CN103243065B - Bacterial strain for producing farnesene and application of bacterial strain - Google Patents

Bacterial strain for producing farnesene and application of bacterial strain Download PDF

Info

Publication number
CN103243065B
CN103243065B CN201310209421.0A CN201310209421A CN103243065B CN 103243065 B CN103243065 B CN 103243065B CN 201310209421 A CN201310209421 A CN 201310209421A CN 103243065 B CN103243065 B CN 103243065B
Authority
CN
China
Prior art keywords
farnesene
plasmid
bacterial strain
gene
afs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310209421.0A
Other languages
Chinese (zh)
Other versions
CN103243065A (en
Inventor
刘天罡
朱发银
邓子新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen aghin Technology Co., Ltd.
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201310209421.0A priority Critical patent/CN103243065B/en
Publication of CN103243065A publication Critical patent/CN103243065A/en
Application granted granted Critical
Publication of CN103243065B publication Critical patent/CN103243065B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention discloses a bacterial strain for producing farnesene and an application of the bacterial strain, belonging to the field of synthetic biology. The bacterial strain for producing the farnesene contains related genes for synthesizing the farnesene through a mevalonic acid pathway and codon optimization; and the sequence of a farnesene synthetic gene afs optimized by codons is as shown by SEQ ID NO.1. The bacterial strain can be used for producing the farnesene, and a seed solution of the bacterial strain is inoculated into a culture medium containing a carbon source to carry out prokaryotic expression to obtain the farnesene. The gene for synthesizing the farnesene is subjected to codon optimization or the farnesene is synthesized by using the mevalonic acid pathway to ensure that each protein is closer to a ratio of AtoB:ERG13:tHMG1:ERG12:ERG8:MVD1:Idi:IspA:AFS=1:10:2:5:5:2:5:2:2, so that the production of the farnesene can be further promoted. By adopting the bacterial strain, the output of the farnesene is greatly improved to be more than 1g/L.

