method for detecting weld defects |
CN106770637A (en) * | 2017-03-02 | 2017-05-31 | 国家电网公司 | A kind of weld seam EDDY CURRENT test block and preparation method thereof |
CN106840053B (en) * | 2017-03-14 | 2020-01-10 | 中车青岛四方机车车辆股份有限公司 | Ultrasonic nondestructive measurement method for fillet weld leg size and internal defects |
CN107703210A (en) * | 2017-08-31 | 2018-02-16 | 北京金风慧能技术有限公司 | workpiece identification method and device |
CN107703209A (en) * | 2017-08-31 | 2018-02-16 | 北京金风慧能技术有限公司 | Workpiece identification method and detection terminal |
CN108008012B (en) * | 2017-12-05 | 2020-04-17 | 湖南湘建检测有限公司 | Steel structure welding quality defect detection method |
CN110441397A (en) * | 2018-05-02 | 2019-11-12 | 奥林巴斯株式会社 | The method for making of apparatus for ultrasonic examination, 3D printer device and inference pattern |
CN108732243A (en) * | 2018-06-14 | 2018-11-02 | 国网山东省电力公司淄博供电公司 | GIS shell butt weld ultrasound examination defect measuring motions |
CN109781856A (en) * | 2019-02-25 | 2019-05-21 | 河北普阳钢铁有限公司 | Method for Determining Inclusion Group Defects in Flat Metal Plates with Double-crystal Straight Probe |
CN110108798A (en) * | 2019-05-14 | 2019-08-09 | 东莞技研新阳电子有限公司 | A kind of metal welding effect detection method |
CN110501425B (en) * | 2019-09-04 | 2021-12-03 | 江苏鸣帆工程检测有限公司 | Fixed pressure container ultrasonic detection system and method |
CN112611801B (en) * | 2020-11-03 | 2023-02-21 | 邯郸钢铁集团有限责任公司 | Method for detecting steel rail structure on line |
CN113514557A (en) * | 2021-07-09 | 2021-10-19 | 华北电力科学研究院有限责任公司 | GIS shell weld defect type identification method and device based on ultrasonic waves |
CN114994174B (en) * | 2022-05-16 | 2024-09-17 | 广州民航职业技术学院 | Method, device, equipment and medium for processing crack data of airplane windshield |
CN115469012A (en) * | 2022-10-21 | 2022-12-13 | 上海江丰半导体技术有限公司 | A defect detection method for high-purity aluminum materials |
CN117235463B (en) * | 2023-11-13 | 2024-01-30 | 北京科技大学 | A non-destructive testing method for the spatial distribution of oxide films on the inner wall of alloy defects |
CN119064461B (en) * | 2024-11-01 | 2025-02-11 | 四川华芯腾科技有限责任公司 | Automatic flaw detection method and device based on ultrasonic waves |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103076395A (en) * | 2012-12-10 | 2013-05-01 | 中国飞机强度研究所 | Ultrasonic phased array detecting and monitoring method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5824858B2 (en) * | 2010-05-10 | 2015-12-02 | Jfeスチール株式会社 | Method and apparatus for imaging structure of welded portion |
JP2013019715A (en) * | 2011-07-08 | 2013-01-31 | Non-Destructive Inspection Co Ltd | Ultrasonic inspection method and ultrasonic inspection device |
-
2013
- 2013-05-14 CN CN201310176780.0A patent/CN103245729B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103076395A (en) * | 2012-12-10 | 2013-05-01 | 中国飞机强度研究所 | Ultrasonic phased array detecting and monitoring method |
Non-Patent Citations (2)
Title |
---|
奥氏体不锈钢焊缝的超声波检测方法研究;张鹰等;《无损检测》;20060331;第28卷(第3期);119-122页 * |
超塑性固相焊接接头质量的超声成像检测;张柯柯等;《西安交通大学学报》;20011130;第35卷(第11期);1143-1146页 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107505395A (en) * | 2017-08-31 | 2017-12-22 | 北京金风慧能技术有限公司 | Inside workpiece damage detecting method and device |
Also Published As
Publication number | Publication date |
---|---|
CN103245729A (en) | 2013-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103245729B (en) | Detection method and device for internal defects of welding seams | |
CN103336055B (en) | Method for ultrasonically detecting weld quality of main loop pipeline of nuclear power plant by phased array | |
US10113993B2 (en) | Phased array system for inspection of laser welds | |
Song et al. | Detection of damage and crack in railhead by using eddy current testing | |
KR101928946B1 (en) | Three-dimensional matrix phased array spot weld inspection system | |
US10761066B2 (en) | Micro-resolution ultrasonic nondestructive imaging method | |
CN103808797B (en) | A kind of method checking diffusion welding welding quality | |
CN103115959A (en) | Ultrasonic flaw detection method of austenitic stainless steel sheet weld joint | |
Endramawan et al. | Non Destructive Test Dye Penetrant and Ultrasonic on Welding SMAW Butt Joint with Acceptance Criteria ASME Standard | |
CN106841392A (en) | A kind of phased array ultrasonic detecting method for nuclear power station BOSS weld seams | |
CN107576730A (en) | A kind of method of normal probe measurement workpiece transverse wave velocity | |
CN104634876A (en) | Method for detecting inclusions in metal material by virtue of ultrasonic scanning microscope | |
CN108918667A (en) | A kind of wedge defect inspection method | |
CN111380955A (en) | Method for detecting defects of additive manufacturing part based on ultrasonic phased array | |
CN106840053A (en) | A kind of leg size of fillet weld and internal flaw ultrasonic non-destructive measuring method | |
CN103264225A (en) | Laser butt welding process parameter optimization method and device | |
CN101832973A (en) | Ultrasonic testing process of marine steel-welding joint phased array | |
CN100365382C (en) | Non-destructive testing method for spot welding nugget diameter | |
CN110261473A (en) | Ultrasonic phase array testing methods for tiny crack based on finite element model | |
Salzburger | EMAT's and its Potential for Modern NDE-State of the Art and Latest Applications | |
CN114755298A (en) | Detection method of internal cracks in the action bar of switch machine based on ultrasonic technology | |
CN203069556U (en) | Ultrasonic detection device for highway steel bridge | |
Jin et al. | Profile reconstruction of irregular planar defects by mirrored composite-mode total focusing method | |
CN103115958B (en) | Method and device for detecting welded joint defects of dissimilar steel flash welding | |
Chen et al. | Research on Ultrasonic TOFD Testing Method of Electron Beam Weld |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150408 Termination date: 20160514 |
|
CF01 | Termination of patent right due to non-payment of annual fee |