CN103245694B - 一种测量半导体器件和接触材料间接触热阻的方法 - Google Patents

一种测量半导体器件和接触材料间接触热阻的方法 Download PDF

Info

Publication number
CN103245694B
CN103245694B CN201310174157.1A CN201310174157A CN103245694B CN 103245694 B CN103245694 B CN 103245694B CN 201310174157 A CN201310174157 A CN 201310174157A CN 103245694 B CN103245694 B CN 103245694B
Authority
CN
China
Prior art keywords
semiconductor devices
thermal resistance
contact material
thermal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310174157.1A
Other languages
English (en)
Other versions
CN103245694A (zh
Inventor
郭春生
李睿
冯士维
张燕峰
石磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201310174157.1A priority Critical patent/CN103245694B/zh
Publication of CN103245694A publication Critical patent/CN103245694A/zh
Application granted granted Critical
Publication of CN103245694B publication Critical patent/CN103245694B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明属于电子器件测试领域,公开了一种测量半导体器件和接触材料间接触热阻的方法。首先测出待测半导体器件的电压-温度系数曲线,绘制其热阻微分结构函数曲线,进而求出其内部热阻Rth0。然后,测量不同压力F下半导体器件到接触材料的热阻Rth1、Rth2、…、Rthn,进行函数拟合得到Rth-F曲线,并由此求出接触材料的热阻RT。最后由R=Rth-Rth0-RT求出不同压力下半导体器件与接触材料之间的接触热阻。本发明利用压力影响接触热阻的方法,不仅解决了瞬态光热法中光相位受影响及热阻测量受半导体器件内部结构影响的问题,还可以在不损伤半导体器件的条件下准确测出压力与接触热阻的关系。