Description

A kind of bacterial strain and application thereof of producing farnesene
Technical field
The invention belongs to synthetic biology field, relate to a kind of bacterial strain and application thereof of producing farnesene.
Background technology
Farnesene the earliest from apple tree separation obtain, aspect plant defense, play an important role.Because it is a kind of important industrial chemicals, for example can be used for asynthetic rubber, the more important thing is that farnesene is a kind of precursor of good bioenergy method Buddhist nun alkane, there is wide marketable value, be subject in recent years people's extensive concern.
The content of farnesene in plant is very low, cannot come for Chemical market to extract the mode of natural product, thereby utilize production in microorganisms Buddhist nun alkene to seem to become the best mode that people utilize this compound.The microorganism maximum bottleneck that ferments is how to realize industrialization, and industrialized prerequisite is its output, need to meet can industrialized level.But be only cloned into now a few Farmesene synthase, and its protein expression situation in microorganism is all undesirable, utilizes production in microorganisms Buddhist nun alkene slowly to move ahead always, fail to carry out suitability for industrialized production.Existing report (Wang, C., et al., 2011.Metabolic engineering of Escherichia coli for α-farnesene production.Metabolic Engineering.13,648-655) production peak of farnesene is only 0.38g/L.
Summary of the invention
Primary and foremost purpose of the present invention is that the shortcoming that overcomes prior art, with not enough, provides a kind of bacterial strain of producing farnesene.
Another object of the present invention is to provide the application of the bacterial strain of above-mentioned production farnesene.
A further object of the present invention is to provide a kind of method of utilizing above-mentioned bacterial strains to produce farnesene.
The present invention also aims to provide a kind of method that prokaryotic organism produce farnesene ability that improves.
Produce a bacterial strain for farnesene, contain the synthetic genes involved of farnesene that mevalonate pathway (MVA approach) and part or all of codon are optimized, the genes involved of described mevalonate pathway comprises the gene atoB that (1) is acetoacetyl-CoA by acetyl-CoA condensation, (2) the gene erg13 that is HMG-CoA by acetyl-CoA and acetoacetyl-CoA condensation, (3) HMG-CoA is reduced to the gene thmg1 of mevalonic acid, (4) mevalonic acid phosphoric acid is turned to the gene erg12 of mevalonic acid-5-phosphoric acid, (5) mevalonic acid-5-monophosphate monophosphate is turned to the gene erg8 of mevalonate-5-pyrophosphate, (6) gene mvd1 and (7) of mevalonate-5-pyrophosphate decarboxylation generation isopentenylpyrophosphate are tautomerized to isopentenylpyrophosphate to the gene idi of dimethylallylpyrophosphate, the synthetic genes involved of described farnesene comprises that (1) is converted into farnesyl tetra-sodium the gene afs of farnesene by isopentenylpyrophosphate molecule and dimethylallylpyrophosphate molecular combinations with gene ispA and (2) of forming method Thessaloniki tetra-sodium.
The genes involved of described mevalonate pathway is preferably the atoB(CP001509.3:2216470-2217654 that derives from e. coli bl21 (DE3)), idi(CP001509.3:2863926-2864474) and derive from the erg13(329138949:19060-20535 of yeast saccharomyces cerevisiae INVSC1), tHMG1(329138949:115734-117239), erg12(329138949:684467-685798), erg8(329138949:712316-713671), mvd1(329138953:701895-703085).
Described ispA gene is preferably the ispA(CP001509.3:405603-406502 that derives from e. coli bl21 (DE3))
Described afs gene is preferably to derive from the afs gene (Q84LB2) of Malus x domestica (apple) of Malus for carrying out codon optimized obtaining in basis, and its sequence is as shown in SEQ ID NO.1.
Preferably, the bacterial strain of described production farnesene is the intestinal bacteria that contain plasmid pMH1, plasmid pFZ81 and plasmid pFZ38; Described plasmid pMH1 be take pBBR1MCS as skeleton carrier, promotor are as lac promotor, replicon replace with p15A replicon, comprises atoB, erg13 and thmg1 gene, and the sequence of pMH1 (not containing skeleton carrier sequence) is as shown in SEQ ID NO.2; Described plasmid pFZ81 be take the pBBR1MCS replicon that pBBR1MCS-2 carries as plasmid as lac promotor, replicon as skeleton carrier, promotor, comprise erg12, erg8, mvd1 and idi gene, the sequence of pFZ81 (not containing skeleton carrier sequence) is as shown in SEQ ID NO.3; Described plasmid pFZ38 be take pET21a (+) as skeleton carrier, promotor are as T7 promotor, the high copy of replicon pBBR322 replicon, comprises afs and ispA gene, and the sequence of pFZ38 (not containing skeleton carrier sequence) is as shown in SEQ ID NO.4.
Preferred, the bacterial strain of described production farnesene is the intestinal bacteria that contain plasmid pMH1, plasmid pFZ81 and plasmid pFZ71; Described plasmid pFZ71 take pET21a (+) as skeleton carrier, promotor be T7 promotor, the high copy of replicon pBBR322 replicon, comprise afs, ispA and idi gene, the sequence of pFZ71 (not containing skeleton carrier sequence) is as shown in SEQ ID NO.5.
The application of the bacterial strain of above-mentioned production farnesene in producing farnesene.
The method of utilizing the bacterial strain of above-mentioned production farnesene to produce farnesene, comprises following steps: by the bacterial strain seed liquor access carbonaceous sources of above-mentioned production farnesene substratum in carry out prokaryotic expression and obtain farnesene.
During prokaryotic expression, add after inductor IPTG2-4 hour and add again n-decane to carry out biphasic fermentation.
During prokaryotic expression, the ratio of synthetic each albumen of farnesene of MVA approach is preferably AtoB: ERG13: tHMG1: ERG12: ERG8: MVD1: Idi: IspA: AFS=1-56: 2-16: 2-30: 1-5: 1-5: 2-20: 4-600: 20-40: 2-11; Preferred, AtoB: ERG13: tHMG1: ERG12: ERG8: MVD1: Idi: IspA: AFS=1: 10: 2: 5: 5: 2: 5: 2: 2.
Improve the method that prokaryotic organism produce farnesene ability, codon optimized by the synthetic genes involved of farnesene is carried out, comprise afs, erg8, the genes such as erg12 and erg13; Or make more to approach optimized proportion AtoB: ERG13: tHMG1: ERG12: ERG8: MVD1: Idi: IspA: AFS=1 by the ratio of synthetic each albumen of farnesene of MVA approach: 10: 2: 5: 5: 2: 5: the further transformation of 2: 2; Or cross one or more gene of appointing of expressing in idi, erg8, mvd1, erg13, erg12 and thmg1 and can realize.
The present invention has the following advantages and effect with respect to prior art tool:
In metabolic pathway, each albumen is not to be only the most efficient according to mole situation of grade, but should maximize according to a certain percentage speed of reaction, the present invention utilizes reconstruction in vitro architectural study to determine that the optimum proportion of synthetic each albumen of farnesene of MVA approach is AtoB: ERG13: tHMG1: ERG12: ERG8: MVD1: Idi: IspA: AFS=1: 10: 2: 5: 5: 2: 5: 2: 2, then pass through the synthetic biology means transformation of rationality more and by MVA approach, produce the ratio of each albumen of farnesene, by controlling the ratio of these albumen, within the shortest time, can improve fast the output of farnesene, the method utilizes the expressing quantity on randomly changing metabolic pathway to have more targeted than traditional genetically engineered, thereby test rationality more, fast, effectively.The present invention simultaneously, by codon optimized synthetic farnesene synthesis related gene afs, can more easily express these genes in heterologous host.By these technology, make more than farnesene shaking flask output reaches 1g/L, to there is good industrial applicability prospect.
Accompanying drawing explanation
Fig. 1 is mevalonate pathway schematic diagram.
Fig. 2 is farnesene route of synthesis schematic diagram.
Fig. 3 is that Idi is beneficial to terpenoid production schematic diagram.
Fig. 4 is the affect figure of synthetic each albumen optimized proportion of farnesene of MVA approach on speed of reaction.
Fig. 5 is plasmid pMH1 schematic diagram.
Fig. 6 is plasmid pFZ81 schematic diagram.
Fig. 7 is plasmid pFZ35 schematic diagram.
Fig. 8 is plasmid pFZ38 schematic diagram.
Fig. 9 is plasmid pFZ71 schematic diagram.
Figure 10 is farnesene producing bacterial strain of the present invention (F0, F1 and F5) schematic diagram, and F0 produces farnesene by MEP approach, and F1 and F5 produce farnesene by MEP and MVA approach.
Figure 11 is that farnesene producing bacterial strain of the present invention (F0, F1 and F5) shake flask fermentation is produced farnesene result figure.
Embodiment
Following examples are used for further illustrating the present invention, but should not be construed as limitation of the present invention.If do not specialize, the conventional means that in embodiment, technique means used is well known to those skilled in the art.
