CN103217985B - 基于双飞行机器人对有源目标的协调搜寻方法与系统 - Google Patents

基于双飞行机器人对有源目标的协调搜寻方法与系统 Download PDF

Info

Publication number
CN103217985B
CN103217985B CN201210424981.3A CN201210424981A CN103217985B CN 103217985 B CN103217985 B CN 103217985B CN 201210424981 A CN201210424981 A CN 201210424981A CN 103217985 B CN103217985 B CN 103217985B
Authority
CN
China
Prior art keywords
double
flying
alternative way
search
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210424981.3A
Other languages
English (en)
Other versions
CN103217985A (zh
Inventor
谢少荣
叶周浩
李恒宇
张秋菊
罗均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinghai Intelligent Equipment Co ltd
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201210424981.3A priority Critical patent/CN103217985B/zh
Publication of CN103217985A publication Critical patent/CN103217985A/zh
Application granted granted Critical
Publication of CN103217985B publication Critical patent/CN103217985B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明涉及一种基于无人飞行机器人对有源目标的协调搜寻方法及系统。本方法对目标所在的搜寻区域进行搜索地图建模,即在二维空间内进行离散化,并基于该地图模型提出路径规划方法,从而构建导航成本函数,以规划飞行器机器人的飞行轨迹,实现低成本高效率的协调搜寻。本系统是在两无人飞行机器人上安装GPS定位仪,无线通讯设备、信号测向仪、飞行控制设备和主控单元,飞行机器人在搜寻过程中实时通讯,共享地图和目标信息。本发明可用于对区域内各种带辐射源目标的搜寻和探测,采用双飞行机器人进行自动协调搜寻,实现快速有效的发现有源目标,能够对区域目标进行快速高效的搜寻。

