CN103219805A - Electromagnetic rail type movable robot - Google Patents
Electromagnetic rail type movable robot Download PDFInfo
- Publication number
- CN103219805A CN103219805A CN2013100948851A CN201310094885A CN103219805A CN 103219805 A CN103219805 A CN 103219805A CN 2013100948851 A CN2013100948851 A CN 2013100948851A CN 201310094885 A CN201310094885 A CN 201310094885A CN 103219805 A CN103219805 A CN 103219805A
- Authority
- CN
- China
- Prior art keywords
- coil
- energy
- mobile robot
- transmitting
- transmitting coil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明公开了一种电磁轨道式移动机器人,包括移动机器人本体、转向组件、行走驱动组件、能量发射系统、能量接收系统以及车载控制器,转向组件和行走驱动组件安装于移动机器人本体上,能量发射系统与能量接收系统组成了移动机器人的供电系统,能量发射系统包括发射电路、发射控制系统以及沿着机器人移动轨迹依次铺设的一个以上的发射线圈,能量接收系统包括安装于移动机器人本体上的接收线圈,发射电路和发射线圈将直流信号逆变为高频交流信号并以电磁波能量发射出去,接收线圈用来接收电磁波能量并由车载控制器中的电源管理模块处理之后给转向组件、行走驱动组件供电。本发明具有结构简单紧凑、续航时间长、定位可靠等优点。
The invention discloses an electromagnetic rail-type mobile robot, which comprises a mobile robot body, a steering assembly, a walking drive assembly, an energy emission system, an energy receiving system, and a vehicle-mounted controller. The steering assembly and the walking drive assembly are installed on the mobile robot body, and the energy The power supply system of the mobile robot is composed of the transmitting system and the energy receiving system. The energy transmitting system includes a transmitting circuit, a transmitting control system and more than one transmitting coil laid sequentially along the moving track of the robot. The energy receiving system includes The receiving coil, the transmitting circuit and the transmitting coil invert the DC signal into a high-frequency AC signal and emit it as electromagnetic wave energy. The receiving coil is used to receive the electromagnetic wave energy and it is processed by the power management module in the on-board controller to drive the steering components and walking. Components are powered. The invention has the advantages of simple and compact structure, long battery life, reliable positioning and the like.
Description
技术领域technical field
本发明主要涉及到移动机器人领域,特指一种采用电磁轨道式移动机器人。The invention mainly relates to the field of mobile robots, in particular to a mobile robot using electromagnetic rails.
背景技术Background technique
目前,在移动机器人的众多应用领域中,有一类是由机器人代替人类完成固定区域内的重复工作,如工厂设备巡检、公共场所安全监视等。此类机器人一般沿预定的轨迹移动,其能量主要依靠机器人携带的电池或安装的内燃机来提供。采用电池供能的方式简单、方便,但电池本身会增加移动机器人的体积和重量,且续航能力有限,需要定期充电,不利于机器人进行大范围、全时段的作业。采用内燃机供能的方式虽然续航能力得以提高,但一般需人工添加燃料,且存在燃料成本、废气排放、噪音等不利因素,其应用受到很大限制。进而,有从业者提到了一种移动机器人的滑线供电方法,其实现形式是在机器人的运行轨道上设有连接外接电源的滑线,在移动机器人的底盘下表面连接有集电器,通过集电器在滑线上的滑行为机器人供电。这种滑线供电方法建立在有地面轨道的基础上,还需另外铺设相当于轨道长度的滑线,工程成本较高,而且在复杂的室外环境,其供电安全性也存在问题。At present, among the many application fields of mobile robots, there is a category where robots replace humans to complete repetitive tasks in fixed areas, such as factory equipment inspections, public place safety monitoring, etc. This type of robot generally moves along a predetermined trajectory, and its energy is mainly provided by batteries carried by the robot or installed internal combustion engines. The way of using battery power supply is simple and convenient, but the battery itself will increase the volume and weight of the mobile robot, and the battery life is limited, and it needs to be charged regularly, which is not conducive to the robot's large-scale and full-time operations. Although the battery life can be improved by using the internal combustion engine to supply energy, it generally needs to add fuel manually, and there are disadvantages such as fuel cost, exhaust emissions, noise, etc., and its application is greatly restricted. Furthermore, some practitioners mentioned a sliding wire power supply method for a mobile robot, which is implemented by installing a sliding wire connected to an external power supply on the running track of the robot, and connecting a current collector to the lower surface of the chassis of the mobile robot. The sliding of electrical appliances on the sliding wire provides power for the robot. This sliding wire power supply method is based on the ground track, and additional sliding wires equivalent to the length of the track need to be laid. The project cost is relatively high, and there are also problems with the power supply security in complex outdoor environments.
