CN103233332B - 一种筒子纱染色过程的曲线逼近控制方法 - Google Patents

一种筒子纱染色过程的曲线逼近控制方法 Download PDF

Info

Publication number
CN103233332B
CN103233332B CN201310126687.9A CN201310126687A CN103233332B CN 103233332 B CN103233332 B CN 103233332B CN 201310126687 A CN201310126687 A CN 201310126687A CN 103233332 B CN103233332 B CN 103233332B
Authority
CN
China
Prior art keywords
curve
temperature
element number
minimizes
unit interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310126687.9A
Other languages
English (en)
Other versions
CN103233332A (zh
Inventor
单忠德
沈敏举
吴双峰
陈对范
鹿庆福
刘琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAI'AN COMPANION MACHINERY CO Ltd
Advanced Manufacture Technology Center China Academy of Machinery Science and Technology
Original Assignee
TAI'AN COMPANION MACHINERY CO Ltd
Advanced Manufacture Technology Center China Academy of Machinery Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAI'AN COMPANION MACHINERY CO Ltd, Advanced Manufacture Technology Center China Academy of Machinery Science and Technology filed Critical TAI'AN COMPANION MACHINERY CO Ltd
Priority to CN201310126687.9A priority Critical patent/CN103233332B/zh
Publication of CN103233332A publication Critical patent/CN103233332A/zh
Application granted granted Critical
Publication of CN103233332B publication Critical patent/CN103233332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Treatment Of Fiber Materials (AREA)
  • Coloring (AREA)

Abstract

本发明公开一种筒子纱染色过程的曲线逼近控制方法,在用于控制染色过程的电脑中设定好水位曲线、加料曲线和温度曲线后,程序根据数学模型建立新曲线并将曲线分解成最小化单元,最小化单元数量自动存储到控制电脑的数据库中,控制系统实时根据数据库中的最小化单元数量进行水位、加料和温度控制。通过该方法可有效提高染色的一次付样率和降低染色过程中能源的消耗。