By the corresponding gene that increases, built the mevalonate pathway for escherichia coli expression from intestinal bacteria and genes of brewing yeast group DNA.With producing the path of farnesene by codon optimized and synthetic the structure from Isoprenoid (IPP) and dimethylallyl tetra-sodium (DMAPP) of gene, and realized recombination bacillus coli High-efficient Production farnesene.Correlated response approach is shown in Fig. 1 and Fig. 2.
In embodiment, primer used is as shown in table 1:
The list of table 1 primer
Embodiment 1 reconstruction in vitro system optimization mevalonate pathway
Method (the Yu that reconstruction in vitro system experimental technique is set up with people such as Yu in 2011, X., et al., 2011.In vitro reconstitution and steady-state analysis of the fatty acid synthase from Escherichia coli.Proceedings of the National Academy of Sciences.108, 18643-18648.), by the research of each albumen of mevalonate pathway is shown to increase ERG13, ERG8, IspA and Idi produce and have promoter action terpenoid, the effect that particularly increases Idi is (Fig. 3) more obviously, the optimized proportion of synthetic each albumen of farnesene of MVA approach that reconstruction in vitro experiment obtains is AtoB: ERG13: tHMG1: ERG12: ERG8: MVD1: Idi: IspA: AFS=1: 10: 2: 5: 5: 2: 5: 2: 2, compare with equimolar each albumen, speed of reaction be significantly improved (Fig. 4).
Embodiment 2 mevalonate pathway plasmid constructions
With the Blood and Cell Culture DNA Mini Kit of Qiagen company, purify and obtain e. coli bl21 (DE3) genomic dna and yeast saccharomyces cerevisiae INVSC1 genomic dna.
Plasmid pMH1 contains first three gene of mevalonate pathway: the atoB gene (acetoacetyl-CoA thioesterase) that derives from e. coli bl21 (DE3), derive from the erg13(HMG-CoA synthase of yeast saccharomyces cerevisiae INVSC1,3-methylol-glutaryl coenzyme A synthase) and thmg1(HMG-CoA reductase enzyme, 3-methylol-glutaryl CoA-reductase, the cross-film region of having deleted HMG1).Plasmid pFZ81 contains four genes after mevalonate pathway: the erg12(Mevalonic kinase that derives from yeast saccharomyces cerevisiae INVSC1), erg8(mevalonic acid-5-phosphokinase) and mvd1(mevalonate-5-pyrophosphate kinases), derive from the idi(isopentenylpyrophosphate isomerase of e. coli bl21 (DE3)) gene.All genes all obtain by pcr amplification, and the primer is in Table 1.
Concrete construction process is as follows:
(1) structure of plasmid pMH1
First utilize simple cloning method (You, C., et al., 2012.Simple Cloning via Direct Transformation of PCR Product (DNA Multimer) to Escherichia coli and Bacillus subtilis.Applied and environmental microbiology.78,1593-1595.), the replicon of pBBR1MCS plasmid is replaced with to the p15A replicon that derives from pMSD15 plasmid.The plasmid pBBR1MCS of take increases and obtains pBBR1MCS fragment with primer pBBR1MCS1-p15A-f and pBBR1MCS1-p15A-r as template, p15A replicon obtains p15A fragment with primer p15A-f and p15A-r amplification (primer sequence is in Table 1) simultaneously, after PCR product purification, with Nanodrop, measure DNA concentration, then the p15A fragment of 20ng pcr amplification and equimolar pBBR1MCS fragment are mixed, through one, take turns pcr amplification, amplification condition is: 98 ℃, 2min denaturation, then 30 PCR circulate 98 ℃, 20s; 60 ℃, 20s; 72 ℃, 6min, last 72 ℃ are fully extended 10min.Transform subsequently E.colistrain XL1 blue and obtain plasmid pBBR1MCS/p15A.
With primer pBBR1MCS1-f and pBBR1MCS1-r, take pBBR1MCS/p15A as template amplification pMH1 plasmid skeleton, use AtoB-f, AtoB-r simultaneously; ERG13-f, ERG13-r; THMG1-f, tHMG1-r is primer amplification corresponding gene.After PCR product purification, get 50ng pMH1 plasmid skeleton and equimolar each gene amplification product mixing, and adjust volume to 5 μ L with deionized water, be added to subsequently the Gibson damping fluid (Gibson of 15 μ L, D.G., 2011.Enzymatic assembly of overlapping DNA fragments.Methods Enzymol.498, 349-361.) in mix, after 50 ℃ of reaction 1h, transform E.colistrain XL1 blue, picking clone, and positive colony order-checking is obtained to plasmid pMH1, this plasmid schematic diagram as shown in Figure 5, sequence (not containing skeleton carrier sequence) is as shown in SEQ ID NO.2.What this plasmid controlling gene was expressed is the lac promotor of medium tenacity, and plasmid replicon is p15A replicon.
(2) structure of plasmid pFZ81
With primer pBBR1MCS2-f and pBBR1MCS2-r, take pBBR1MCS-2 as template amplification pFZ81 plasmid skeleton, use ERG12-f, ERG12-r simultaneously; ERG8-f, ERG8-r; MVD1-f, MVD1-r; Idi-f, Idi-r is primer amplification corresponding gene.After PCR product purification, get 50ng pFZ81 plasmid skeleton and equimolar each gene amplification product mixing, and adjust volume to 5 μ L with deionized water, be added to subsequently in the Gibson damping fluid of 15 μ L and mix, after 50 ℃ of reaction 1h, transform E.colistrain XL1 blue, picking clone, and positive colony order-checking is obtained to plasmid pFZ81, as shown in Figure 6, sequence (not containing skeleton carrier sequence) is as shown in SEQ ID NO.3 for this plasmid schematic diagram.What this plasmid controlling gene was expressed is the lac promotor of medium tenacity, and plasmid replicon is pBBR1MCS replicon.
Embodiment 3 farnesenes produce pathways metabolism plasmid construction
The afs gene that derives from Malus Malus x domestica carries out gene synthetic (sequence is as shown in SEQ ID NO.1) after Nanjing Genscript Biotechnology Co., Ltd. is codon optimized, by NdeI and XhoI restriction enzyme site, be inserted in plasmid pET21a (+) subsequently, acquisition can be produced plasmid pFZ35(Fig. 7 of farnesene).
After IspA gene increase from genome of E.coli DNA with primer I spA-BamHI and IspA-EcoRI-SpeI, after cutting, BamHI and EcoRI enzyme be inserted into acquisition pFZ32 in plasmid pET28a (+).Then by deriving from XbaI-XhoI fragment that pFZ32 contains ispA and be inserted in the SpeI-XhoI fragment of pFZ35, obtain plasmid pFZ38, as shown in Figure 8, sequence (containing skeleton carrier sequence) is as shown in SEQ ID NO.4 for this plasmid schematic diagram.
Idi gene be take BL21 (DE3) genomic dna and is passed through pcr amplification (primer I di-NdeI, Idi-XhoI is in Table 1) as template, and then, by NdeI, XhoI enzyme is inserted into the pET28a(+ cutting through same enzyme after cutting) on plasmid, obtain plasmid pET28-Idi.By deriving from pET28-Idi plasmid XbaI-XhoI fragment containing Idi gene, be inserted in pFZ38 and obtain plasmid pFZ71, as shown in Figure 9, sequence (containing skeleton carrier sequence) is as shown in SEQ ID NO.5 for this plasmid schematic diagram.PFZ35, pFZ38, pFZ71 all be take pET21a(+) and be plasmid skeleton, promotor is T7 strong promoter, replicon is the high copy of pBBR322 replicon.
Embodiment 4 farnesenes produce the structure of bacterium
Directly plasmid pFZ35 is proceeded in e. coli bl21 (DE3), obtain bacterial strain BL21 (DE3)/pFZ35, called after bacterial strain F0.
Utilizing bacterial strain background MEP approach (non-mevalonate pathway) to produce farnesene proceeds to two plasmid pMH1 of mevalonate pathway and pFZ81 simultaneously and in e. coli bl21 (DE3), obtains BL21 (DE3)/pMH1/pFZ81, called after PS(parent strain).PFZ38 and pFZ71 are transformed respectively and entered in bacterial strain PS, obtain bacterial strain F1 and F5.The schematic diagram of bacterial strain F0, F1 and F5 as shown in figure 10.
Embodiment 5 shake flask fermentations are produced farnesene
Respectively single bacterium colony of picking ten F0, F1 and F5 bacterial strain is to containing 2%(v/v) in 2 * TY substratum of glycerine (containing 100 μ g/mL penbritins, 50 μ g/mL kantlex and 34 μ g/mL paraxin) simultaneously, in 30 ℃, 220rpm incubated overnight, subsequently by 1%(v/v) inoculum size is inoculated in fresh same substratum 30 ℃, and 220rpm continues to be cultured to OD 600be about at 0.6~0.8 o'clock, adding final concentration is that the IPTG of 0.1mM carries out abduction delivering, adds inductor after 3 hours, adds the n-decane of 1/5 culture volume to carry out biphasic fermentation.After abduction delivering, according to the time point of setting, sample, be sampled as n-decane phase 1mL at every turn, substratum 5mL, collects supernatant after the centrifugal 3min of n-decane phase 8000g and carries out GC-MS analysis, calculates percentage extraction with β-farnesene (sigma) simultaneously.GC-MS analysis condition is as follows: GC-MS is that Agilent 7890A gas-chromatography is equipped with 5975MS, gas chromatographic column is HP-5 post (30m*0.32mm*25 μ m), each sample introduction 1 μ L that analyzes, GC condition is 80 ℃ and maintains 1 minute, the speed of 10 ℃/min is warmed up to 160 ℃, then is warmed up to 260 ℃ with the speed of 20 ℃/min.β-the farnesene of usining carries out quantitatively as standard substance drawing standard curve, result is as shown in figure 11: the generation of farnesene in bacterial strain F0 fermented liquid, can be detected, but underproduce 1mg/L, and F1 and F5 output obviously improve, induce latter 48 hours farnesene output to be respectively 0.2g/L, 1.1g/L is follow-up still to be continued to increase.