Description

一种测量半导体器件和接触材料间接触热阻的方法
技术领域
本发明属于电子器件测试领域,主要应用于界面热阻测量与分析,具体涉及一种测量半导体器件和接触材料间接触热阻的方法。
背景技术
随着半导体器件向尺寸小、功能强及集成度高等方向的发展,半导体器件的工作功率不断增大,工作时产生的热量不断增多,有源区结自升温不断提高,从而导致器件可靠性下降,寿命缩短。结自升温等于功率与热阻的乘积。因此,可以通过减小热阻来降低器件有源区的温度,从而提高器件的可靠性。在使用过程中,半导体器件散热通路上的总热阻Rth包括器件内部热阻Rth0、器件与其他材料接触产生的接触热阻R以及接触材料热阻RT三部分。目前大功率器件的内部热阻可降低至0.3℃/W左右,与半导体接触的散热材料热阻最小也可达到0.2℃/W左右,而接触热阻在1℃/W左右。所以半导体器件与接触材料之间的接触热阻就成为影响器件散热的重要因素。因此,测定器件与接触材料间的接触热阻是确保器件正常、安全工作的重要手段。
目前测量接触热阻的方法有稳态法和瞬态法。典型的稳态法中,对接触面的温差数据采用线性外推,可以获得接触热阻。但是温差线性外推法只有在接触面温差较大时,其数据才是可靠的,而且完全准确地测量半导体器件和接触材料间的接触面温差是十分困难的;在瞬态法中,光热法应用广泛,通过测量遇到界面后的热波(形变波)与调制波的相位差(波幅值的衰减),获得界面热阻。但是在测量过程中,接触界面会导致热波在接触处发生漫射,破坏了其相位关系,使得热阻测试结果出现偏差。
发明内容
针对接触热阻测量中存在的上述问题,本发明提出了一种通过测量不同压力下、半导体器件正常工作时、芯片有源区到接触材料的热阻微分结构函数曲线测量接触热阻的方法。
本发明采用的技术方案如下:
在不同接触压力下,利用热阻测量装置及压力测试装置,测得器件散热路径上的热阻微分结构函数曲线,通过分析不同压力下热阻微分结构函数曲线,得到热阻-压力曲线,从而确定接触热阻。
一种测量半导体器件和接触材料间接触热阻的方法,实现该方法的装置包括被测半导体器件1和接触材料2、压力装置3、压力测量装置4、恒温平台5、测试电路板6、计算机7、工作电源8、加热电源9。加热电源9为恒温平台5供电;恒温平台5用于调节和保持半导体器件1测试过程中的环境温度,同时通过嵌在平台内的热电偶测量半导体器件1的壳温;压力装置3用于对半导体器件1和接触材料2施加压力;压力测量装置4用于测量半导体器件1和接触材料2之间的压力;测试电路板6用于对半导体器件1提供电流通道,并测量半导体器件1的电压;计算机7用于控制工作电源8为半导体器件1提供加热电流和测试电流,加热电流用来使半导体器件1自升温,测试电流用于在半导体器件1冷却过程中测量半导体器件1两端的电压。所述测量半导体器件和接触材料间接触热阻的方法特征在于,该方法还包括以下步骤:
步骤一,将半导体器件1放置在恒温平台5上,接好半导体器件1和测试电路板6、工作电源8的连线。
步骤二,接通加热电源9,使恒温平台5在整个实验过程中一直保持恒温。
步骤三,给测试电路板6、计算机7、工作电源8加电,使其正常工作。计算机7通过控制流过半导体器件1的测试电流使其工作在不同的温度下,并通过测试电路板6测量不同温度下半导体器件1的电压,得到半导体器件1的电压-温度系数曲线。
步骤四,通过实验绘制半导体器件1的热阻微分结构函数曲线,进而求出其内部热阻Rth0。方法如下:
(1)计算机7控制工作电源8,给半导体器件1通入加热电流,直至半导体器件1温度达到稳定。
(2)切断加热电流,待半导体器件1开始冷却,给半导体器件1通入测试电流。