发明内容Contents of the invention
本发明要解决的技术问题就在于:针对现有技术存在的技术问题,本发明提供一种结构简单紧凑、续航时间长、定位可靠的电磁轨道式移动机器人。The technical problem to be solved by the present invention is that, aiming at the technical problems existing in the prior art, the present invention provides an electromagnetic orbital mobile robot with simple and compact structure, long battery life and reliable positioning.
为解决上述技术问题,本发明采用以下技术方案:In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:
一种电磁轨道式移动机器人,包括移动机器人本体、转向组件、行走驱动组件、能量发射系统、能量接收系统以及车载控制器,所述转向组件和行走驱动组件安装于移动机器人本体上,所述能量发射系统与能量接收系统组成了移动机器人的供电系统,所述能量发射系统包括发射电路、发射控制系统以及沿着机器人移动轨迹依次铺设的一个以上的发射线圈,所述能量接收系统包括安装于移动机器人本体上的接收线圈,所述发射电路和发射线圈将直流信号逆变为高频交流信号并以电磁波能量发射出去,所述接收线圈用来接收电磁波能量并由车载控制器中的电源管理模块处理之后给转向组件、行走驱动组件供电。An electromagnetic rail-type mobile robot includes a mobile robot body, a steering assembly, a walking drive assembly, an energy emission system, an energy receiving system, and a vehicle-mounted controller. The steering assembly and the walking drive assembly are installed on the mobile robot body, and the energy The transmitting system and the energy receiving system constitute the power supply system of the mobile robot. The energy transmitting system includes a transmitting circuit, a transmitting control system and more than one transmitting coils laid in sequence along the moving track of the robot. The energy receiving system includes The receiving coil on the robot body, the transmitting circuit and the transmitting coil invert the DC signal into a high-frequency AC signal and emit it with electromagnetic wave energy. The receiving coil is used to receive electromagnetic wave energy and is controlled by the power management module in the vehicle controller. After processing, power is supplied to steering components and travel drive components.
作为本发明的进一步改进:As a further improvement of the present invention:
所述发射线圈和接收线圈的能量交换模式为磁耦合谐振式。The energy exchange mode of the transmitting coil and the receiving coil is a magnetic coupling resonance type.
所述发射线圈和接收线圈分别加入电容补偿结构,设置两者具有相同的固有频率。The transmitting coil and the receiving coil are respectively added with a capacitance compensation structure, and the two are set to have the same natural frequency.
所述移动机器人本体上安装有自动导航系统,所述移动机器人本体上安装有自动导航系统,所述自动导航系统包括一组以上由寻迹感应线圈和基准感应线圈构成的线圈组以及寻迹控制器,在移动机器人本体的移动过程中所述寻迹感应线圈和基准感应线圈将会产生两路不同的感应电压,所述感应电压可以反映出移动机器人本体的偏移方向和偏移距离;将所述两路感应电压输入到寻迹控制器中,由寻迹控制器处理之后输出一个转向信号到转向组件。An automatic navigation system is installed on the mobile robot body, and an automatic navigation system is installed on the mobile robot body. The automatic navigation system includes more than one group of coil groups composed of a tracking induction coil and a reference induction coil and a tracking control system. During the movement of the mobile robot body, the tracking induction coil and the reference induction coil will generate two different induced voltages, which can reflect the offset direction and offset distance of the mobile robot body; The two induced voltages are input into the tracking controller, and after being processed by the tracking controller, a steering signal is output to the steering assembly.
所述线圈组为两组,分别安装在移动机器人本体的车前和车尾,所述基准感应线圈平行于发射线圈的平面放置,所述寻迹感应线圈垂直于发射线圈平面且平行于发射线圈的边界放置。The coil groups are two groups, which are respectively installed on the front and rear of the mobile robot body. The reference induction coil is placed parallel to the plane of the transmitting coil, and the tracking induction coil is perpendicular to the plane of the transmitting coil and parallel to the transmitting coil. border placement.