Conclusion:
(1) four strain bacterium all can produce farnesene, proves that the recombinant bacterial strain that utilizes mevalonate pathway and non-mevalonate pathway (MEP approach) to produce farnesene that we build is feasible.
(2) F1 bacterial strain output is the more than 400 times of F0 bacterial strain output, proves that the mevalonate pathway that we build is relatively efficient.
(3) F5 bacterial strain output is 50 times of F1 bacterial strain output, proves that overexpression Idi albumen can significantly improve the amount of farnesene.
Embodiment 6 shake flask fermentations are produced each protein quantification of farnesene by MVA approach
It is the same that F1 and F5 cultivate inductive condition, and 100mL bacterium liquid was as a child got in IPTG induction 20, centrifugal collection thalline, and thalline is resuspended in 100mM NH 4hCO 3in solution, with Ultrasonic Cell Disruptor smudge cells (pulse 5s, stops 8s, and ultrasonic time is 8min).4 ℃ of centrifugal 30min of 10000g of broken liquid, draw 4 ℃ of supernatants, and 200000g ultracentrifugation 2h carefully draws supernatant to new 1.5mL centrifuge tube, every pipe packing 100 μ L, and after liquid nitrogen flash freezer ,-80 ℃ save backup.With the mass spectrum that utilizes of Keasling group report, carry out protein quantification method (Redding-Johanson subsequently, A.M., et al., 2011.Targeted proteomics for metabolic pathway optimization:application to terpene production.Metabolic Engineering.13,194-203.) to each protein quantification in MVA approach.
Protein quantification result shows that in the synthetic farnesene of MVA approach, each albumen ratio is:
AtoB in F1 bacterial strain: ERG13: tHMG1: ERG12: ERG8: MVD1: Idi: IspA: AFS=10: 16: 2: 1.6: 1: 19: 4: 25: 11;
AtoB in F5 bacterial strain: ERG13: tHMG1: ERG12: ERG8: MVD1: Idi: IspA: AFS=56: 2: 30: 2: 1: 2: 600: 40: 3;
The optimized proportion AtoB that this and reconstruction in vitro system obtain: ERG13: tHMG1: ERG12: ERG8: MVD1: Idi: IspA: AFS=1: 10: 2: 5: 5: 2: 5: also have certain distance at 2: 2, illustrate that the bacterial strain building does not also reach perfect condition, also have very large production potential to have to be developed, can towards albumen optimized proportion, transform by further transformation.
Above-described embodiment is preferably embodiment of the present invention; but embodiments of the present invention are not restricted to the described embodiments; other any do not deviate from change, the modification done under spirit of the present invention and principle, substitutes, combination, simplify; all should be equivalent substitute mode, within being included in protection scope of the present invention.
SEQUENCE LISTING
<110> Wuhan University
<120> bacterial strain and application thereof of producing farnesene
<130> 1
<160> 31
<170> PatentIn version 3.5
<210> 1
<211> 1745
<212> DNA
<213> Artificial Sequence
<220>
<223> AFS(opti) sequence
<400> 1
catatggaat ttcgtgtcca cctgcaagcc gataatgaac aaaaaatctt tcaaaaccaa 60
atgaagccgg aaccggaagc ctcctacctg attaatcaac gtcgctccgc gaactacaag 120
ccgaatattt ggaagaacga ttttctggac cagtccctga tctcaaaata tgatggtgac 180
gaataccgta aactgtcgga aaagctgatc gaagaagtga aaatttacat cagcgcggaa 240
accatggatc tggttgccaa actggaactg attgacagcg tccgtaagct gggcctggca 300
aacctgtttg aaaaagaaat caaggaagct ctggattcga ttgcggccat cgaaagcgac 360
aacctgggta cccgcgatga cctgtatggc acggcgctgc attttaaaat tctgcgtcaa 420
cacggttaca aggtttcgca ggatatcttt ggtcgcttca tggacgaaaa aggcaccctg 480
gaaaatcatc acttcgcgca tctgaagggc atgctggaac tgtttgaagc cagcaacctg 540
ggtttcgaag gcgaagatat tctggacgaa gcgaaagcct ctctgacgct ggccctgcgt 600
gatagtggtc acatctgcta tccggattcg aatctgagcc gcgacgtggt tcattccctg 660
gaactgccgt cacaccgtcg cgttcaatgg tttgatgtca aatggcagat taatgcatac 720
gaaaaggata tctgtcgtgt gaacgcaacc ctgctggaac tggctaaact gaacttcaat 780
gtcgtgcagg ctcaactgca gaagaacctg cgtgaagcga gccgttggtg ggctaatctg 840
ggtattgcgg ataacctgaa atttgcacgt gaccgcctgg ttgaatgctt cgcatgtgct 900
gttggcgtcg cttttgaacc ggaacatagc tctttccgca tttgcctgac caaagtcatc 960
aatctggtgc tgattatcga tgacgtctat gatatttacg gttctgaaga agaactgaaa 1020
cactttacca acgcagtgga tcgttgggac agtcgcgaaa cggaacaact gccggaatgc 1080
atgaaaatgt gtttccaggt gctgtataac accacgtgtg aaattgcccg tgaaatcgaa 1140
gaagaaaacg gctggaatca agtcctgccg cagctgacca aagtgtgggc cgatttttgc 1200
aaggcactgc tggttgaagc tgaatggtat aataaatccc atattccgac gctggaagaa 1260
tacctgcgca acggttgtat cagttcctca gtgtcagttc tgctggtcca tagctttttc 1320
agcattaccc acgaaggcac gaaagaaatg gcggatttcc tgcacaagaa tgaagacctg 1380
ctgtataaca tttctctgat cgtgcgtctg aacaatgatc tgggtacctc cgcagctgaa 1440
caggaacgcg gcgattcacc gtcgagcatc gtgtgctaca tgcgtgaagt taatgcgagt 1500
gaagaaacgg cccgcaaaaa cattaagggt atgatcgata atgcgtggaa aaaggtgaac 1560
ggcaaatgtt ttaccacgaa tcaggttccg tttctgtcta gtttcatgaa caatgccacc 1620
aacatggcgc gcgttgccca tagcctgtat aaagatggcg acggtttcgg cgatcaagaa 1680
aaaggtccgc gtacccacat cctgagcctg ctgttccaac cgctggtcaa ctaactagtc 1740
tcgag 1745
<210> 2
<211> 4515
<212> DNA
<213> Artificial Sequence
<220>
<223> pMH1 sequence (not containing skeleton carrier sequence)
<400> 2
gcgcgtaata cgactcacta tagggcgaat tggagctcca ccgcggtggc ggccgctcta 60
gaactagtgg atccttagga tttaatgcag gtgacggacc catctttcaa acgatttata 120
tcagtggcgt ccaaattgtt aggttttgtt ggttcagcag gtttcctgtt gtgggtcata 180
tgactttgaa ccaaatggcc ggctgctagg gcagcacata aggataattc acctgccaag 240
acggcacagg caactattct tgctaattga cgtgcgttgg taccaggagc ggtagcatgc 300
gggcctctta cacctaataa gtccaacatg gcaccttgtg gttctagaac agtaccacca 360
ccgatggtac ctacttcgat ggatggcatg gatacggaaa ttctcaaatc accgtccact 420
tctttcatca atgttataca gttggaactt tcaacatttt gtgcaggatc ttgtcctaat 480
gccaagaaaa cagctgtcac taaattagct gcatgtgcgt taaatccacc aacagaccca 540
gccattgcag atccaaccaa attcttagca atgttcaact caaccaatgc ggaaacatca 600
ctttttaaca cttttctgac aacatcacca ggaatagtag cttctgcgac gacactctta 660
ccacgacctt cgatccagtt gatggcagct ggtttttttg tcggtacagt agttaccaga 720
aacggagaca acctccatat cttcccagcc atactcttct accatttgct ttaatgagta 780
ttcgacacct ttagaaatca tattcatacc cattgcgtca ccagtagttg ttctaaatct 840
catgaagagt aaatctcctg ctagacaagt ttgaatatgt tgcagacgtg caaatcttga 900
tgtagagtta aaagcttttt taattgcgtt ttgtccctct tctgagtcta accatatctt 960
acaggcacca gatcttttca aagttgggaa acggactact gggcctcttg tcataccatc 1020
cttagttaaa acagttgttg caccaccgcc agcattgatt gccttacagc cacgcatggc 1080
agaagctacc aaacaaccct ctgtagttgc cattggtata tgataagatg taccatcgat 1140
aaccaagggg cctataacac caacgggcaa aggcatgtaa cctataacat tttcacaaca 1200
agcgccaaat acgcggtcgt agtcataatt tttatatggt aaacgatcag atgctaatac 1260
aggagcttct gccaaaattg aaagagcctt cctacgtacc gcaaccgctc tcgtagtatc 1320
acctaatttt ttctccaaag cgtacaaagg taacttaccg tgaataacca aggcagcgac 1380
ctctttgttc ttcaattgtt ttgtatttcc actacttaat aatgcttcta attcttctaa 1440
aggacgtatt ttcttatcca agctttcaat atcgcgggaa tcatcttcct cactagatga 1500
tgaaggtcct gatgagctcg attgcgcaga tgataaactt ttgactttcg atccagaaat 1560
gactgtttta ttggttaaaa cgaattcgga tccgcgaccc atttgctgtc caccagtcat 1620
gctagccata tggctgccgc gcggcaccag gccgctgctg tgatgatgat gatgatggct 1680
gctgcccata gtgtaatcct ccttattttt taacatcgta agatcttcta aatttgtcat 1740
cgatgttggt caagtagtaa acaccacttt gcaaatgctc aatggaacct tgaggtttga 1800
agttcttctt caaatgggca ttttctctca attcgatggc agcttcgtaa tcctttggag 1860
tttcggtgat tctcttggct aatttgttag taatatctaa ttccttgata atatgttgga 1920
cgtcaccaac aattttgcaa gaatatagag atgcagctaa accggaaccg taagaaaata 1980
aaccaacacg cttgccttgt aagtcgtcag atccaacata gtttaataga gatgcaaagg 2040
cggcataaac agatgcggtg tacatgttac ctgtgtttgt tggaacaatc aaagattggg 2100
caactctctc tttgtggaat ggcttagcaa cattaacaaa agttttttca atgttcttat 2160
cggttaaaga ttcgtcataa tcgcgagtag ctaattcggc gtcaacttct gggaacaatt 2220
gaggattggc tctgaaatcg ttatatagta atctaccgta tgattttgtg accaatttac 2280
aggttggaac atggaaaacg ttgtagtcga aatatttcaa aacgttcaaa gcatccgaac 2340
cagcgggatc gctaaccaac cctttagaaa tagccttctt ggaataactc ttgtaaactt 2400
gatcaagagc cttgacgtaa caagttaatg aaaaatgacc atcgacgtaa ggatattcgc 2460
tggtgaaatc tggcttgtaa aaatcgtagg cgtgttccat gtaagaagct cttacagagt 2520
caaatacaat tggagcatca ggaccgatcc acatagcaac agtaccggca ccaccggttg 2580
gtcttgcggc acccttatcg tagatggcaa tatcaccgca aactacaatg gcgtctctac 2640
catcccatgc gttagattca atccagttca aagagttgaa caacgcgttg gtaccaccgt 2700
aacaggcatt aagcgtgtca ataccttcga cgtcagtgtt ttcaccaaac aattgcatca 2760
agacagactt gacagacttg gacttgtcaa tcagagtttc agtaccgact tctaatctac 2820
caattttgtt ggtgtcgatg ttgtaactct tgatcaactt agacaaaaca gttagggaca 2880
tcgagtagat atcttctctg tcattgacaa aagacatgtt ggtttggccc agaccaattg 2940
tgtatttacc ttgagaaacg ccatcaaatt tctctagctc agattggttg acacattgag 3000
ttgggatgta aatttggata cctttaatac cgacattttg aggtctggtt ttttgttcag 3060
cggtcttttg tttttttagt tcagtcattt gcaagtttgt attgtgtaat tgttgttgct 3120
tttgcggcct aagtcttcct ttaataccac accaacaaag tttagttgag agtttcattt 3180