Description

一种筒子纱染色过程的曲线逼近控制方法
技术领域
本发明属于纺织印染技术领域,具体涉及一种筒子纱染色过程的曲线逼近控制方法。
背景技术
染色机是印染行业最主要的生产设备,其控制系统主要是对水位曲线、加料曲线、温度曲线等进行控制,这些因素直接影响染色质量。随着印染行业的不断发展,对染色机自控化程度的要求越来越高。
而目前,我国纺织印染行业染色机控制系统中,控制方法单一且自动化程度落后。大部分印染厂还沿袭传统的操作方式,如升/降温控制采用温度调节仪表、入/排水采用浮球液位开关、部分阀门还采用手动阀门需要人工手动开闭。
实际调查发现,传统染色机存在以下问题:采用温度调节仪表等单片机控制系统的扩充性能、稳定性能和可靠性能较差,无法实现染色工艺对温度的需求;浮球式水位开关测量水位时精度低,重现性差、给浴比水洗等控制带来难度;企业中按照每天的产量计算工资,染色操作过程中偷工减料现象严重,产品质量波动较大,一次付样率低;实际生产中一个操作工要同时看护至少两台以上的染缸,在交叉作业往往首尾不能相顾,洗水超时、加料超时等现象时有发生,造成资源浪费;不同的操作工有不同的操作方法,很难做到规范化操作,如加料控制、洗水控制、染色过程的变频器调速控制、浴比控制等,造成了泵速过大冲毛或冲坏纱线,泵速过小染色上色不均;传统染色过程纱线需要全部浸泡在液体中进行染色,耗水量较大。
总体而言,传统控制/操作方式对水、电、汽等资源的浪费较大,且无法严格执行工艺标准,从而达不到纱线着色所要求的质量。
发明内容
基于现有状况,本发明以染色工艺的化学变化为基础进行研究,紧紧围绕水位曲线、加料曲线、温度曲线进行控制,采用了国际最前沿的SETEX染色机控制电脑和PLC提高控制系统的扩充性能、稳定性能和可靠性能,采用智能压差水位计在线连续式水位测量,从而实现浴比的精确计算,全自动染色程序控制减少人为干预,采用在线工艺监控和事件实时记录来避免操作过程中偷工减料现象。从工艺曲线逼近等方面着手提高染色的一次付样率和降低染色过程中能源的消耗。
为达到上述技术效果,本发明采用如下技术方案:
一种筒子纱染色过程的曲线逼近控制方法,其特征在于:在用于控制染色过程的电脑中设定好水位曲线、加料曲线和温度曲线后,程序根据数学模型建立新曲线并将曲线分解成最小化单元,最小化单元数量自动存储到控制电脑的数据库中,控制系统实时根据数据库中的最小化单元数量进行水位、加料和温度控制。
所述数学模型的建立方法为:设备根据设定曲线运行,并将运行的实际数据和执行数据按照周期存储到数据库中,数据库存储量为n条,达到数据存储量后,最早的数据依次溢出,确保数据库中的数据为最新,利用数据库中存储的n条数据曲线数据求平均值,建立新曲线。
上述方法中,所述分解成最小化单元即将建模曲线最小化分割。以升温曲线最小化单元为例,升温曲线是通过开启升温阀门来实现,温度曲线的最小化分割即将升温0.05℃开启升温阀门200ms作为温度曲线的最小化单元。
上述方法中,所述最小化单元数量即指多少个最小化单元。继以升温曲线最小化单元数量为例,若升温曲线要求一分钟时间升温2℃,控制系统就必需一分钟时间发送最小化单元量为40个。
染色过程中水位曲线、加料曲线、温度曲线直接影响染色质量和浴比,所以精确的曲线控制势在必行。本发明中,控制系统实时根据数据库中的最小化单元数量进行水位、加料和温度控制,具体控制方法如下所述。
水位控制:主缸水位进水,通过自动开启气动进水碟阀来实现,入水速率通过单位时间发送的最小化单元数量调节,主缸液位由压差液位计(例如附图1中97所示)进行自动检测与控制。当染缸的水位达到设定值时,关闭进水阀门。
加料控制:料缸加料,通过自动开启气动加料阀来实现,加料速率通过单位时间发送的最小化单元数量调节,料缸液位由压力液位计(例如附图1中797或797-1所示)进行自动检测。当料缸液位为0时,关闭进加料阀门。
温度控制:加热通过打开蒸汽开关阀实现,升温速率由单位时间内发送的最小化单元数量进行调节,染液温度由插入式温度传感器(例如附图1中2*PT100 68所示)进行检测,通过检测到的温度计算升温斜率的偏差,通过单位时间内发送的最小化单元数量调节。当直升时,单位时间内发送的最小化单元数量最大;当线性升温时,单位时间内发送的最小化单元数量根据温度信号实时调整。到达目标温度后,蒸汽开关阀自动关闭;降温通过打开冷水开关阀实现,降温速率由由单位时间内发送的最小化单元数量调节,染液温度由插入式温度传感器(例如附图1中2*PT100 68所示)进行检测,通过检测到的温度计算降温斜率的偏差,通过由单位时间内发送的最小化单元数量调节。当直降时,单位时间内发送的最小化单元数量最大;当线性降温时,单位时间内发送的最小化单元数量根据温度信号实时调整。降到目标温度后,冷水开关阀自动关闭。
附图说明
图1是染色机的工艺原理示意图。
图2是实施例1所述的浅色棉纱染色工艺曲线。
图3是加料曲线设定示意图。
图4是存储的实际加料曲线,其中x为加料量数据,y为最小化单元数量数据。
图5是温度曲线设定示意图。
图6是运行过程中的温度曲线,其中红色为设定温度曲线,黄色为实际曲线。
具体实施方法
以下将结合实施例对本发明作进一步说明,但不应将其理解为对本发明保护范围的限制。
实施例1 一条浅色棉纱染色过程
图2为浅色棉纱染色工艺曲线。此染色过程需要两次升温,加染料、元明粉、助剂、纯碱等各一次,染色温度60℃,保温时间45分钟,40℃到60℃升温斜率为一分钟2℃,染料的定量加料时间为10分钟。
设定加料曲线如附图3所示,主要的曲线设定参数由定量时间和递增斜率来实现设定曲线。其中定量时间参数要求在多少分钟内将料缸加空,递增斜率参数要求斜率的增加量,如果递增斜率为0,即要求直接加料,也就是单位时间内发送最小化单元数量是定值,加料曲线是一条固定斜率的直线。附图4为存储的实际加料曲线,最小化单元数量起始值为100,递增斜率为100。通过记录n条这样的曲线来求出平均值,计算出每一单位时间内发出的最小化单元数量来保证加料按照设定的定量时间和递增斜率来实现逼近设定曲线的目的。此染色工艺中加染料的定量加料时间为10分钟,递增斜率为30%,加料的最小化单元为开加料阀门1秒钟,加料0.375L,第一分钟的最小化单元数量为12,第二分钟的最小化单元数量为15 。确保加料曲线更加逼近设定曲线,从而提高染色过程中上色的均匀性。
设定温度曲线如附图5所示,主要的曲线设定参数由设定温度和升温斜率来实现设定曲线。设定温度为目标温度,升温斜率为单位时间内温度上升值。此染色工艺中40℃到60℃升温斜率为一分钟2℃,温度的最小化单元为升温0.05℃开启升温阀门200ms,计算得知每分钟最小化单元数量为40,确保温度曲线更加逼近设定曲线(见附图6运行过程中的温度曲线),从而提高染色过程中纱线上色率。