(3)测试电路板6采集半导体器件1的电压,直至半导体器件1的温度降至与恒温平台5的温度相等,得到半导体器件1对于恒温平台5的冷却响应曲线。
(4)求解热阻微分结构函数曲线。
计算机7依据半导体器件1冷却过程中的电压变化以及电压-温度系数曲线,对于热传导通路上串联的热阻、热容用Foster串联网络模型表示。由于Foster模型不能反映热阻、热容的物理意义,利用结构函数法将Foster网络转化为Cauer网络模型,将节点至节点热容转变为节点至地热容,其中的热阻表示模型中真实的热阻,将Cauer模型中的热阻、热容累加得到热阻积分函数曲线。为了更明显地反映导热通路上热阻的构成情况,计算机7再对热阻积分函数求微分,得到热阻微分结构函数曲线。
(5)根据曲线上的各个峰值对应的热阻可以得到半导体器件1的内部热阻Rth0
(6)保存微分结构函数曲线以及对应数据。
步骤五,将压力测量装置4置于半导体器件1的上表面,用压力装置3将压力测量装置4以及半导体器件1一同压在接触材料2上,组成待测系统。将待测系统放在恒温平台5上,并将半导体器件1与测试电路板6、工作电源8相连。
步骤六,计算机7控制工作电源8给半导体器件1通入与步骤四中相同的加热电流,使半导体器件1自升温。
步骤七,按照步骤四的方法得到待测系统中半导体器件1到接触材料2的热阻微分结构函数曲线,进而得到热传导通路上从半导体器件到接触材料2的热阻Rth1。保存微分结构函数曲线和对应数据。
步骤八,调节压力装置3改变半导体器件1对接触材料2的压力,从而改变二极管和接触材料2之间的接触热阻。通过压力测量装置4测定当前的半导体器件1对接触材料2的压力,重复步骤六、七得到不同压力F下半导体器件1到接触材料2的热阻微分结构函数曲线,以及不同压力下半导体器件1到接触材料2的热阻Rth1、Rth2、…、Rthn,保存曲线和数据。
步骤九,对步骤八中所得不同压力F下的不同热阻Rth1、Rth2、…、Rthn,进行函数拟合,得到Rth-F函数曲线,表达式近似为:
R th = A × e - F B + C
式中,A、B、C为常数。
求F趋近于正无穷大时Rth的极限,近似得到接触材料2的热阻RT;再根据步骤四中得到的半导体器件1的内部热阻Rth0,按下式计算不同压力条件下半导体器件1与接触材料2之间的接触热阻:
R=Rth-Rth0-RT      (1)
本发明的有益效果是:本发明采用瞬态法测量接触热阻,利用压力影响接触热阻的方法,避免了瞬态光热法中光相位受影响的问题,以及半导体器件复杂的内部结构对光热法测量热阻的影响。另外,本发明还可以准确测量压力与接触热阻的关系,而且对半导体器件没有损伤。
附图说明
图1为本发明所涉及的测试装置示意图,图中:1—半导体器件,2—接触材料,3—压力装置,4—压力测量装置,5—恒温平台,6—测试电路板,7—计算机,8—工作电源,9—加热电源;
图2为本发明所涉及的方法流程图;
图3为半导体器件1内部的热阻微分结构函数;
图4为半导体器件1到接触材料2的热阻微分结构函数;
图5为接触热阻-压力函数曲线;
图6为半导体器件1与接触材料2间接触热阻-压力曲线。
具体实施方式
下面结合附图和具体实施方式对本发明进行更详细的说明。
本发明所涉及的测试装置如图1所示。测量选用的半导体器件1封装形式为TO-3PB型的快恢复二极管,其最大工作电压2.3V,最大工作电流15A,测量使用的热阻测试装置符合MIL-STD-750和JEDEC JESD51-1热阻测试标准,接触材料为一面积是30cm2、厚度0.5cm铝板。
测量半导体器件和接触材料间接触热阻的方法流程图如附图2所示,包括以下步骤:
步骤一,将半导体器件1放置在恒温平台5上,接好半导体器件1和测试电路板6、工作电源8的连线。