agctgtcctc cttaattcaa ccgttcaatc accatcgcaa ttccctgacc gccgccaatg 3240
cacagtgttg ccagccccag cgttttatcg cgtgcctgca tggcatgtaa tagtgtgacc 3300
agaatacgag caccactggc accgatagga tgcccgagcg cgatggcccc gccgttgaca 3360
ttcactttct cagaatcaaa gcccaggttt ttcccaacgg caaggaactg tgcagcaaat 3420
gcttcattag cctcaatgag atcaatatcc gccagttgca gccccgccag ttgtaacgct 3480
ttttgcgtgg caggtactgg ccccataccc atcaatgcgg ggggcacgcc accgctggca 3540
taacttttaa tgcgagccag gggggtaagg cctgctgcca gcgccgcaga ttcttccata 3600
atcaccagag cggcagcacc gtcgttaata ccagacgcgt tcccagcggt gactgttcct 3660
gctttatcga aggccgggcg caatgcacct aacgcttcag ccgttgaatt cgctttcggg 3720
aattcgtctt gactgaagac gaaggttttc tttcgagtga caacatttac cgggacgatt 3780
tcggctgtaa aagcaccgga ctcaattgcg gctgccgctt tacgctgtga atgtagcgcc 3840
agttcatcct gcatttcacg ggtaattccg tactctttag ccacgttttc ggcggtaatc 3900
cccatatgat aaccatgggt ggcgcacatc aggccatcgc gcaggattac gtcataaacc 3960
tgtccgtctc caagacgata accagagcgt gcttttgcat cgagtaagta gggggctaaa 4020
ctcatatttt ccataccccc cgccacaatg ctctgcgcct gacctgcctg aatggcctgg 4080
gcggcaagcg ccacactttt aagacccgaa ccacatactt tattgaccgt gaatccgcac 4140
accgtttctg ccagcccgct ttttaacagt gcctgacgcg ccggattttg ccccagcccg 4200
gcttgtaaca cgttacccat aatcacttca tcaacgtgtt gtgaatcgat ttttgcacgt 4260
tcaatggcgg ctttaattac tgtcgccccc aggtcgatgg cgctggtgga agcgagtgaa 4320
ccgttaaaac taccgatagc agtacgtacc gcactgacga tgacacaatt tttcatttta 4380
tattcctcct agtcgactct agaggatccc cgggctgcag gaattcgata tcaagcttat 4440
cgataccgtc gacctcgagg gggggcccgg tacccagctt ttgttccctt tagtgagggt 4500
taattgcgcg ctggg 4515
<210> 3
<211> 4667
<212> DNA
<213> Artificial Sequence
<220>
<223> pFZ81 sequence (not containing skeleton carrier sequence)
<400> 3
cgcgcgtaat acgactcact atagggcgaa ttggagctct tatttaagct gggtaaatgc 60
agataatcgt tttctggctt cgcgatttgt cgcctgcatc accatccacg gactgaacgc 120
ccacggcgtg gcatcaatac cgtgtaatac atctgctaaa tcacaccatt gataatccat 180
cacttcatca tcattgatct gtaacgcact agtggtgcgt gcggcaaata ccggacacac 240
ttcattttcc acaatgccac tcggatcggt ggcgcggtag cgaaagtcag gatagataga 300
ttcaggaggc gtaatttcca cgccaagctc ataacggcaa cggcggatca ctgcgtcttc 360
gttgctttct cccagttgtg ggtgcccaca aaccgagtta gtccacacgc caggccatgc 420
ttttttgctc agtgcgcggc gggtaactaa taattgtcct ttggcattaa acagccaact 480
ggagaacgcg agatgtaagc gggtgtctgc cgtgtgtgcg gcatactttt ccagcgtacc 540
cgtgggaact ccctgtgcat tcaataaaat gacgtgttcc gtttgcatat ggctgccgcg 600
cggcaccagg ccgctgctgt gatgatgatg atgatggctg ctgcccatat agtaatcctc 660
ctcccgggct gcagttattc ctttggtaga ccagtctttg cgtcaatcaa agattcgttt 720
gtttcttgtg ggcctgaacc gacttgagtt aaaatcactc tggcaacatc cttttgcaac 780
tcaagatcca attcacgtgc agtaaagtta gatgattcaa attgatggtt gaaagcctca 840
agctgctcag tagtaaattt cttgtcccat ccaggaacag agccaaacaa tttatagata 900
aatgcaaaga gtttcgactc attttcagct aagtagtaca acacagcatt tggacctgca 960
tcaaacgtgt atgcaacgat tgtttctccg taaaactgat taatggtgtg gcaccaactg 1020
atgatacgct tggaagtgtc attcatgtag aatattggag ggaaagagtc caaacatgtg 1080
gcatggaaag agttggaatc catcattgtt tcctttgcaa aggtggcgaa atctttttca 1140
acaatggctt tacgcatgac ttcaaatctc tttggtacga catgttcaat tctttcttta 1200
aatagttcgg aggttgccac ggtcaattgc ataccctgag tggaactcac atccttttta 1260
atatcgctga caactaggac acaagctttc atctgaggcc agtcagagct gtctgcgatt 1320
tgtactgcca tggaatcatg accatcttca gcttttccca tttcccaggc cacgtatccg 1380
ccaaacaacg atctacaagc tgaaccagac ccctttcttg ctattctaga tatttctgaa 1440
gttgactgtg gtaattggta taacttagca attgcagaga ccaatgcagc aaagccagca 1500
gcggaggaag ctaaaccagc tgctgtagga aagttatttt cggagacaat gtggagtttc 1560
cattgagata atgtgggcaa tgaggcgtcc ttcgattcca tttcctttct taattggcgt 1620
aggtcgcgca gacaattttg agttctttca ttgtcgatgc tgtgtggttc tccatttaac 1680
cacaaagtgt cgcgttcaaa ctcaggtgca gtagccgcag aggtcaacgt tctgaggtca 1740
tcttgcgata aagtcactga tatggacgaa ttggtgggca gattcaactt cgtgtccctt 1800
ttcccccaat acttaagggt tgcgatgttg acgggtgcgg taacggatgc tgtgtaaacg 1860
gtcatgagta ttacctccta tttatcaaga taagtttccg gatctttttc tttcctaaca 1920
ccccagtcag cctgagttac atccagccat tgaaccttag aaaatctttt gtcattagcg 1980
gtttgagccc taagatcaac atcttgctta gtaatcactg caatggcgtc ataaccacca 2040
gcaccaggta ttaagcaagt aagaactcct tttaaggtct ggcaatcatc caataagcta 2100
gtttgtacgg gaggttcgat atcggcacca gattctttag ttatttttct aaaggaacgt 2160
ctaattgtgg caactgcatc tctaacttct gtgatttcag gatacttttg acaggtacag 2220
tcattcctct caagagactc aaatatctga tcgctgtaat cgtcatgagt ctcgtgtaag 2280
cgatctagtt tagatagtcc atccataaat ctagaatttg catgatcgag ttctgtatat 2340
attttcaagc tttctggcat atgcgaatca taccaatttt ttaccttctg gaccagtttt 2400
actgtttctg aaccattctt aatatcgccc atccataaag ttaatcccga aggtaaatgg 2460
ttacttttaa tcgtaatatt ccagtcttct tcatcaacca aatgcgccag tttactgccg 2520
taagtagcac ttccaatatc tggcaaatta gagattaatg cgggtgggaa tcttctatat 2580
ctgatagatc catatgctgc cgccgctaca tcaaacccgc ttccaatttt accctgagct 2640
tgacaatgag caacttgtgc taaattatga ataacttctc tatatttgtc tacattattt 2700
tccaggtccg atacaaaaaa ggaggccaaa gctgtagtta aaactgtgac taaacctgcc 2760
gaggagccca gccctgtttt gggaacttct tcaattctgt gcgaatgaaa actcaatctt 2820
ctgttgccac gatgttcggt aacgctatcc tcctgagaat ggtaggcatc atcagagaaa 2880
atatcaataa cgaacaagtt tctattgcag tagtcgtcca tgttaggttt aaagtagcta 2940
aatacgttag cgataacttt ttcaatgaaa gggttcttag atccgcctat cgaaacagga 3000
atgaagccac ttttaggact tatatggtac agccactccc catctttaaa ttgtttactt 3060
ttcacacgca cttcaaactt atcagaccct tgcaatgaac cgtaaggatg ggctacagca 3120
tgcattcttg ccgataatcc gactacaaat gcttcatatt ttgtatctaa aactaaatat 3180
ccaccagcta gtaacgcttt ccctggggca ctgaaggctc tcaactctga catttgatct 3240
gcctcctatg aagtccatgg taaattcgtg tttcctggca ataatagatc gtcaatttgt 3300
tgctttgtgg tagttttatt ttcaaataat tggaatacta gggatttgat tttaggatct 3360
ttattcaaat tttttgcgct taacaaacag cagccagtcc cacccaagtc tgtttcaaat 3420
gtctcgtaac taaaatcatc ttgcaatttc tttttgaaac tgtcaatttg ctcttgagta 3480
atgtctcttc gtaacaaagt caaagagcaa ccgccgccac cagcaccggt aagttttgtg 3540
gagccaattc tcaaatcatc gctcagattt ttaataagtt ctaatccagg atgagaaaca 3600
ccgattgaga caagcagtcc atgatttatt cttatcaatt ccaatagttg ttcatacagt 3660
tcattattag tttctacggc ctcgtcatcg gtgcctttac atttacttaa ctttgtcatg 3720
atctctaagc cttgtagggc acattcaccc atggcatcta gaattggctt cataacttca 3780
ggaaatttct cggtgaccaa cacacgaacg cgagcaacaa gatcttttgt agaccttgga 3840
attctagtat aggttaggat cattggaatg gctgggaaat catctaagaa cttaaaattg 3900
tttgtattta ttgttccatt atgtgagtct ttttcaaata gcagggcatt accataagtg 3960
gccacagcgt tatctattcc tgaaggggta ccgtgaatac acttttcacc tatgaaggcc 4020
cattgattca ctatatgctt atcgttttct gacagctttt ccaagtcatt agatcctatt 4080
aaccccccca agtaggccat agctaaggcc agtgatacag aaatagaggc gcttgagccc 4140
aacccagcac cgatgggtaa agtagacttt aaagaaaact taatattctt ggcatggggg 4200
cataggcaaa caaacatata caggaaacaa aacgctgcat ggtagtggaa ggattcggat 4260
agttgagcta acaacggatc caaaagacta acgagttcct gagacaagcc atcggtggct 4320
tgttgagcct tggccaattt ttgggagttt acttgatcct cggtgatggc attgaaatca 4380
ttgatggacc acttatgatt aaagctaatg tccgggaagt ccaattcaat agtatctggt 4440
gcagatgact cgcttattag caggtaggtt ctcaacgcag acacactagc agcgacggca 4500
ggcttgttgt acacagcaga gtgttcacca aaaataataa cctttcccgg tgcagaagtt 4560
aagaacggta atgacatggt taattcctcc tactgcagga attcgatatc aagcttatcg 4620
ataccgtcga cctcgagggg gggcccggta cccagctttt gttcccc 4667
<210> 4
<211> 2773
<212> DNA
<213> Artificial Sequence
<220>
<223> plasmid pFZ38 sequence (not containing skeleton carrier sequence)
<400> 4
atggaatttc gtgtccacct gcaagccgat aatgaacaaa aaatctttca aaaccaaatg 60
aagccggaac cggaagcctc ctacctgatt aatcaacgtc gctccgcgaa ctacaagccg 120
aatatttgga agaacgattt tctggaccag tccctgatct caaaatatga tggtgacgaa 180
taccgtaaac tgtcggaaaa gctgatcgaa gaagtgaaaa tttacatcag cgcggaaacc 240
atggatctgg ttgccaaact ggaactgatt gacagcgtcc gtaagctggg cctggcaaac 300
ctgtttgaaa aagaaatcaa ggaagctctg gattcgattg cggccatcga aagcgacaac 360
ctgggtaccc gcgatgacct gtatggcacg gcgctgcatt ttaaaattct gcgtcaacac 420
ggttacaagg tttcgcagga tatctttggt cgcttcatgg acgaaaaagg caccctggaa 480
aatcatcact tcgcgcatct gaagggcatg ctggaactgt ttgaagccag caacctgggt 540
ttcgaaggcg aagatattct ggacgaagcg aaagcctctc tgacgctggc cctgcgtgat 600
agtggtcaca tctgctatcc ggattcgaat ctgagccgcg acgtggttca ttccctggaa 660
ctgccgtcac accgtcgcgt tcaatggttt gatgtcaaat ggcagattaa tgcatacgaa 720
aaggatatct gtcgtgtgaa cgcaaccctg ctggaactgg ctaaactgaa cttcaatgtc 780
gtgcaggctc aactgcagaa gaacctgcgt gaagcgagcc gttggtgggc taatctgggt 840
attgcggata acctgaaatt tgcacgtgac cgcctggttg aatgcttcgc atgtgctgtt 900
ggcgtcgctt ttgaaccgga acatagctct ttccgcattt gcctgaccaa agtcatcaat 960
ctggtgctga ttatcgatga cgtctatgat atttacggtt ctgaagaaga actgaaacac 1020
tttaccaacg cagtggatcg ttgggacagt cgcgaaacgg aacaactgcc ggaatgcatg 1080
aaaatgtgtt tccaggtgct gtataacacc acgtgtgaaa ttgcccgtga aatcgaagaa 1140
gaaaacggct ggaatcaagt cctgccgcag ctgaccaaag tgtgggccga tttttgcaag 1200
gcactgctgg ttgaagctga atggtataat aaatcccata ttccgacgct ggaagaatac 1260
ctgcgcaacg gttgtatcag ttcctcagtg tcagttctgc tggtccatag ctttttcagc 1320
attacccacg aaggcacgaa agaaatggcg gatttcctgc acaagaatga agacctgctg 1380
tataacattt ctctgatcgt gcgtctgaac aatgatctgg gtacctccgc agctgaacag 1440
gaacgcggcg attcaccgtc gagcatcgtg tgctacatgc gtgaagttaa tgcgagtgaa 1500
gaaacggccc gcaaaaacat taagggtatg atcgataatg cgtggaaaaa ggtgaacggc 1560