所述发射控制系统包括发射控制器、功率检测电路以及开关切换电路,所述功率检测电路用来实时监测发射电路的输出功率,所述发射控制器根据发射电路的实时输出功率控制开关切换电路进行切换,实时切换为对应的发射线圈进行供电。The launch control system includes a launch controller, a power detection circuit, and a switch switching circuit. The power detection circuit is used to monitor the output power of the launch circuit in real time, and the launch controller controls the switch switch circuit according to the real-time output power of the launch circuit. Switch, switch in real time to supply power to the corresponding transmitting coil.
所述转向组件为转向电动机,所述行走驱动组件为行走电动机。The steering assembly is a steering motor, and the traveling drive assembly is a traveling motor.
与现有技术相比,本发明的优点在于:Compared with the prior art, the present invention has the advantages of:
1、持续供电。本发明可实现移动机器人的持续供电,解决了常规移动机器人需携带电池或内燃机,不能持续供能的难题。1. Continuous power supply. The invention can realize the continuous power supply of the mobile robot, and solves the problem that the conventional mobile robot needs to carry a battery or an internal combustion engine and cannot continuously supply energy.
2、结构简单,减轻重量。本发明所提出的移动机器人只需要携带一个接收线圈和一个整流稳压模块即可实现供电,不仅结构简单,成本低,而且减轻了移动机器人本体的重量,进一步降低了机器人功耗。2. The structure is simple and the weight is reduced. The mobile robot proposed by the present invention only needs to carry a receiving coil and a rectification and voltage stabilization module to realize power supply. It not only has a simple structure and low cost, but also reduces the weight of the mobile robot body and further reduces the power consumption of the robot.
3、无轨寻迹。本发明所提出的移动机器人可以自适应寻迹,节省了地面铺设轨道的工程量和投资成本。3. Trackless tracking. The mobile robot proposed by the invention can self-adaptively track, which saves the engineering quantity and investment cost of laying the track on the ground.
4、易于定位。由于线圈是轮流充电,每次只有一个线圈有电,因此能够很容易地确定机器人移动的准确位置,无需GPS或其他方式的定位装置。4. Easy to locate. Since the coils are charged in turn and only one coil is powered at a time, the exact location of the robot's movement can be easily determined without the need for GPS or other means of positioning.
附图说明Description of drawings
图1是本发明移动机器人的侧视结构示意图。Fig. 1 is a side view structural schematic diagram of the mobile robot of the present invention.
图2是本发明移动机器人的俯视结构示意图。Fig. 2 is a top view structural schematic diagram of the mobile robot of the present invention.
图3是本发明在具体应用实例中发射线圈的一种铺设示意图。Fig. 3 is a laying schematic diagram of a transmitting coil in a specific application example of the present invention.
图4是本发明在具体应用实例中能量发射系统的框架结构示意图。Fig. 4 is a schematic diagram of the frame structure of the energy emission system in a specific application example of the present invention.
图5是本发明在具体应用实例中能量接收系统的框架结构示意图。Fig. 5 is a schematic diagram of the frame structure of the energy receiving system in a specific application example of the present invention.
图6是本发明所采用的自动寻迹原理的原理分析示意图;其中图6(a)为角度参数的前视分析示意图;图6(b)为角度参数的俯视分析示意图;图6(c)为距离参数的前视分析示意图。Fig. 6 is the principle analysis schematic diagram of the automatic tracking principle adopted in the present invention; Wherein Fig. 6 (a) is the forward view analysis schematic diagram of angle parameter; Fig. 6 (b) is the top view analysis schematic diagram of angle parameter; Fig. 6 (c) Schematic diagram of the look-ahead analysis for the distance parameter.