半导体器件1选择封装形式为TO-3PB型的快恢复二极管,其最大工作电压2.3V,最大工作电流15A。
步骤二,接通加热电源9,使恒温平台5在整个实验过程中一直保持恒温20℃。
步骤三,给测试电路板6、计算机7、工作电源8加电,使其正常工作。计算机7通过控制流过半导体器件1的测试电流使其工作在不同的温度下(20℃~70℃),并通过测试电路板6测量不同温度下半导体器件1的电压,得到半导体器件1的电压-温度系数曲线。
步骤四,通过实验绘制半导体器件1的热阻微分结构函数曲线,进而求出其内部热阻Rth0。方法如下:
(1)计算机7控制工作电源8,给半导体器件1通入9A的加热电流,直至半导体器件1温度达到稳定。
(2)切断加热电流,待半导体器件1开始冷却,给半导体器件1通入1.5mA测试电流。
(3)测试电路板6采集半导体器件1的电压,直至半导体器件1的温度降至与恒温平台5的温度相等,得到半导体器件1对于恒温平台5的冷却响应曲线。
(4)计算机依据二极管冷却过程中的电压变化以及电压-温度系数曲线,对热传导通路上的热阻、热容累加得到热阻积分函数曲线。为了更明显地反映导热通路上热阻的构成情况,计算机再对热阻积分函数求微分,得到热阻微分结构函数曲线。
(5)根据曲线上的各个峰值对应的热阻可以得到半导体器件1的内部热阻Rth0,如附图3所示。
(6)保存微分结构函数曲线以及对应数据。
步骤五,如附图1所示,将压力测量装置4置于半导体器件1的上表面,用压力装置3将压力测量装置4以及半导体器件1一同压在接触材料2上,组成待测系统。将待测系统放在恒温平台5上,并将半导体器件1与测试电路板6、工作电源8相连。
步骤六,计算机7控制工作电源8给半导体器件1通入9A的加热电流,使半导体器件1自升温。
步骤七,按照步骤四的方法得到待测系统中半导体器件1到接触材料2的热阻微分结构函数曲线,如附图4所示,进而得到热传导通路上从半导体器件1到接触材料的热阻Rth1。保存微分结构函数曲线和对应数据。
步骤八,调节压力装置3改变半导体器件1对接触材料的压力,从而改变二极管和接触材料之间的接触热阻。通过压力测量装置4测定当前的半导体器件1对接触材料2的压力,重复步骤六、七得到不同压力F下半导体器件1到接触材料的热阻微分结构函数曲线,以及不同压力下半导体器件1到接触材料2的热阻Rth1、Rth2……Rthn,如附图5所示。保存曲线和数据。
步骤九,对步骤八中所得不同压力F下的不同热阻Rth1、Rth2……Rthn,用函数y=A1*exp(-x/t1)+y0进行拟合,得到Rth-F函数曲线,如图6所示,表达式近似为:
R th = 0.8441 × e - F 273.54 + 1.0334
求F趋近于正无穷大时Rth的极限,近似得到接触材料热阻RT,再根据步骤四中得到的半导体器件1的内部热阻Rth0,根据式(1)得到不同压力条件下半导体器件1与接触材料2之间的接触热阻。
测量使用的热阻测量装置符合MIL-STD-750和JEDEC JESD51-1热阻测试标准,测量时加热电流测量精度±1mA;加热电压测量精度±0.2%;热电偶测量精度(T型)±0.3℃;结温测量精度0.1℃;在指数拟合过程中,利用最小二乘法对数据进行处理,所得函数曲线拟合度和各个参数值及对应的标准误差如图6中的表格所示:曲线拟合度为0.94601;y0的标准误差为0.06508,相对误差为0.06508/1.0334=6.29%;A1的标准误差为0.05811,相对误差为:0.05811/0.8442=6.88%。
实验表明,本发明所述的方法能够准确测量半导体器件和接触材料间的接触热阻,以及压力与接触热阻的关系曲线。