aaatgtttta ccacgaatca ggttccgttt ctgtctagtt tcatgaacaa tgccaccaac 1620
atggcgcgcg ttgcccatag cctgtataaa gatggcgacg gtttcggcga tcaagaaaaa 1680
ggtccgcgta cccacatcct gagcctgctg ttccaaccgc tggtcaacta actagaaata 1740
attttgttta actttaagaa ggagatatac catgggcagc agccatcatc atcatcatca 1800
cagcagcggc ctggtgccgc gcggcagcca tatggctagc atgactggtg gacagcaaat 1860
gggtcgcgga tccatggact ttccgcagca actcgaagcc tgcgttaagc aggccaacca 1920
ggcgctgagc cgttttatcg ccccactgcc ctttcagaac actcccgtgg tcgaaaccat 1980
gcagtatggc gcattattag gtggtaagcg cctgcgacct ttcctggttt atgccaccgg 2040
tcatatgttc ggcgttagca caaacacgct ggacgcaccc gctgccgccg ttgagtgtat 2100
ccacgcttac tcattaattc atgatgattt accggcaatg gatgatgacg atctgcgtcg 2160
cggtttgcca acctgccatg tgaagtttgg cgaagcaaac gcgattctcg ctggcgacgc 2220
tttacaaacg ctggcgttct cgattttaag cgatgccgat atgccggaag tgtcggaccg 2280
cgacagaatt tcgatgattt ctgaactggc gagcgccagt ggtattgccg gaatgtgcgg 2340
tggtcaggca ttagatttag acgcggaagg caaacacgta cctctggacg cgcttgagcg 2400
tattcatcgt cataaaaccg gcgcattgat tcgcgccgcc gttcgccttg gtgcattaag 2460
cgccggagat aaaggacgtc gtgctctgcc ggtactcgac aagtatgcag agagcatcgg 2520
ccttgccttc caggttcagg atgacatcct ggatgtggtg ggagatactg caacgttggg 2580
aaaacgccag ggtgccgacc agcaacttgg taaaagtacc taccctgcac ttctgggtct 2640
tgagcaagcc cggaagaaag cccgggatct gatcgacgat gcccgtcagt cgctgaaaca 2700
actggctgaa cagtcactcg atacctcggc actggaagcg ctagcggact acatcatcca 2760
gcgtaataaa taa 2773
<210> 5
<211> 3422
<212> DNA
<213> Artificial Sequence
<220>
<223> plasmid pFZ71 sequence (not containing skeleton carrier sequence)
<400> 5
atggaatttc gtgtccacct gcaagccgat aatgaacaaa aaatctttca aaaccaaatg 60
aagccggaac cggaagcctc ctacctgatt aatcaacgtc gctccgcgaa ctacaagccg 120
aatatttgga agaacgattt tctggaccag tccctgatct caaaatatga tggtgacgaa 180
taccgtaaac tgtcggaaaa gctgatcgaa gaagtgaaaa tttacatcag cgcggaaacc 240
atggatctgg ttgccaaact ggaactgatt gacagcgtcc gtaagctggg cctggcaaac 300
ctgtttgaaa aagaaatcaa ggaagctctg gattcgattg cggccatcga aagcgacaac 360
ctgggtaccc gcgatgacct gtatggcacg gcgctgcatt ttaaaattct gcgtcaacac 420
ggttacaagg tttcgcagga tatctttggt cgcttcatgg acgaaaaagg caccctggaa 480
aatcatcact tcgcgcatct gaagggcatg ctggaactgt ttgaagccag caacctgggt 540
ttcgaaggcg aagatattct ggacgaagcg aaagcctctc tgacgctggc cctgcgtgat 600
agtggtcaca tctgctatcc ggattcgaat ctgagccgcg acgtggttca ttccctggaa 660
ctgccgtcac accgtcgcgt tcaatggttt gatgtcaaat ggcagattaa tgcatacgaa 720
aaggatatct gtcgtgtgaa cgcaaccctg ctggaactgg ctaaactgaa cttcaatgtc 780
gtgcaggctc aactgcagaa gaacctgcgt gaagcgagcc gttggtgggc taatctgggt 840
attgcggata acctgaaatt tgcacgtgac cgcctggttg aatgcttcgc atgtgctgtt 900
ggcgtcgctt ttgaaccgga acatagctct ttccgcattt gcctgaccaa agtcatcaat 960
ctggtgctga ttatcgatga cgtctatgat atttacggtt ctgaagaaga actgaaacac 1020
tttaccaacg cagtggatcg ttgggacagt cgcgaaacgg aacaactgcc ggaatgcatg 1080
aaaatgtgtt tccaggtgct gtataacacc acgtgtgaaa ttgcccgtga aatcgaagaa 1140
gaaaacggct ggaatcaagt cctgccgcag ctgaccaaag tgtgggccga tttttgcaag 1200
gcactgctgg ttgaagctga atggtataat aaatcccata ttccgacgct ggaagaatac 1260
ctgcgcaacg gttgtatcag ttcctcagtg tcagttctgc tggtccatag ctttttcagc 1320
attacccacg aaggcacgaa agaaatggcg gatttcctgc acaagaatga agacctgctg 1380
tataacattt ctctgatcgt gcgtctgaac aatgatctgg gtacctccgc agctgaacag 1440
gaacgcggcg attcaccgtc gagcatcgtg tgctacatgc gtgaagttaa tgcgagtgaa 1500
gaaacggccc gcaaaaacat taagggtatg atcgataatg cgtggaaaaa ggtgaacggc 1560
aaatgtttta ccacgaatca ggttccgttt ctgtctagtt tcatgaacaa tgccaccaac 1620
atggcgcgcg ttgcccatag cctgtataaa gatggcgacg gtttcggcga tcaagaaaaa 1680
ggtccgcgta cccacatcct gagcctgctg ttccaaccgc tggtcaacta actagaaata 1740
attttgttta actttaagaa ggagatatac catgggcagc agccatcatc atcatcatca 1800
cagcagcggc ctggtgccgc gcggcagcca tatggctagc atgactggtg gacagcaaat 1860
gggtcgcgga tccatggact ttccgcagca actcgaagcc tgcgttaagc aggccaacca 1920
ggcgctgagc cgttttatcg ccccactgcc ctttcagaac actcccgtgg tcgaaaccat 1980
gcagtatggc gcattattag gtggtaagcg cctgcgacct ttcctggttt atgccaccgg 2040
tcatatgttc ggcgttagca caaacacgct ggacgcaccc gctgccgccg ttgagtgtat 2100
ccacgcttac tcattaattc atgatgattt accggcaatg gatgatgacg atctgcgtcg 2160
cggtttgcca acctgccatg tgaagtttgg cgaagcaaac gcgattctcg ctggcgacgc 2220
tttacaaacg ctggcgttct cgattttaag cgatgccgat atgccggaag tgtcggaccg 2280
cgacagaatt tcgatgattt ctgaactggc gagcgccagt ggtattgccg gaatgtgcgg 2340
tggtcaggca ttagatttag acgcggaagg caaacacgta cctctggacg cgcttgagcg 2400
tattcatcgt cataaaaccg gcgcattgat tcgcgccgcc gttcgccttg gtgcattaag 2460
cgccggagat aaaggacgtc gtgctctgcc ggtactcgac aagtatgcag agagcatcgg 2520
ccttgccttc caggttcagg atgacatcct ggatgtggtg ggagatactg caacgttggg 2580
aaaacgccag ggtgccgacc agcaacttgg taaaagtacc taccctgcac ttctgggtct 2640
tgagcaagcc cggaagaaag cccgggatct gatcgacgat gcccgtcagt cgctgaaaca 2700
actggctgaa cagtcactcg atacctcggc actggaagcg ctagcggact acatcatcca 2760
gcgtaataaa taactagaaa taattttgtt taactttaag aaggagatat accatgggca 2820
gcagccatca tcatcatcat cacagcagcg gcctggtgcc gcgcggcagc catatgcaaa 2880
cggaacacgt cattttattg aatgcacagg gagttcccac gggtacgctg gaaaagtatg 2940
ccgcacacac ggcagacacc cgcttacatc tcgcgttctc cagttggctg tttaatgcca 3000
aaggacaatt attagttacc cgccgcgcac tgagcaaaaa agcatggcct ggcgtgtgga 3060
ctaactcggt ttgtgggcac ccacaactgg gagaaagcaa cgaagacgca gtgatccgcc 3120
gttgccgtta tgagcttggc gtggaaatta cgcctcctga atctatctat cctgactttc 3180
gctaccgcgc caccgatccg agtggcattg tggaaaatga agtgtgtccg gtatttgccg 3240
cacgcaccac tagtgcgtta cagatcaatg atgatgaagt gatggattat caatggtgtg 3300
atttagcaga tgtattacac ggtattgatg ccacgccgtg ggcgttcagt ccgtggatgg 3360
tgatgcaggc gacaaatcgc gaagccagaa aacgattatc tgcatttacc cagcttaaat 3420
aa 3422
<210> 6
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> P15A-f
<400> 6
gcattgccgc cgtgggtttc tcgagcgggg cggagatttc ctggaagatg 50
<210> 7
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<223> P15A-r
<400> 7
ggggccactt tttgccggag ctcgagaaat attttatctg attaataaga tg 52
<210> 8
<211> 52
<212> DNA
<213> Artificial Sequence
<220>
<223> pBBR1MCS1-p15A-f
<400> 8
catcttatta atcagataaa atatttctcg agctccggca aaaagtggcc cc 52
<210> 9
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> pBBR1MCS1-p15A-r
<400> 9
catcttccag gaaatctccg ccccgctcga gaaacccacg gcggcaatgc 50
<210> 10
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<223> pBBR1MCS1-f
<400> 10
tttgaaagat gggtccgtca cctgcattaa atcctaagga tccactagtt ctaga 55
<210> 11
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<223> pBBR1MCS1-r
<400> 11
ttttatattc ctcctagtcg actctagagg atccccgggc tgcaggaatt cgatatcaa 59
<210> 12
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<223> atoB-f
<400> 12
cccggggatc ctctagagtc gactaggagg aatataaaat gaaaaattgt gtcatcgtc 59
<210> 13
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> atoB-r
<400> 13
gttgagagtt tcatttagct gtcctcctta attcaaccgt tcaatcacc 49
<210> 14
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> ERG13-f
<400> 14
acggttgaat taaggaggac agctaaatga aactctcaac taaact 46
<210> 15
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> ERG13-r
<400> 15
tggctgctgc ccatagtgta atcctcctta ttttttaaca tcgtaagat 49
<210> 16
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> tHMG1-f
<400> 16
atgttaaaaa ataaggagga ttacactatg ggcagcagcc atcatca 47
<210> 17
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> tHMG1-r
<400> 17
ttaggattta atgcaggtga cgg 23
<210> 18
<211> 59
<212> DNA
<213> Artificial Sequence
<220>
<223> pBBR1MCS2-f
<400> 18
cagaaaacga ttatctgcat ttacccagct taaataagag ctccaattcg ccctatagt 59
<210> 19
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<223> pBBR1MCS2-r
<400> 19
ttaagaacgg taatgacatg gttaattcct cctactgcag gaattcgata tcaag 55
<210> 20
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> ERG12-f
<400> 20
ctgcagtagg aggaattaac catgtcatta ccgttcttaa ct 42
<210> 21
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> ERG12-r
<400> 21
ctcaactctg acatttgatc tgcctcctat gaagtccatg gtaa 44
<210> 22
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> ERG8-f
<400> 22
ttaccatgga cttcatagga ggcagatcaa atgtcagagt tgagagcctt c 51
<210> 23
<211> 53
<212> DNA
<213> Artificial Sequence
<220>
<223> ERG8-r
<400> 23
gatgctgtgt aaacggtcat gagtattacc tcctatttat caagataagt ttc 53
<210> 24
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> MVD1-f
<400> 24
atcttgataa ataggaggta atactcatga ccgtttacac agcatccgtt 50
<210> 25
<211> 55
<212> DNA
<213> Artificial Sequence
<220>
<223> MVD1-r
<400> 25
tgcccatata gtaatcctcc tcccgggctg cagttattcc tttggtagac cagtc 55
<210> 26
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Idi-f
<400> 26
ggaataactg cagcccggga ggaggattac tatatgggca gcagccatca t 51
<210> 27
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Idi-r
<400> 27
ttatttaagc tgggtaaatg caga 24
<210> 28
<211> 58
<212> DNA
<213> Artificial Sequence
<220>
<223> IspA-BamHI
<400> 28
gctagcatga ctggtggaca gcaaatgggt cgcggatcca tggactttcc gcagcaac 58
<210> 29
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> IspA-EcoRI-SpeI
<400> 29
gctagaattc actagttatt tattacgctg gatga 35
<210> 30
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Idi-NdeI
<400> 30
atatcatatg caaacggaac acgtc 25
<210> 31
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Idi-XhoI
<400> 31
tatactcgag ttatttaagc tgggtaaatg 30