图例说明:illustration:
1、移动机器人本体;2、接收线圈;3、寻迹感应线圈;4、基准感应线圈;5、发射线圈;6、转向电动机;7、车载控制器;71、电源管理模块;72、寻迹控制器;73、主控器;8、行走电动机;9、发射控制系统;91、发射控制器;92、功率检测电路;93、开关切换电路;10、发射电路;11、电容补偿结构。1. Mobile robot body; 2. Receiving coil; 3. Tracing induction coil; 4. Reference induction coil; 5. Transmitting coil; 6. Steering motor; 7. On-board controller; 71. Power management module; 72. Tracing Controller; 73. Main controller; 8. Travel motor; 9. Emission control system; 91. Emission controller; 92. Power detection circuit; 93. Switch switching circuit; 10. Emission circuit; 11. Capacitance compensation structure.
具体实施方式Detailed ways
以下将结合说明书附图和具体实施例对本发明做进一步详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
如图1和图2所示,本发明的电磁轨道式移动机器人,包括移动机器人本体1、转向组件、行走驱动组件、能量发射系统、能量接收系统以及车载控制器7,转向组件和行走驱动组件安装于移动机器人本体1上用来完成移动机器人本体1的转向和行走驱动,其可以根据实际需要采用前桥转向、后桥驱动方式,或者其他方式;驱动能量采用电能,转向组件采用转向电动机6,行走驱动组件采用行走电动机8。能量发射系统与能量接收系统一道组成了移动机器人的供电系统,该能量发射系统包括发射电路10、发射控制系统9以及沿着机器人移动轨迹依次铺设的一个以上的发射线圈5,该能量接收系统包括安装于移动机器人本体1上的接收线圈2,发射电路10和发射线圈5把直流信号逆变为高频交流信号并以电磁波能量发射出去,接收线圈2用来接收电磁波能量并由车载控制器7中的电源管理模块71完成整流滤波稳压之后给移动机器人供电。As shown in Fig. 1 and Fig. 2, the electromagnetic rail type mobile robot of the present invention includes
在具体实施例中,如图3所示为发射线圈5的一种铺设方法,它由多个发射线圈5依次相接的排列方式,该排列方式是按机器人预设的行走路线铺设,并铺设在地面下,即形成行车路径。其中,发射线圈5和接收线圈2的能量交换模式为磁耦合谐振式,进行无线供电。发射线圈5设置为窄长型结构,每一个发射线圈5独立连接到发射电路10,进行能量发射。接收线圈2固定于移动机器人本体1,设置为与发射线圈5同等宽度,长度尺寸小于发射线圈5,接收线圈2连接到车载控制器7,进行能量接收并输入车载控制器7中的主控器73进行处理;并且发射线圈5和接收线圈2均为单匝线圈,都加入了电容补偿结构11,按式配置使其具有相同的固有频率,发射电路10接通电源之后,发射线圈5和接收线圈2通过磁耦合谐振进行无线能量传输。In a specific embodiment, as shown in Figure 3, it is a laying method of the transmitting
磁耦合谐振式基于耦合模理论,如下所述:The magnetically coupled resonant formula is based on coupled mode theory as follows:
对于两个固有频率分别为ω1和ω2,幅度分别为a1和a2的无损耗谐振器,耦合模式的基本方程如下:
其中κ12和κ21是两个谐振器之间的耦合系数,当|κ12|<<ω1,|κ21|<<ω2时,系统为弱耦合。根据能量守恒,系统的总能量不变,即由此可以导出其由为κ21的复共轭,假设耦合系统的固有频率为ω,求解公式(1),可得:Among them, κ 12 and κ 21 are the coupling coefficients between the two resonators. When |κ 12 |<<ω 1 , |κ 21 |<<ω 2 , the system is weakly coupled. According to energy conservation, the total energy of the system remains unchanged, that is, From this you can derive by is the complex conjugate of κ 21 , assuming that the natural frequency of the coupled system is ω, solving formula (1), we can get:
其中可见,由于耦合的关系使系统的固有频率分开,即系统存在两个固有频率,当ω1=ω2时,两个固有频率之间的差别为2Ω0,指定t=0时a1(0)和a2(0)的值,已知a2(0)=0,且ω1=ω2=ω0,可得:in It can be seen that the natural frequency of the system is separated due to the coupling relationship, that is, there are two natural frequencies in the system. When ω 1 =ω 2 , the difference between the two natural frequencies is 2Ω 0 . When t=0, a 1 (0 ) and a 2 (0), given that a 2 (0)=0, and ω 1 =ω 2 =ω 0 , we can get:
分析上式,t=0时第一谐振器被完全激发,而时激发全在第二谐振器。时激发又回到第一谐振器,如此不断重复,激发以频率2Ω0=2|κ12|在两个谐振器之间来回转换。当ω1≠ω2时,转换不完全。当耦合系数κ12>>Γ时,系统的转换速率远大于损耗速率,此时两个谐振体之间强耦合,能量高效传输。其中Γ表示系统的损耗系数,包括内阻损耗和辐射损耗。Analyzing the above formula, the first resonator is fully excited when t=0, and When excited all in the second resonator. When the excitation returns to the first resonator, and so on, the excitation switches back and forth between the two resonators at a frequency of 2Ω 0 =2|κ 12 |. When ω 1 ≠ ω 2 , the conversion is incomplete. When the coupling coefficient κ 12 >>Γ, the slew rate of the system is much greater than the loss rate. At this time, the coupling between the two resonators is strong and the energy is efficiently transmitted. Where Γ represents the loss coefficient of the system, including internal resistance loss and radiation loss.