Description

基于双飞行机器人对有源目标的协调搜寻方法与系统
技术领域
本发明涉及一种基于无人飞行机器人在特定区域内的协调搜寻方法及系统,特别是基于双飞行机器人对有源目标的协调搜寻方法与系统,用于对区域内各种带辐射源目标的搜寻和探测,采用双飞行机器人进行自动协调搜寻,实现快速有效的发现有源目标。
背景技术
近年来,世界各地灾难频发,严重威胁人类的生存和发展。灾后发现搜救目标,实施快速救援,能够大大提高失踪人员生还的可能性,减少生命财产的损失。传统的搜寻方法一般采用地面、空中(载人直升机)两支搜救队伍展开搜寻。然而,由于失踪目标所处区域的特殊性(如山区、海洋、沼泽地带等),传统的搜寻方法不仅效率低,而且存在搜寻人员的生命安全问题。因此,迫切需要一种更好的搜寻方法。
采用无人驾驶飞行机器人(以下简称无人机)对目标进行搜寻是现代搜救领域的发展方向之一。无人机能从多种平台(如车辆、舰船、航空器、亚轨道飞行器和卫星等)发射和回收,搜寻机动性较传统方法大大提高。此外,无人机还具有体积小,成本低,无人员伤亡风险,生存能力强等优点,在各领域都具有广阔的应用前景。采用多无人机对区域进行协调搜寻,不但具有单架无人机的所有特点,还有其自身独特的优势,如目标搜寻效率高,定位精度高,搜寻范围大等。
根据以上背景技术的分析,采用飞行机器人对特定区域的目标进行协调搜寻,是一个高效、安全、低成本的方法。
发明内容
本发明的目的在于针对现有搜寻技术存在的不足,提出一种基于双飞行机器人对有源目标的协调搜寻方法与系统。该能够在特定大小的区域内引导无人飞行机器人自动对有源目标进行协调搜寻,搜寻效率高,成本低,风险小。
本发明的构思在于:传统的搜寻方法采用地面基站和空中在人飞行器结合的方法搜寻目标,这样不仅成本高,在某些危险的场合还可能存在搜救人员和搜救设备的危险性。而传统的无人飞行器搜寻多是基于各个机体直接对目标进行搜寻和探测,各自搜索独立的区域,不存在协同性,因此效率较低,存在资源浪费和成本过高的缺陷。因此,为了克服已有的搜寻方法的局限性和不足,本发明提出了基于双无人驾驶机器人的协调搜寻方法,对搜寻区域进行协调搜索,实现短时间内的覆盖面最大化,以提高目标搜寻效率。同时,由于采用小型无人飞行器,具有成本低,机动性高,风险低等优点。
在搜寻系统中,搜寻主题是两架旋翼飞行机器人,每架飞行机器人通过机载主控制系统进行主控。主控模块通过采集机载GPS全球定位系统的信号进行定位和导航,无人飞行器之间通过机载无线通讯模块进行通讯和数据共享。飞行器搭载信号接收测向设备,能够接受有源目标的信号并给出测向数据。
本发明中,我们对目标所在的搜寻区域进行搜索地图建模,即在二维空间内进行离散化。通过划分搜寻区域为若干个同样大小的正方形区域(S×S),如图1所示。无人飞行器在一个时间步长内可以从一个矩形中心以一定的路径飞行到邻近的矩形中心。通过这样的建模,可以实现:
1)飞行器的飞行航路点就可以转化为一系列正方形区域的中心坐标值,便于数值化计算和共享。同样地,飞行器的飞行轨迹就可以转化为一系列正方形区域的中心的连线。
2)通过对各个正方形区域进行赋值标定,能够对搜索地图进行信息构建和共享。在本发明中,对被任一飞行器搜寻过的正方形区域赋值1,未被搜寻过的赋值0。这样就构建地图搜寻历史信息,飞行器通过我们设计的算法,尽可能搜寻未被搜寻过的区域,从而避免重复搜索,提高效率。
在搜寻过程中,飞行器应对尽可能在最短的时间内覆盖最多的搜寻区域,以尽快发现目标。同时,飞行器又不能飞出搜寻边界。因此,飞行器应当尽可能远离友机以及搜寻边界,避免重复搜索和越出边界。为此,本发明设计了基于上述离散化地图模型的导航成本函数,用于协调飞行器的飞行轨迹。该函数融合了各飞行器当前位置、下一时刻位置和搜寻区域边界等信息,飞行器通过评价该函数值得大小来规划各自飞行的轨迹。
根据上述发明构思,本发明采用下述技术方案:
一种基于双飞行机器人对有源目标的协调搜寻方法,其特征在于操作步骤如下:
1)对目标所在的搜寻区域进行搜索地图建模:在二维空间内进行离散化,搜寻区域为大小X×Y的矩形区域,划分搜寻区域为若干个同样大小的正方形区域(S×S),所有正方形区域的搜寻标记值H初始化为0,无人飞行器在一个时间步长内从一个矩形中心飞行到邻近的矩形中心;
2)双飞行器在任一正方形区域内,根据当前的航向,均产生3个备选航路点,即:左前方、正前方、右前方;并通过机载通讯设备与友机共享该信息;
3)根据导航成本函数,其中为双飞行器之间的距离,为双飞行器到搜寻区域边界的距离,确定双飞行器各自下一时刻的目标位置;双飞行器移动到目标位置;
4)更新地图信息,将当前搜寻的正方形区域标记为已搜寻,即赋值搜寻标记值H=1,搜寻标记值H初始值均为0;
5)根据双飞行器新的位置和航向,确定下一时刻的三个备选航路点;
6)不断重复步骤2)、3)、4)、5),直到发现目标。
上述步骤3)中的确定双飞行器下一时刻目标位置的方法是:根据权利要求1所述的基于双飞行机器人对有源目标的协调搜寻方法,其特征在于所述步骤3)中的确定双飞行器各自下一时刻目标位置的方法:
双飞行器根据导航成本函数从各自三个备选航路点中选择最优点作为目标位置。
设双飞行器为,成本函数工作原理中的标注符号说明如下:为双飞行器之间的距离,为双飞行器到搜寻区域边界的距离;表示飞行器时刻的备选航路点1的坐标,表示飞行器时刻的备选航路点2的坐标,表示飞行器时刻的备选航路点3的坐标;同理,表示飞行器时刻的备选航路点1的坐标,表示飞行器时刻的备选航路点2的坐标,表示飞行器时刻的备选航路点3的坐标;以此标注方法类推,坐标中的上标第一项表示飞行器名称,上标第二项表示搜寻的时刻,下标表示下一时刻备选航路点的序号,即符号i;以飞行器为例,说明导航成本的工作原理:飞行器A1根据当前位置当前时刻(t=0)及当前航向,产生一个时间步长后(即下一时刻t=1)的3个备选航路点:。同理,飞行器A2也用该规则产生3个备选航路点:。飞行器A1的三个备选航路点分别依次与飞行器A2的三个备选航路点之间产生9个Si,作为备选;同时,A1的三个备选航路点产生3个Sj,作为备选。将这些备选值一一代入,取该函数最小值的备选航点作为A1下一时刻的航路点。
同理,飞行器可得下一时刻的航路点。
一种基于双飞行机器人对有源目标的协调搜寻系统,应用于上述定位方法,包括两个无人飞行机器人,每个无人飞行机器人上各装有GPS定位仪,无线通讯设备、信号测向仪、飞行控制系统、主控单元。所述信号测向仪与主控单元通过RS-232与串口连接,进行测向信号传输;飞行控制系统与主控单元CAN总线连接,实时传输导航飞行控制信息;GPS定位仪通过RS-232串口与主控单元连接,向主控单元传输无人飞行机器人的位置信息;无线通讯设备与主控单元通过RS-232串口连接,实现与友机之间实时通讯交互。其特征在于,飞行器通过无线通讯设备与友机进行通讯,将各自的航路点信息与更新的地图信息发送给友机,同时从友机接受信息。
本发明与现有技术相比较具有如下显而易见的突出实质性特点和显著技术进步:本发明采用的双无人飞行机器人,能够在各种天气情况下进行独立飞行搜寻任务,减少了有人搜寻所带来的高成本及各种未知的风险性,同时,应用本发明提出的协调搜寻方法,双飞行机器人能够在较短的时间之内完成目标的搜寻,能够最大程度的提升搜寻的效率、安全性和可靠性。同时,该方法为未来各种遗失目标的搜寻提供了技术上的支撑。正是由于飞行机器人体积小、携带方便,成本低的特点,随着该项技术的逐渐成熟,这方面潜在的应用前景也是十分广阔的。
附图说明
图1是搜寻区域地图模型;
图2是无人飞行机器人路径产生和选择示意图;
图3为无人飞行机器导航成本的工作原理图。
具体实施方式
本发明的优选实施例结合附图说明如下:
实施例一:
本基于双飞行机器人对有源目标的协调搜寻方法,其特征在于操作步骤如下:
1)对目标所在的搜寻区域进行搜索地图建模:在二维空间内进行离散化,搜寻区域为大小X×Y的矩形区域,划分搜寻区域为若干个同样大小的正方形区域(S×S),所有正方形区域的搜寻标记值H初始化为0,无人飞行器在一个时间步长内从一个矩形中心飞行到邻近的矩形中心;
2)双飞行器在任一正方形区域内,根据当前的航向,均产生3个备选航路点,即:左前方、正前方、右前方;并通过机载通讯设备与友机共享该信息;
3)根据导航成本函数,其中为双飞行器之间的距离,为双飞行器到搜寻区域边界的距离,确定双飞行器各自下一时刻的目标位置;双飞行器移动到目标位置;
4)更新地图信息,将当前搜寻的正方形区域标记为已搜寻,即赋值搜寻标记值H=1,搜寻标记值H初始值均为0;
5)根据双飞行器新的位置和航向,确定下一时刻的三个备选航路点;
6)不断重复步骤2)、3)、4)、5),直到发现目标。
实施例二:
本实施例与实施例一基本相同,特别之处如下:
参见图1和图2,上述步骤3)中的确定双飞行器下一时刻目标位置的方法是:根据权利要求1所述的基于双飞行机器人对有源目标的协调搜寻方法,其特征在于步骤3)中的确定双飞行器下一时刻目标位置的方法:
双飞行器根据导航成本函数从各自三个备选航路点中选择最优点作为目标位置。
设双飞行器为,就本发明的成本函数工作原理中的标注符号说明如下:为双飞行器之间的距离,为双飞行器到搜寻区域边界的距离。表示飞行器时刻的备选航路点1的坐标,表示飞行器时刻的备选航路点2的坐标,表示飞行器时刻的备选航路点3的坐标。同理,表示飞行器时刻的备选航路点1的坐标,表示飞行器时刻的备选航路点2的坐标,表示飞行器时刻的备选航路点3的坐标。以此标注方法类推,坐标中的上标第一项表示飞行器名称,上标第二项表示搜寻的时刻,下标表示下一时刻备选航路点的序号,即图3中的符号i。以飞行器为例,结合图3说明导航成本的工作原理。
飞行器A1根据当前位置当前时刻(t=0)及当前航向,产生一个时间步长后(即下一时刻t=1)的3个备选航路点:。同理,飞行器A2也用该规则产生3个备选航路点:。飞行器A1的三个备选航路点分别依次与飞行器A2的三个备选航路点之间产生9个Si,作为备选;同时,A1的三个备选航路点产生3个Sj,作为备选。将这些备选值一一代入,取该函数最小值的备选航点作为A1下一时刻的航路点。
同理,飞行器可得下一时刻的航路点。
实施例三:
本基于双飞行机器人对有源目标的协调搜寻系统,应用于上述方法,包括两个无人飞行机器人、每个无人飞行机器人上各装有GPS定位仪,无线通讯设备、信号测向仪、飞行控制系统、主控单元;其中,GPS定位仪采集双飞行器的位置信息,以确定双飞行器的当前位置;无线通讯设备用于双飞行器之间的通信,以共享搜寻信息,其特征在于,飞行器通过无线通讯设备与友机进行通讯,将各自的航路点信息与更新的地图信息发送给友机,同时从友机接受信息;信号测向仪用于探测有源目标;飞行控制系统用于控制飞行器的飞行状态;主控单元用于整个飞行器的全局控制;所述信号测向仪与主控单元通过RS-232与串口连接,进行测向信号传输;飞行控制系统与主控单元CAN总线连接,实时传输导航飞行控制信息;GPS定位仪通过RS-232串口与主控单元连接,向主控单元传输无人飞行机器人的位置信息;无线通讯设备与主控单元通过RS-232串口连接,实现与友机进行通讯。
本系统采用双飞行机器人是两架SUAV-X160型超小型无人旋翼机。GPS定位仪采用RGM3000定位仪无线通讯设备采用XStreamXH9-019PKC-R,机载的主控制单元采用TMS320F2812系列DSP芯片来实现对各个模块的控制,同时嵌入了定位算法及导航算法,目标为发射源目标。
双飞行机器人协调搜寻方法如下:
如图1所示,给定搜寻区域X×Y,并在二维平面进行划分,最小单元为正方形区域S×S。飞行器给定初始位置和初始航向,并根据本发明提出的协调路径规划方法给出3个备选航路点,通过评价成本函数来确定下一时刻的目标位置,并以一定的飞行轨迹到达,同时给出下一时刻的3个航路点,采用同样的方法确定目标位置,以此类推,直到发现区域内目标。

Claims (3)

1.一种基于双飞行机器人对有源目标的协调搜寻方法,其特征在于操作步骤如下:
1)对目标所在的搜寻区域进行搜索地图建模:在二维空间内进行离散化,搜寻区域为大小X×Y的矩形区域,划分搜寻区域为若干个同样大小的正方形区域,所有正方形区域的搜寻标记值H初始化为0,双飞行机器人在一个时间步长内从一个矩形中心飞行到邻近的矩形中心;
2)双飞行机器人在任一正方形区域内,根据当前的航向,均产生3个备选航路点,即:左前方、正前方、右前方;并通过无线通讯设备与友机共享该3个备选航路点信息;
3)根据导航成本函数,其中为双飞行机器人之间的距离,为双飞行机器人到搜寻区域边界的距离,确定双飞行机器人各自下一时刻的目标位置;双飞行机器人移动到目标位置;
4)更新地图信息,将当前搜寻的正方形区域标记为已搜寻,即赋值搜寻标记值H=1,搜寻标记值H初始值均为0;
5)根据双飞行机器人新的位置和航向,确定下一时刻的三个备选航路点;
6)不断重复步骤2)、3)、4)、5),直到发现目标。
2.根据权利要求1所述的基于双飞行机器人对有源目标的协调搜寻方法,其特征在于所述步骤3)中的确定双飞行机器人各自下一时刻目标位置的方法:
双飞行机器人根据导航成本函数从各自三个备选航路点中选择最优点作为目标位置;
设双飞行机器人为,成本函数工作原理中的标注符号说明如下:为双飞行机器人之间的距离,为双飞行机器人到搜寻区域边界的距离;表示双飞行机器人时刻的备选航路点1的坐标,表示双飞行机器人时刻的备选航路点2的坐标,表示双飞行机器人时刻的备选航路点3的坐标;同理,表示双飞行机器人时刻的备选航路点1的坐标,表示双飞行机器人时刻的备选航路点2的坐标,表示双飞行机器人时刻的备选航路点3的坐标;以此标注方法类推,坐标中的上标第一项表示双飞行机器人名称,上标第二项表示搜寻的时刻,下标表示下一时刻备选航路点的序号,即符号i;导航成本的工作原理:双飞行机器人A1根据如下规则:当前位置当前时刻t=0及当前航向,产生一个时间步长后,即下一时刻t=1,3个备选航路点:;同理,双飞行机器人A2也用该规则产生3个备选航路点:;双飞行机器人A1的三个备选航路点分别依次与双飞行机器人A2的三个备选航路点之间产生9个Si,作为备选;同时,A1的三个备选航路点产生3个Sj,作为备选;将这些备选值一一代入,取该函数最小值的备选航点作为A1下一时刻的航路点;
同理,双飞行机器人可得下一时刻的航路点。
3.一种基于双飞行机器人对有源目标的协调搜寻系统,应用于根据权利要求1所述的基于双飞行机器人对有源目标的协调搜寻方法,包括两个双飞行机器人、每个双飞行机器人上各装有GPS定位仪,无线通讯设备、信号测向仪、飞行控制系统、主控单元;其中,GPS定位仪采集双飞行机器人的位置信息,以确定双飞行机器人的当前位置;无线通讯设备用于双飞行机器人之间的通信,以共享搜寻信息,其特征在于,双飞行机器人通过无线通讯设备与友机进行通讯,将各自的航路点信息与更新的地图信息发送给友机,同时从友机接受信息;信号测向仪用于探测有源目标;飞行控制系统用于控制双飞行机器人的飞行状态;主控单元用于整个双飞行机器人的全局控制;所述信号测向仪与主控单元通过RS-232串口连接,进行测向信号传输;飞行控制系统与主控单元CAN总线连接,实时传输导航飞行控制信息;GPS定位仪通过RS-232串口与主控单元连接,向主控单元传输双飞行机器人的位置信息;无线通讯设备与主控单元通过RS-232串口连接,实现与友机进行通讯。
CN201210424981.3A 2012-10-31 2012-10-31 基于双飞行机器人对有源目标的协调搜寻方法与系统 Active CN103217985B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210424981.3A CN103217985B (zh) 2012-10-31 2012-10-31 基于双飞行机器人对有源目标的协调搜寻方法与系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210424981.3A CN103217985B (zh) 2012-10-31 2012-10-31 基于双飞行机器人对有源目标的协调搜寻方法与系统

Publications (2)

Publication Number Publication Date
CN103217985A CN103217985A (zh) 2013-07-24
CN103217985B true CN103217985B (zh) 2016-06-29

Family

ID=48815881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210424981.3A Active CN103217985B (zh) 2012-10-31 2012-10-31 基于双飞行机器人对有源目标的协调搜寻方法与系统

Country Status (1)

Country Link
CN (1) CN103217985B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823232A (zh) * 2014-03-18 2014-05-28 黑龙江省科学院技术物理研究所 核辐射探测飞行器
CN111532427B (zh) * 2015-07-17 2023-07-28 松下电器(美国)知识产权公司 无人飞行器、方法和存储介质
CN106371452B (zh) * 2015-07-24 2020-08-25 深圳市道通智能航空技术有限公司 一种飞行器限飞区域信息的获取、共享方法、装置及系统
CN108613676B (zh) * 2018-03-27 2019-07-12 中国民用航空飞行学院 一种无人机和有人机协同机制下的应急搜救航迹规划方法
CN110262563A (zh) * 2018-05-23 2019-09-20 中国海洋大学 多无人机协同搜索水上目标的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010988A2 (en) * 1998-12-10 2000-06-21 Hughes Electronics Corporation Method and system for incorporating two-way ranging navigation as a calibration reference for GPS
CN101561493A (zh) * 2009-05-26 2009-10-21 上海大学 基于双飞行机器人对有源目标的定位方法与系统
CN102331264A (zh) * 2010-06-04 2012-01-25 通用汽车环球科技运作有限责任公司 利用导航系统对旅行路线的几何约束
TW201209377A (en) * 2010-04-23 2012-03-01 Tomtom Int Bv Navigation devices and methods carried out thereon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010988A2 (en) * 1998-12-10 2000-06-21 Hughes Electronics Corporation Method and system for incorporating two-way ranging navigation as a calibration reference for GPS
CN101561493A (zh) * 2009-05-26 2009-10-21 上海大学 基于双飞行机器人对有源目标的定位方法与系统
TW201209377A (en) * 2010-04-23 2012-03-01 Tomtom Int Bv Navigation devices and methods carried out thereon
CN102331264A (zh) * 2010-06-04 2012-01-25 通用汽车环球科技运作有限责任公司 利用导航系统对旅行路线的几何约束

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
双架次无人机(UAV)协同侦察的航路轨迹研究;王金泉等;《计算机工程与科学》;20071231;第29卷(第12期);全文 *
基于UKF的双飞行机器人三维动目标合作定位与跟踪方法;何玉庆等;《Poreeedings of the 31st Chinese》;20120727;全文 *
基于代价函数的组合导航系统地图匹配算法;彭飞等;《北京航空航天大学学报》;20020630;第28卷(第3期);全文 *
多无人机搜寻有源目标模拟实验控制系统的研究;童金等;《制造业自动化》;20101231;第32卷(第3期);全文 *

Also Published As

Publication number Publication date
CN103217985A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
US11984034B2 (en) Unmanned vehicle positioning, positioning-based methods and devices therefor
CN103217985B (zh) 基于双飞行机器人对有源目标的协调搜寻方法与系统
Cesetti et al. A visual global positioning system for unmanned aerial vehicles used in photogrammetric applications
CN101561493B (zh) 基于双飞行机器人对有源目标的定位方法与系统
CN205750551U (zh) 一种车载多旋翼无人机辅助回收系统
CN106568441B (zh) 一种利用基于北斗的电力巡检设备进行电力巡检的方法
CN101968913B (zh) 一种森林火灾区域的火焰跟踪方法
CN105000194A (zh) 基于地面合作标志的无人机助降视觉引导方法及机载系统
CN103197684A (zh) 无人机群协同跟踪目标的方法及系统
CN109911237A (zh) 基于紫外光对空编码信标的无人机助降与引导系统及应用
CN105513434A (zh) 无人机飞行管制系统及其管制方法
EP4042105B1 (en) Map including data for routing aerial vehicles during gnss failure
CN106373433A (zh) 一种飞行器的飞行路线设置方法及装置
CN108235273B (zh) 一种基于集心环机制的海上移动传感器网络路由维护方法
KR20160133806A (ko) 무인 비행체 유도 방법 및 장치
JP7190699B2 (ja) 飛行システム及び着陸制御方法
WO2019040179A1 (en) LANDING CONTROL OF AERIAL ROBOTIC VEHICLE USING THREE DIMENSIONAL FIELD CARDS GENERATED BY ODOMETRY OF VISUAL INERTIA
CN107065848A (zh) 一种基于高精度定位导航终端的井下矿机车无人驾驶系统及方法
KR20160113841A (ko) 드론을 이용한 위치 추적 서비스를 운영하는 방법과 시스템 및 이 방법을 기록한 컴퓨터로 읽을 수 있는 기록 매체
CN111473784A (zh) 基于分布节点信息区块的无人机集群协同导航系统及方法
CN109801484A (zh) 一种应急通信无人机系统及应急通信系统
CN112947587A (zh) 一种智能化无人艇搜救系统及搜救方法
US10642272B1 (en) Vehicle navigation with image-aided global positioning system
CN114303112A (zh) 分发设备、飞行器、飞行系统、其方法以及非暂时性计算机可读介质
Xiang et al. A Multi-stage Precision Landing Method for Autonomous eVTOL Based on Multi-marker Joint Localization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221109

Address after: 200444 Room 190, Building A, 5/F, Building 1, No. 1000 Zhenchen Road, Baoshan District, Shanghai

Patentee after: Jinghai Intelligent Equipment Co.,Ltd.

Address before: 200444 No. 99, upper road, Shanghai, Baoshan District

Patentee before: Shanghai University

TR01 Transfer of patent right