Claims (9)

1. produce a bacterial strain for farnesene, it is characterized in that the synthetic genes involved of farnesene that contains mevalonate pathway and part or all of codon optimization; The genes involved of described mevalonate pathway comprises atoB, erg13, thmg1, erg12, erg8, mvd1 and idi gene; The synthetic genes involved of described farnesene comprises ispA and afs gene; Described afs gene codon is optimized, and its sequence is as shown in SEQ ID NO.1.
2. the bacterial strain of production farnesene according to claim 1, is characterized in that: the bacterial strain of producing farnesene is the intestinal bacteria that contain plasmid pMH1, plasmid pFZ81 and plasmid pFZ38 or the intestinal bacteria that contain plasmid pMH1, plasmid pFZ81 and plasmid pFZ71;
Described plasmid pMH1 take pBBR1MCS as skeleton carrier, replicon as p15A, promotor as lac promotor, comprise atoB, erg13 and thmg1 gene;
Described plasmid pFZ81 take pBBR1MCS-2 as skeleton carrier, replicon as pBBR1MCS replicon, promotor as lac promotor, comprise erg12, erg8, mvd1 and idi gene;
Described plasmid pFZ38 take pET21a (+) as skeleton carrier, replicon as pBBR322 high copy replicon, promotor as T7 strong promoter, comprise afs and ispA gene;
Described plasmid pFZ71 take pET21a (+) as skeleton carrier, replicon as pBBR322 high copy replicon, promotor as T7 strong promoter, comprise afs, ispA and idi gene.
3. the bacterial strain of production farnesene according to claim 2, is characterized in that: the sequence of described plasmid pMH1 is as shown in SEQ ID NO.2; The sequence of described plasmid pFZ81 is as shown in SEQ ID NO.3; The sequence of described plasmid pFZ38 is as shown in SEQ ID NO.4; The sequence of described plasmid pFZ71 is as shown in SEQ ID NO.5.
4. the application of the bacterial strain described in claim 1-3 any one in producing farnesene.
5. the method for utilizing the bacterial strain described in claim 1-3 any one to produce farnesene, is characterized in that comprising following steps: by carrying out prokaryotic expression in the substratum of the bacterial strain seed liquor access carbonaceous sources described in claim 1-3 any one, obtain farnesene.
6. the method for production farnesene according to claim 5, is characterized in that: during prokaryotic expression, add after inductor IPTG2-4 hour and add n-decane to carry out biphasic fermentation again.
7. the method for production farnesene according to claim 5, is characterized in that: during prokaryotic expression, each albumen ratio is AtoB: ERG13: tHMG1: ERG12: ERG8: MVD1: Idi: IspA: AFS=1-56: 2-16: 2-30: 1-5: 1-5: 2-20: 4-600: 20-40: 2-11.
8. the method for production farnesene according to claim 5, is characterized in that: during prokaryotic expression, each albumen ratio is AtoB: ERG13: tHMG1: ERG12: ERG8: MVD1: Idi: IspA: AFS=1: 10: 2: 5: 5: 2: 5: 2: 2.
9. improve the method that prokaryotic organism produce farnesene, it is characterized in that comprising following method: the synthetic genes involved AFS of farnesene is carried out codon optimized, the sequence of the AFS gene after optimization is as shown in SEQ ID NO.1; Or make each albumen more approach AtoB: ERG13: tHMG1: ERG12: ERG8: MVD1: Idi: IspA: AFS=1: 10: 2: 5: 5: 2: 5: the further transformation of 2: 2.
CN201310209421.0A 2013-05-30 2013-05-30 Bacterial strain for producing farnesene and application of bacterial strain Active CN103243065B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310209421.0A CN103243065B (en) 2013-05-30 2013-05-30 Bacterial strain for producing farnesene and application of bacterial strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310209421.0A CN103243065B (en) 2013-05-30 2013-05-30 Bacterial strain for producing farnesene and application of bacterial strain