本发明中的发射线圈5和接收线圈2设置为相同的固有频率,根据以上分析的耦合模理论,系统将有两个固有频率点,当系统的工作频率接近这两个固有频率点时,系统有着高效的传输效率。The transmitting
本实施例中,移动机器人本体1上安装有自动导航系统,实现移动机器人本体1在预设轨道内的自动行走。如图5所示,自动导航系统包括一组以上由寻迹感应线圈3和基准感应线圈4构成的线圈组以及寻迹控制器72,在移动机器人本体1的移动过程中,寻迹感应线圈3和基准感应线圈4将会产生两路不同的感应电压,该感应电压可以反映出移动机器人本体1的偏移方向和偏移距离;然后将两路感应电压输入到寻迹控制器72中,由寻迹控制器72进行相位比较和幅值检测等处理之后输出一个转向信号到转向电动机6,从而控制移动机器人本体1进行方位调整。In this embodiment, an automatic navigation system is installed on the
本实施例中,包含线圈组为两组,每组感应线圈由一个基准感应线圈4和一个寻迹感应线圈3组成,分别安装在移动机器人本体1的车前和车尾。移动机器人前进或后退时由车前或车尾的其中一组感应线圈进行工作。其中基准感应线圈4平行于发射线圈5的平面放置,寻迹感应线圈3垂直于发射线圈5平面且平行于发射线圈5的边界放置。In this embodiment, the coil groups are divided into two groups, and each group of induction coils is composed of a
其中,以基准感应线圈4产生的感应电压相位作为基准相位,寻迹感应线圈3产生的感应电压相位与基准相位进行比较,当移动机器人本体1发生向左偏移或向右偏移时,相位的比较结果为零或180度相位差;同时,通过对寻迹感应线圈3产生的感应电压进行幅值检测可以判断移动机器人本体1偏移发射线圈5中心轴的距离。Wherein, the induced voltage phase generated by the
上述对于感应线圈产生的两路感应电压的处理方法基于以下理论:The above-mentioned processing method for the two induced voltages generated by the induction coil is based on the following theory:
结合图6对此进行分析,两条平行的长直导线L1和L2表示发射线圈的两条边界,L1和L2之间距离为d,通过大小相同、方向相反的交流电流点P表示寻迹感应线圈3的中心点位置,距离发射线圈5平面的高度为R。Combined with Figure 6 to analyze this, two parallel long straight wires L1 and L2 represent the two boundaries of the transmitting coil, the distance between L1 and L2 is d, and the alternating current with the same magnitude and opposite direction passes through Point P represents the center point position of the
由载流直导线在空间一点的磁场计算公式:其中μ0为真空磁导率,I为载流直导线中通过的电流,r为所求空间点和载流直导线的垂直距离,由式可得,点P的磁感应强度为
本实施例中,寻迹感应线圈3垂直放置,因此只考虑磁感应强度矢量的水平分量,则点P的磁感应强度大小BP为:In the present embodiment, the
应用磁通量和感应电动势的计算公式:其中Φ为磁通量,为磁感应强度,为面积,ε为感应电动势。假设寻迹感应线圈3的面积为1,与发射线圈5中心轴的夹角为α,如图6(b)所示,可得寻迹感应线圈3的感应电压有效值VP为:Apply the calculation formulas of magnetic flux and induced electromotive force: where Φ is the magnetic flux, is the magnetic induction intensity, is the area, ε is the induced electromotive force. Assuming that the area of the
其中ω0为直导线中的电流频率,d为两条直导线L1和L2之间的距离。以发射线圈5的中心轴为坐标零点,中心轴向右为坐标轴正方向,如图6(c)所示,用距离x代替角度θ1,将代入式(5)得:Where ω0 is the current frequency in the straight wire, d is the distance between the two straight wires L1 and L2. Take the central axis of the transmitting
由式(6)进行分析可知,当x=0时,VP=0,当x向正方向增长时,VP反向增大,反之,当x向反方向增长时,VP正向增大。因为VP为感应电压的有效值,实际的感应电压为所以当x为正或负时,感应电压相位相差π。From the analysis of formula (6), it can be seen that when x=0, V P =0, when x increases in the positive direction, V P increases in the opposite direction, on the contrary, when x increases in the opposite direction, V P increases in the positive direction big. Because V P is the effective value of the induced voltage, the actual induced voltage is So when x is positive or negative, the phase difference of the induced voltage is π.
应用以上理论基础,经过比较基准感应电压和寻迹感应电压的相位可以知道移动机器人本体1是左偏或右偏,同时根据寻迹感应电压的幅值可以判断移动机器人本体1偏离发射线圈5中心轴的距离。Applying the above theoretical basis, by comparing the phases of the reference induced voltage and the tracking induced voltage, it can be known that the
由于发射线圈5由多个线圈组成且在同一时刻只有一个发射线圈5供电,因此当移动机器人在相邻发射线圈5之间移动时,需要进行发射线圈5的供电切换。在本实施例中,如图4所示,发射控制系统9包括发射控制器91、功率检测电路92以及开关切换电路93,功率检测电路92用来实时监测发射电路10的输出功率,发射控制器91根据发射电路10的实时输出功率控制开关切换电路93进行切换,实时切换为对应的发射线圈5进行供电。具体应用时,随着移动机器人本体1的移动,发射电路10的输出功率将会有相应变化:移动机器人本体1从此时的所处发射线圈5的边缘开始移出时,输出功率开始减小;当移出超过一半的本体时,即接收线圈2和发射线圈5的相对面积小于接收线圈2面积的一半时,发射线圈5和接收线圈2耦合减弱,接收的能量不足以驱动移动机器人,此时发射电路10的输出功率接近为空载功率。当功率检测电路92检测到输出功率接近空载功率时,发射信号给发射控制器91,由发射控制器91控制开关切换电路93进行切换,切换为相邻的下一个发射线圈5进行供电。Since the transmitting