Claims (1)

1.一种测量半导体器件和接触材料间接触热阻的方法,实现该方法的装置包括被测半导体器件(1)和接触材料(2)、压力装置(3)、压力测量装置(4)、恒温平台(5)、测试电路板(6)、计算机(7)、工作电源(8)、加热电源(9);加热电源(9)为恒温平台(5)供电;恒温平台(5)用于调节和保持半导体器件(1)测试过程中的环境温度,同时通过嵌在平台内的热电偶测量半导体器件(1)的壳温;压力装置(3)用于对半导体器件(1)和接触材料(2)施加压力;压力测量装置(4)用于测量半导体器件(1)和接触材料(2)之间的压力;测试电路板(6)用于对半导体器件(1)提供电流通道,并测量半导体器件(1)的电压;计算机(7)用于控制工作电源(8)为半导体器件(1)提供加热电流和测试电流,加热电流用来使半导体器件(1)自升温,测试电流用于在半导体器件(1)冷却过程中测量半导体器件(1)两端的电压;所述测量半导体器件和接触材料间接触热阻的方法特征在于,该方法还包括以下步骤:
步骤一,将半导体器件(1)放置在恒温平台(5)上,接好半导体器件(1)和测试电路板(6)、工作电源(8)的连线;
步骤二,接通加热电源(9),使恒温平台(5)在整个实验过程中一直保持恒温;
步骤三,给测试电路板(6)、计算机(7)、工作电源(8)加电,使其正常工作;计算机(7)通过控制流过半导体器件(1)的测试电流使其工作在不同的温度下,并通过测试电路板(6)测量不同温度下半导体器件(1)的电压,得到半导体器件(1)的电压-温度系数曲线;
步骤四,通过实验绘制半导体器件(1)的热阻微分结构函数曲线,进而求出其内部热阻Rth0
步骤五,将压力测量装置(4)置于半导体器件(1)的上表面,用压力装置(3)将压力测量装置(4)以及半导体器件(1)一同压在接触材料(2)上,组成待测系统;将待测系统放在恒温平台(5)上,并将半导体器件(1)与测试电路板(6)、工作电源(8)相连;
步骤六,计算机(7)控制工作电源(8)给半导体器件(1)通入加热电流,使半导体器件(1)自升温;
步骤七,按照步骤四的方法得到待测系统中半导体器件(1)到接触材料(2)的热阻微分结构函数曲线,进而得到热传导通路上从半导体器件(1)到接触材料的热阻Rth1;保存微分结构函数曲线和对应数据;
步骤八,调节压力装置(3)改变半导体器件(1)对接触材料的压力,从而改变二极管和接触材料之间的接触热阻;通过压力测量装置(4)测定当前的半导体器件(1)对接触材料(2)的压力,重复步骤六、七得到不同压力F下半导体器件到接触材料的热阻微分结构函数曲线,以及不同压力下半导体器件(1)到接触材料(2)的热阻Rth1、Rth2、...、Rthn,保存曲线和数据;
步骤九,对步骤八中所得不同压力F下的不同热阻Rth1、Rth2、...、Rthn,进行函数拟合,得到Rth-F函数曲线,表达式近似为:
R th = A × e - F B + C
式中,A、B、C为常数;
求F趋近于正无穷大时Rth的极限,近似得到接触材料热阻RT;再根据步骤四中得到的半导体器件(1)的内部热阻Rth0,按下式计算不同压力条件下半导体器件(1)与接触材料(2)之间的接触热阻:
R=Rth-Rth0-RT
步骤四绘制半导体器件(1)的热阻微分结构函数曲线,进而求出其内部热阻Rth0的方法如下:
(1)计算机(7)控制工作电源(8),给半导体器件(1)通入与前述步骤六相同的加热电流,直至半导体器件(1)温度达到稳定;
(2)切断加热电流,待半导体器件(1)开始冷却,给半导体器件(1)通入测试电流;
(3)测试电路板(6)采集半导体器件(1)的电压,直至半导体器件(1)的温度降至与恒温平台(5)的温度相等,得到半导体器件(1)对于恒温平台(5)的冷却响应曲线;
(4)求解热阻微分结构函数曲线;
计算机依据半导体器件(1)冷却过程中的电压变化以及电压-温度系数曲线,对于热传导通路上串联的热阻、热容用Foster串联网络模型表示;利用结构函数法将Foster网络转化为Cauer网络模型,将节点至节点热容转变为节点至地热容,其中的热阻表示模型中真实的热阻,将Cauer模型中的热阻、热容累加得到热阻积分函数曲线;计算机再对热阻积分函数求微分,得到热阻微分结构函数曲线;
(5)根据曲线上的各个峰值对应的热阻可以得到半导体器件(1)的内部热阻Rth0
(6)保存微分结构函数曲线以及对应数据。
CN201310174157.1A 2013-05-13 2013-05-13 一种测量半导体器件和接触材料间接触热阻的方法 Expired - Fee Related CN103245694B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310174157.1A CN103245694B (zh) 2013-05-13 2013-05-13 一种测量半导体器件和接触材料间接触热阻的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310174157.1A CN103245694B (zh) 2013-05-13 2013-05-13 一种测量半导体器件和接触材料间接触热阻的方法