Claims (1)

1.一种筒子纱染色过程的曲线逼近控制方法,其特征在于:在用于控制染色过程的电脑中设定好水位曲线、加料曲线和温度曲线后,程序根据数学模型建立新曲线并将曲线分解成最小化单元,最小化单元数量自动存储到控制电脑的数据库中,控制系统实时根据数据库中的最小化单元数量进行水位、加料和温度控制;所述数学模型的建立方法为:设备根据设定曲线运行,并将运行的实际数据和执行数据按照周期存储到数据库中,数据库存储量为n条,达到数据存储量后,最早的数据依次溢出,确保数据库中的数据为最新,利用数据库中存储的n条数据曲线数据求平均值,建立新曲线;
(1)所述水位控制为:主缸水位进水,通过自动开启气动进水碟阀来实现,入水速率通过单位时间发送的最小化单元数量调节,主缸液位由压差液位计进行自动检测与控制,当染缸的水位达到设定值时,关闭进水阀门;
(2)所述加料控制为:料缸加料,通过自动开启气动加料阀来实现,加料速率通过单位时间发送的最小化单元数量调节,料缸液位由压力液位计进行自动检测,当料缸液位为0时,关闭进加料阀门;
(3)所述温度控制为:加热通过打开蒸汽开关阀实现,升温速率由单位时间内发送的最小化单元数量进行调节,染液温度由插入式温度传感器进行检测,通过检测到的温度计算升温斜率的偏差,通过单位时间内发送的最小化单元数量调节;当直升时,单位时间内发送的最小化单元数量最大;当线性升温时,单位时间内发送的最小化单元数量根据温度信号实时调整;到达目标温度后,蒸汽开关阀自动关闭;降温通过打开冷水开关阀实现,降温速率由单位时间内发送的最小化单元数量调节,染液温度由插入式温度传感器进行检测,通过检测到的温度计算降温斜率的偏差,通过由单位时间内发送的最小化单元数量调节;当直降时,单位时间内发送的最小化单元数量最大;当线性降温时,单位时间内发送的最小化单元数量根据温度信号实时调整;降到目标温度后,冷水开关阀自动关闭。
CN201310126687.9A 2013-04-12 2013-04-12 一种筒子纱染色过程的曲线逼近控制方法 Active CN103233332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310126687.9A CN103233332B (zh) 2013-04-12 2013-04-12 一种筒子纱染色过程的曲线逼近控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310126687.9A CN103233332B (zh) 2013-04-12 2013-04-12 一种筒子纱染色过程的曲线逼近控制方法

Publications (2)

Publication Number Publication Date
CN103233332A CN103233332A (zh) 2013-08-07
CN103233332B true CN103233332B (zh) 2014-02-19

Family

ID=48881396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310126687.9A Active CN103233332B (zh) 2013-04-12 2013-04-12 一种筒子纱染色过程的曲线逼近控制方法

Country Status (1)