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。The above are only preferred implementations of the present invention, and the protection scope of the present invention is not limited to the above-mentioned embodiments, and all technical solutions under the idea of the present invention belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, some improvements and modifications without departing from the principle of the present invention should be regarded as the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310094885.1A CN103219805B (en) | 2013-03-22 | 2013-03-22 | A kind of electromagnetic rail type movable robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310094885.1A CN103219805B (en) | 2013-03-22 | 2013-03-22 | A kind of electromagnetic rail type movable robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103219805A true CN103219805A (en) | 2013-07-24 |
CN103219805B CN103219805B (en) | 2015-09-30 |
Family
ID=48817382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310094885.1A Active CN103219805B (en) | 2013-03-22 | 2013-03-22 | A kind of electromagnetic rail type movable robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103219805B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103699128A (en) * | 2013-12-27 | 2014-04-02 | 长沙理工大学 | Motion control system and control method of electromagnetic rail type mobile robot |
CN105841691A (en) * | 2016-03-17 | 2016-08-10 | 深圳市神州云海智能科技有限公司 | Electromagnetic navigation apparatus and system |
CN107590876A (en) * | 2017-09-13 | 2018-01-16 | 四川君逸数码科技股份有限公司 | Pipe gallery crusing robot and pipe gallery cruising inspection system |
CN108054837A (en) * | 2017-12-21 | 2018-05-18 | 天津工业大学 | Guide tracked wireless power coupler is moved for what monitoring camera used |
CN108890800A (en) * | 2018-07-04 | 2018-11-27 | 合肥欧语自动化有限公司 | A kind of carpenter's automation equipment |
CN112874573A (en) * | 2019-11-29 | 2021-06-01 | 比亚迪股份有限公司 | Switch system, rail transit system with switch system and control method |
CN112945235A (en) * | 2021-01-29 | 2021-06-11 | 天津市科睿思奇智控技术有限公司 | Method for angle detection and safety protection of translation machine based on magnetic field detection |
CN113497490A (en) * | 2020-03-20 | 2021-10-12 | 大陆汽车电子(长春)有限公司 | Wireless power supply device and control system for intelligent glass |
CN113867372A (en) * | 2021-12-03 | 2021-12-31 | 深圳赫兹创新技术有限公司 | Navigation device and navigation method for wireless non-contact power supply AGV |
CN117601923A (en) * | 2023-11-28 | 2024-02-27 | 唐山中弘智能科技有限公司 | Automatic inspection system for rail flaw detection |
CN118042089A (en) * | 2024-04-12 | 2024-05-14 | 福建省二建建设集团有限公司 | Automatic inspection system for safety quality of construction site engineering and application method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5573090A (en) * | 1994-05-05 | 1996-11-12 | H. R. Ross Industries, Inc. | Raodway-powered electric vehicle system having onboard power metering and communication channel features |
CN1139201A (en) * | 1995-06-27 | 1997-01-01 | 杰维斯·B·韦布国际公司 | Method and apparatus for guiding driverless vehicle |