Publications (2)

Publication Number Publication Date
CN103243065A CN103243065A (en) 2013-08-14
CN103243065B true CN103243065B (en) 2014-12-03

Family

ID=48922944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310209421.0A Active CN103243065B (en) 2013-05-30 2013-05-30 Bacterial strain for producing farnesene and application of bacterial strain

Country Status (1)

Country Link
CN (1) CN103243065B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480146A (en) * 2014-11-24 2015-04-01 中国科学院青岛生物能源与过程研究所 Method for producing isoprene by in vitro enzymatic reaction and application of isoprene
WO2018120337A1 (en) * 2016-12-27 2018-07-05 武汉臻智生物科技有限公司 Terpene synthase and use thereof
CN106906201B (en) * 2017-04-10 2020-03-10 武汉大学 Terpenoid synthase for producing nerolidol and application thereof
CN107083378A (en) * 2017-04-10 2017-08-22 武汉大学 A kind of Terpene synthase for producing Longiborneol and its application
CN109234216B (en) * 2017-07-10 2022-05-20 上海医药工业研究院 Genetically engineered bacterium for producing squalene and method thereof
CN109722403B (en) * 2017-10-30 2020-12-04 中国石油化工股份有限公司 Engineering strain and method for preparing farnesene by using cellulose
CN109722404B (en) * 2017-10-30 2021-03-12 中国石油化工股份有限公司 Engineering strain and method for preparing farnesene by using cellulose
CN110468089B (en) * 2018-05-09 2023-07-11 深圳艾格鑫科技有限公司 Microorganism and use thereof
CN110468091B (en) * 2018-05-09 2023-07-11 深圳艾格鑫科技有限公司 Microorganism and use thereof
CN110468090B (en) * 2018-05-09 2023-07-04 深圳艾格鑫科技有限公司 Microorganism and use thereof
CN110964680B (en) * 2018-09-29 2022-06-28 中国石油化工股份有限公司 Engineering strain and method for preparing farnesene by using cellulose
CN110964678B (en) * 2018-09-29 2022-11-11 中国科学院青岛生物能源与过程研究所 Genetically engineered bacterium for synthesizing farnesene and construction method and application thereof
CN109609424B (en) * 2018-12-26 2020-07-31 浙江医药股份有限公司 Escherichia coli for producing farnesene
CN111378691B (en) * 2018-12-29 2022-08-05 中国科学院青岛生物能源与过程研究所 Corn hydrolysate culture medium for producing beta-farnesene through fermentation and application thereof
CN111378587B (en) * 2018-12-29 2022-08-05 中国科学院青岛生物能源与过程研究所 Genetically engineered bacterium for synthesizing beta-farnesene and application thereof
CN111690690B (en) * 2019-03-11 2023-10-20 浙江医药股份有限公司 Saccharomyces cerevisiae for producing farnesene
CN109797173B (en) * 2019-03-27 2022-09-20 山东泓达生物科技有限公司 Production method of beta-farnesene
CN110117624A (en) * 2019-04-02 2019-08-13 天津大学 The method for preparing farnesene using gutter oil bioanalysis
CN115216464A (en) * 2021-04-19 2022-10-21 武汉合生科技有限公司 Recombinant microorganism for obtaining alpha-farnesene and beta-farnesene and construction method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1394233A (en) * 2000-10-06 2003-01-29 札幌啤酒株式会社 Farnesyl pyrophosphate synthase protein, nucleic acid and promoter region thereof
CN101484584A (en) * 2006-05-26 2009-07-15 阿米瑞斯生物技术公司 Production of isoprenoids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1394233A (en) * 2000-10-06 2003-01-29 札幌啤酒株式会社 Farnesyl pyrophosphate synthase protein, nucleic acid and promoter region thereof
CN101484584A (en) * 2006-05-26 2009-07-15 阿米瑞斯生物技术公司 Production of isoprenoids

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fayin Zhu et al..In Vitro Reconstitution of Mevalonate Pathway and Targeted Engineering of Farnesene Overproduction in Escherichia coli.《Synthetic Biology》.2014,全文. *
In Vitro Reconstitution of Mevalonate Pathway and Targeted Engineering of Farnesene Overproduction in Escherichia coli;Fayin Zhu et al.;《Synthetic Biology》;20140129;全文 *

Also Published As

Publication number Publication date
CN103243065A (en) 2013-08-14

Similar Documents

Publication Publication Date Title
CN103243065B (en) Bacterial strain for producing farnesene and application of bacterial strain
Liu et al. Genetic and bioprocess engineering to improve squalene production in Yarrowia lipolytica
CN103243066B (en) Bacterial strain for producing lycopene and application of bacterial strain
Kang et al. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production
Yang et al. Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli
CN106906201B (en) Terpenoid synthase for producing nerolidol and application thereof
US9862974B2 (en) Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures
BRPI0713105A2 (en) method to produce an isoprenoid, and, host cell
CN103571835A (en) System and microorganism for producing taxadiene, and application of system or microorganism
US10814724B2 (en) Host cells and methods for producing isopentenol from mevalonate
AU2013227067B2 (en) Hydrocarbon synthase gene, and use thereof
CN107354118B (en) Genetically engineered bacterium with gamma-terpinene synthesis capacity and construction method and application thereof
CN112695003B (en) Genetically engineered bacterium for high yield of cembratriene-alcohol and construction method and application thereof
CN111286482A (en) Escherichia coli engineering bacterium capable of rapidly producing geraniol and construction method and application thereof
CN113249282B (en) Recombinant bacterium for producing beta-elemene and construction method and application thereof
CN109810999A (en) A method of nerol is produced using microbial fermentation
CN106987578B (en) Terpene synthase for producing koraiol and application thereof
CN106011164B (en) Gene element, expression vector and application thereof
CN103540557B (en) A kind of method of biological process synthesis isoprene alcohol
KR102286815B1 (en) Transformed methanotrophs for producing a-humulene production from methane and uses thereof
CN107849586B (en) Production of aromatic compounds
CN104372031A (en) Method for synthesizing isoprene from acetic acid, and corresponding reconstituted cell and application thereof
KR102120996B1 (en) Transformed methanotrophs for producing 3-Hydroxypropionic acid and uses thereof
CN115704038A (en) Gene, recombinant vector, engineering bacterium and application thereof
CN103540558B (en) A kind of method of biological process synthesis prenol

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180612

Address after: 518106 Shenzhen District, Guangming New District, Guangdong Province, Gongming Second Street Industrial Zone 9 District A (Baoan District)

Patentee after: Shenzhen aghin Technology Co., Ltd.

Address before: 430072 Wuhan University, Luojia mountain, Wuchang District, Wuhan, Hubei

Patentee before: Wuhan University

TR01 Transfer of patent right