Publications (2)

Publication Number Publication Date
CN103245694A CN103245694A (zh) 2013-08-14
CN103245694B true CN103245694B (zh) 2015-07-22

Family

ID=48925352

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310174157.1A Expired - Fee Related CN103245694B (zh) 2013-05-13 2013-05-13 一种测量半导体器件和接触材料间接触热阻的方法

Country Status (1)

Country Link
CN (1) CN103245694B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792254B (zh) * 2014-01-17 2016-06-29 中国空间技术研究院 用于热阻测试的高精度温控试验系统
CN104833692B (zh) * 2014-02-12 2019-07-23 中国科学院微电子研究所 半导体器件封装结构的检测方法
CN104155335A (zh) * 2014-04-29 2014-11-19 贵州凯里亿云电子科技有限责任公司 高精度自动化晶体管试验参数采集系统
CN104062323B (zh) * 2014-06-06 2016-06-01 西安理工大学 一种在线测量接触电阻的方法
CN105806887A (zh) * 2016-04-22 2016-07-27 全球能源互联网研究院 一种功率半导体器件结到壳热阻测量方法及测量夹具
CN105911447A (zh) * 2016-04-22 2016-08-31 全球能源互联网研究院 一种功率半导体器件内部接触热阻测量方法及测量夹具
CN108226218B (zh) * 2016-12-09 2019-11-08 上海大学 一种电子器件的热阻测量方法和系统
CN108195878A (zh) * 2017-12-15 2018-06-22 北京长城华冠汽车科技股份有限公司 一种接触热阻的测试装置和方法
JP7059908B2 (ja) * 2018-11-28 2022-04-26 株式会社Sumco 熱伝導率推定方法、熱伝導率推定装置、半導体結晶製品の製造方法、熱伝導率演算装置、熱伝導率演算プログラム、および、熱伝導率演算方法
CN113419120B (zh) * 2021-05-08 2022-10-25 同济大学 一种介质薄膜与金属界面热阻的测量方法及系统
CN113514492B (zh) * 2021-06-02 2023-09-01 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 一种测量界面热阻的方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6142662A (en) * 1998-06-16 2000-11-07 New Jersey Institute Of Technology Apparatus and method for simultaneously determining thermal conductivity and thermal contact resistance
CN100561243C (zh) * 2007-12-14 2009-11-18 北京工业大学 一种测量半导体器件内部芯片热接触面积的方法
CN101887041B (zh) * 2010-06-11 2011-08-31 北京交通大学 机械压力作用下接触热阻测量装置及测量方法
DE102010036992A1 (de) * 2010-08-13 2012-02-16 Technische Universität Darmstadt Verfahren und Vorrichtung zur Bestimmung von Wärme- und Temperaturleitfähigkeiten einer Messprobe
CN102680512A (zh) * 2012-05-10 2012-09-19 北京工业大学 一种测量界面接触热阻的方法
CN102798645B (zh) * 2012-08-07 2014-04-02 南京理工大学 一种导热系数及接触热阻测试装置

Also Published As

Publication number Publication date
CN103245694A (zh) 2013-08-14

Similar Documents

Publication Publication Date Title
CN103245694B (zh) 一种测量半导体器件和接触材料间接触热阻的方法
Wu et al. A temperature-dependent thermal model of IGBT modules suitable for circuit-level simulations
CN102608511B (zh) 一种金属氧化物半导体管的结温和热阻测量方法
Du et al. Thermal network parameter estimation using cooling curve of IGBT module
CN101776727B (zh) 一种利用真空环境测量电子元器件工作结温和热阻的方法
CN103837822B (zh) 一种超大规模集成电路结到壳热阻测试的方法
US20140236528A1 (en) Measurement method for junction-to-case thermal resistance
CN102759544B (zh) 一种大功率碳化硅二极管热阻测试方法
CN106969851A (zh) 基于饱和压降测量igbt功率模块结温的在线检测装置
Chen et al. Investigations on averaging mechanisms of virtual junction temperature determined by v ce (t) method for igbts
CN108680847A (zh) 基于故障电流下的igbt结温的热计算方法
CN105718694A (zh) 基于igbt结温信息的热网络参数辨识方法
CN104458799A (zh) 一种在线测量igbt模块瞬态热阻的方法和装置
CN201653950U (zh) 一种测量电子元器件工作结温和热阻的装置
CN104458039A (zh) Igbt模块壳温的实时估算方法
Yang et al. A temperature-dependent Cauer model simulation of IGBT module with analytical thermal impedance characterization
CN102944824A (zh) 一种整流二极管瞬态高温反向漏电流的测试方法
CN105223488A (zh) 基于结构函数的半导体分立器件封装质量检测方法及系统
Wu et al. Junction temperature prediction of IGBT power module based on BP neural network
Chen et al. Predicting IGBT junction temperature with thermal network component model
CN105277583B (zh) 一种模拟igbt元件发热的装置
CN109633405B (zh) 一种基于偏流预补偿的结温标定及散热组件性能评估装置
CN104076265B (zh) 一种快速测量半导体器件电学参数温度变化系数的方法和装置
CN203773017U (zh) 一种to-39封装功率半导体器件热阻测试装置
CN203773016U (zh) 一种smd-0.5封装功率半导体器件热阻测试装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150722

Termination date: 20180513

CF01 Termination of patent right due to non-payment of annual fee