US5821728A (en) * | 1996-07-22 | 1998-10-13 | Schwind; John P. | Armature induction charging of moving electric vehicle batteries |
CN102159422A (en) * | 2008-09-19 | 2011-08-17 | 邦巴尔迪尔运输有限公司 | Inductively receiving electric energy for vehicle |
CN102183251A (en) * | 2011-03-15 | 2011-09-14 | 上海电力学院 | Electromagnetic tracking method based on inductance coil |
CN102969804A (en) * | 2012-11-30 | 2013-03-13 | 南方电网科学研究院有限责任公司 | Resonant coupling wireless power transmission system adopting superconducting coil and implementation method thereof |
-
2013
- 2013-03-22 CN CN201310094885.1A patent/CN103219805B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5573090A (en) * | 1994-05-05 | 1996-11-12 | H. R. Ross Industries, Inc. | Raodway-powered electric vehicle system having onboard power metering and communication channel features |
CN1139201A (en) * | 1995-06-27 | 1997-01-01 | 杰维斯·B·韦布国际公司 | Method and apparatus for guiding driverless vehicle |
US5821728A (en) * | 1996-07-22 | 1998-10-13 | Schwind; John P. | Armature induction charging of moving electric vehicle batteries |
CN102159422A (en) * | 2008-09-19 | 2011-08-17 | 邦巴尔迪尔运输有限公司 | Inductively receiving electric energy for vehicle |
CN102183251A (en) * | 2011-03-15 | 2011-09-14 | 上海电力学院 | Electromagnetic tracking method based on inductance coil |
CN102969804A (en) * | 2012-11-30 | 2013-03-13 | 南方电网科学研究院有限责任公司 | Resonant coupling wireless power transmission system adopting superconducting coil and implementation method thereof |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103699128A (en) * | 2013-12-27 | 2014-04-02 | 长沙理工大学 | Motion control system and control method of electromagnetic rail type mobile robot |
CN105841691A (en) * | 2016-03-17 | 2016-08-10 | 深圳市神州云海智能科技有限公司 | Electromagnetic navigation apparatus and system |
CN107590876A (en) * | 2017-09-13 | 2018-01-16 | 四川君逸数码科技股份有限公司 | Pipe gallery crusing robot and pipe gallery cruising inspection system |
CN108054837A (en) * | 2017-12-21 | 2018-05-18 | 天津工业大学 | Guide tracked wireless power coupler is moved for what monitoring camera used |
CN108890800A (en) * | 2018-07-04 | 2018-11-27 | 合肥欧语自动化有限公司 | A kind of carpenter's automation equipment |
CN112874573A (en) * | 2019-11-29 | 2021-06-01 | 比亚迪股份有限公司 | Switch system, rail transit system with switch system and control method |
CN113497490A (en) * | 2020-03-20 | 2021-10-12 | 大陆汽车电子(长春)有限公司 | Wireless power supply device and control system for intelligent glass |
CN112945235A (en) * | 2021-01-29 | 2021-06-11 | 天津市科睿思奇智控技术有限公司 | Method for angle detection and safety protection of translation machine based on magnetic field detection |
CN113867372A (en) * | 2021-12-03 | 2021-12-31 | 深圳赫兹创新技术有限公司 | Navigation device and navigation method for wireless non-contact power supply AGV |
CN117601923A (en) * | 2023-11-28 | 2024-02-27 | 唐山中弘智能科技有限公司 | Automatic inspection system for rail flaw detection |
CN117601923B (en) * | 2023-11-28 | 2024-04-30 | 唐山中弘智能科技有限公司 | Automatic inspection system for rail flaw detection |
CN118042089A (en) * | 2024-04-12 | 2024-05-14 | 福建省二建建设集团有限公司 | Automatic inspection system for safety quality of construction site engineering and application method thereof |
CN118042089B (en) * | 2024-04-12 | 2024-06-07 | 福建省二建建设集团有限公司 | Automatic inspection system for safety quality of construction site engineering and application method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103219805B (en) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103219805B (en) | A kind of electromagnetic rail type movable robot | |
CN112400267B (en) | Contactless power supply device and contactless power supply system | |
US9919610B1 (en) | Wireless power electronics and controls | |
CN104682580B (en) | A dynamic wireless power supply system for electric vehicles based on parallel connection of multi-level composite resonant structures and a power supply method realized by using the system | |
WO2018196385A1 (en) | Dynamic induction wireless charging system for vehicle and charging system of vehicle | |
Nagendra et al. | Detection of EVs on IPT highways | |
EP2571716B1 (en) | Adaptive wireless energy transfer system | |
CN104682581B (en) | Dynamic wireless power supply device and dynamic wireless power supply method for mobile equipment based on equalized field strength of segmented guide rails | |
CN208376542U (en) | A kind of electric car dynamic radio charge control system | |
JP2011223703A (en) | Portable type non-contact power supply device | |
WO2012014038A2 (en) | Coil unit, non-contact power transmitting apparatus, non-contact power receiving apparatus, vehicle, and non-contact power supply system | |
CN105406563B (en) | A kind of electric automobile dynamic radio electric power system is segmented transmitting coil switching method | |
CN111801245A (en) | Device for generating a magnetic field, in particular for an inductive charging system, and primary arrangement for an inductive charging system for dynamically charging a vehicle | |
Wang et al. | Development of ironless Halbach permanent magnet linear synchronous motor for traction of a novel maglev vehicle | |
US20250149926A1 (en) | Contactless power feeding apparatus and contactless power feeding system | |
CN109484217B (en) | Three-in-one electronic highway unmanned navigation system and method | |
CN104901400A (en) | Electric automobile road dynamic high-efficiency induction charging system of railless positioning apparatus | |
Gao et al. | Uniform-gain frequency tracking of wireless EV charging for improving alignment flexibility | |
Liu et al. | Field circuit coupling analysis of dynamic wireless charging for electric vehicle | |
CN216099032U (en) | Line patrol sensor and robot | |
Kotchapansompote et al. | Electric vehicle automatic stop using wireless power transfer antennas | |
CN214295600U (en) | Movable power supply device for road surface induction | |
Schaap | Review of ElectricRoad Systems: Both a conventional and innovative technology | |
McDonough et al. | Dynamic modeling of icpt considering misalignment and speed of vehicle | |
CN110146926B (en) | An automatic measurement unmanned vehicle and measurement method for detecting the topological structure of the grounding grid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170109 Address after: 410004 Hunan province Changsha Yuhua District, Hunan Road 2 B Twin Towers International Plaza No. 258 15 Floor Patentee after: Hunan sunshine Power Technology Co., Ltd. Address before: Wanjiali road 410114 in Hunan province Changsha Yuhua District, two No. 960 Changsha University of Science and Technology Patentee before: Changsha University of Science and Technology |