Country Link
CN (1) CN103233332B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106372321B (zh) * 2016-08-31 2018-10-02 中车戚墅堰机车车辆工艺研究所有限公司 一种摆线齿轮齿形曲线的变步长离散方法
CN109811493B (zh) * 2019-02-01 2020-05-01 东华大学 一种多组分染料染色过程自动给液方法
CN111272675A (zh) * 2020-02-26 2020-06-12 北京机科国创轻量化科学研究院有限公司 染液检测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0455055A2 (de) * 1990-05-01 1991-11-06 Bayer Ag Färben mit Reaktivfarbstoffen aus stehenden Bädern nach dem Ausziehverfahren
US5142481A (en) * 1990-03-02 1992-08-25 Milliken Research Corporation Process and apparatus allowing the real-time distribution of data for control of a patterning process
CN201159854Y (zh) * 2007-11-15 2008-12-03 刘件发 一种染色机集中全过程自动监控系统
CN102776743A (zh) * 2012-08-09 2012-11-14 杭州智能染整设备有限公司 一种智能染整机的控制系统及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142481A (en) * 1990-03-02 1992-08-25 Milliken Research Corporation Process and apparatus allowing the real-time distribution of data for control of a patterning process
EP0455055A2 (de) * 1990-05-01 1991-11-06 Bayer Ag Färben mit Reaktivfarbstoffen aus stehenden Bädern nach dem Ausziehverfahren
CN201159854Y (zh) * 2007-11-15 2008-12-03 刘件发 一种染色机集中全过程自动监控系统
CN102776743A (zh) * 2012-08-09 2012-11-14 杭州智能染整设备有限公司 一种智能染整机的控制系统及其方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
PLC在高温高压染色机控制系统改造中的应用;杨卫东;《仪表技术》;20071015(第10期);47-50 *
基于时间顺序控制的染色温度控制系统的实现;郭清华 等;《染整技术》;20060620;第28卷(第6期);40-42 *
杨卫东.PLC在高温高压染色机控制系统改造中的应用.《仪表技术》.2007,(第10期),47-50.
溢流染色机自动控制系统的改造;谢水英 等;《纺织学报》;20100715;第31卷(第7期);135-140 *
王家宾 等.立信ALLWIN染色机的生产实践.《"海大杯"第六届全国染整机电装备暨资源综合利用新技术研讨会论文集》.2012,190-195.
立信ALLWIN染色机的生产实践;王家宾 等;《"海大杯"第六届全国染整机电装备暨资源综合利用新技术研讨会论文集》;20120701;190-195 *
谢水英 等.溢流染色机自动控制系统的改造.《纺织学报》.2010,第31卷(第7期),135-140.
郭清华 等.基于时间顺序控制的染色温度控制系统的实现.《染整技术》.2006,第28卷(第6期),40-42.

Also Published As

Publication number Publication date
CN103233332A (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
CN104020800B (zh) 一种染色在线反馈控制系统及其方法
CN204023192U (zh) 具有上染率在线反馈功能的染色机
CN105259827B (zh) 一种固态发酵过程状况的实时监控系统与监控方法
CN103233332B (zh) 一种筒子纱染色过程的曲线逼近控制方法
CN102156496A (zh) 一种反应釜温度混合控制方法
CN101502337A (zh) 烟丝生产中叶片回潮过程的建模控制方法
CN109885012B (zh) 一种金湿法冶金全流程实时优化补偿方法
CN110639686A (zh) 一种煤炭分选重介质密度自动调节系统及工作方法
CN102520616A (zh) 炼油工业过程的部分解耦非最小化模型预测函数控制方法
CN106055525B (zh) 一种基于逐步回归分析的大数据处理方法
CN108646808B (zh) 染色机的温度控制系统及其温度控制方法
CN203065492U (zh) 煮糖自动控制装置
CN102520618A (zh) 误差容忍限机制下的焦化加热炉辐射出口温度控制方法
CN101598927A (zh) 一种基于神经网络的纯碱碳化工艺控制系统及其控制方法
CN104164682A (zh) 一种铝电解槽计算机能量平衡控制方法
CN206696629U (zh) 一种压水堆堆芯功率控制装置
CN106950946B (zh) 一种基于优化原则的湿法冶金异常控制方法
CN112062252A (zh) 一种工业循环水pH自动控制装置及控制方法
CN208232040U (zh) 一种水泥砖蒸汽养护自动控制系统
CN109971891A (zh) 白酒蒸馏控制方法、装置、系统及电子设备
CN102393631B (zh) 基于模糊控制的润滑油温控制系统
CN102540883A (zh) 智能优化节能减排控制系统
CN112790421B (zh) 一种基于滑窗预测的梗丝加料出口含水率的控制方法
CN115579072A (zh) 一种供热管网水质智能监测控制系统及方法
CN210983091U (zh) 一种智能传统食用油生产线控制系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant