CN103215503A - 一种易成型高强度中厚钢板的生产方法 - Google Patents

一种易成型高强度中厚钢板的生产方法 Download PDF

Info

Publication number
CN103215503A
CN103215503A CN2013101737491A CN201310173749A CN103215503A CN 103215503 A CN103215503 A CN 103215503A CN 2013101737491 A CN2013101737491 A CN 2013101737491A CN 201310173749 A CN201310173749 A CN 201310173749A CN 103215503 A CN103215503 A CN 103215503A
Authority
CN
China
Prior art keywords
steel plate
temperature
molten steel
time
tapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101737491A
Other languages
English (en)
Other versions
CN103215503B (zh
Inventor
杨云清
曹志强
刘建兵
吴清明
杜江
李玉路
田勇
王东梅
张青学
张勇伟
翟运涛
李�杰
张计谋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Valin Xiangtan Iron and Steel Co Ltd
Hunan Hualing Xiangtan Iron and Steel Co Ltd
Original Assignee
Hunan Hualing Xiangtan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Hualing Xiangtan Iron and Steel Co Ltd filed Critical Hunan Hualing Xiangtan Iron and Steel Co Ltd
Priority to CN201310173749.1A priority Critical patent/CN103215503B/zh
Publication of CN103215503A publication Critical patent/CN103215503A/zh
Application granted granted Critical
Publication of CN103215503B publication Critical patent/CN103215503B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

一种易成型高强中厚钢板的生产方法,工艺步骤为转炉炼钢→钢包炉精炼→真空处理→连铸→加热→轧制→预矫直→在线淬火→回火热处理。钢的质量百分组成为:C=0.06~0.08,Si=0.15~0.30,Mn=1.40~1.60,P≤0.015,S≤0.005,Nb+V+Ti≤0.6,Cr+Mo≤0.4,Alt≥0.020,Pcm≤0.21。本方法生产的Q620E钢板200mm宽冷弯完好,钢板实物冷弯性能满足用户易成型的要求;钢板屈强比小于0.92,均匀延伸率大于8%,满足相关设计的使用要求;强塑积提高35%以上,提高了高强钢板抵抗动态载荷作用能力,提升了设备的安全性;连铸坯的热装及在线淬火降低了生产成本;Pcm0.21%以下的成分设计,提高了高强钢板的焊接性能。

Description

一种易成型高强度中厚钢板的生产方法
技术领域
本发明属于炼钢技术,是一种易成型高强中厚钢板的生产方法。  
背景技术
随着冶金工业的发展,屈服550MPa以上高强钢板的生产发生了巨大的变革,从传统的再加热淬火+回火(即RQ+T)工艺发展到TMCP、TMCP+T、DQ+T、Q+P 、Q+P+T,特别是近几年轧后在线直接淬火((Direct Quenching,简称DQ))工艺获得了长足的进步,广泛用于高强钢板的生产。
现在DQ工艺生产的高强度结构钢较其他工艺生产的高强度结构钢,在力学性能相当的情况下可大幅度减少合金元素含量而降低碳当量,改善焊接等工艺性能,收到高效、节材、节能和降耗的多重效果;在大致相同成分的情况下,与其他工艺相比钢板强度更高、塑性及韧性更好,常规检验均能满足交货技术条件的要求。但是在实际使用中,钢板的屈强比高,特别是钢板冷弯开裂导致成型性能差,用户大量提出质量异议,拒绝使用DQ生产的高强度结构钢板。
仔细分析发现,DQ工艺生产的高强度钢板位错密度高、屈服强度高,导致屈强比高。交货要求冷弯性能检验为窄冷弯试样,而用户实际使用的要求是冷弯成型为宽冷弯;钢板拉伸检验时发现均匀延伸低,拉伸断口为韧性断裂确但存在分层,同时分层面是典型的脆性断裂。
低屈强比Q620E中厚高强钢板交货技术条件:化学成分要求如表1,根据需要生产厂可添加其中一种或几种合金元素,最大值应符合表中规定,其含量应在质量证明书中报告,钢中至少应添加Nb、Ti、V、Al中的一种细化晶粒元素,其中至少一种元素的最小量为0.015%(对于Al为Als),也可用Alt替代Als,此时最小量为0.018%,CEV= C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15;力学性能要求如表2,拉伸试验适用于横向试样,冲击试验适用于纵向试样,当屈服现象不明显时,采用Rp0.2
表1  厚度≤50mm Q620E钢化学成分要求(%)
Figure 525778DEST_PATH_IMAGE001
表2  厚度≤50mm Q620E钢力学性能要求
Figure 792811DEST_PATH_IMAGE002
DQ工艺生产高强钢板专利如中国专利申请200910046581.1“一种超细晶贝氏体高强钢及其制造方法”,201010101815.0“一种低成本屈服强度700MPa非调质处理高强度钢板及其制造方法”,201210011762.2“低屈强比易焊接高强钢板及其制备工艺”,201110181602.8“采用直接淬火工艺生产石油储罐钢板的方法”。其中前三项为TMCP工艺生产高强钢板,后一项采用的是DQ+T工艺生产高强钢板,但是钢板成分中含有B导致钢板屈强比高、钢板均匀延伸率低、冷弯成型开裂。
总之,传统的直接淬火+回火工艺(DQ+T)生产的高强度钢板有如下缺点:钢板成分中均含有B元素,钢板淬透性好,生产出钢板强度高、冲击高、延伸率较高,但是均匀延伸<7%、钢板屈强比>0.96;钢板屈强比高,难以满足有关设计的实际使用要求;钢板均匀延伸低,钢板拉伸试验时断口出现分层现象,用户认为是钢板存在分层现象;钢板按照标准规定取样检验冷弯合格,但是宽冷弯及实际钢板弯曲大部分开裂,即冷弯成型性能差;钢板轧后传统DQ工艺中冷却速度>35℃/s,导致屈强比不受控制。
发明内容
本专利旨有提供一种易成型高强中厚钢板的生产方法,生产厚度为8~30mm易成型、易焊接、低屈强比Q620E中厚高强钢板,满足工程机械、矿用机械等制造行业的需求。
本发明的技术方案:
一种易成型高强中厚钢板的生产方法,其工艺步骤为转炉炼钢→钢包炉精炼→真空处理→连铸→加热→轧制→预矫直→在线淬火→回火热处理。其特征在于:
钢的质量百分组成为:C=0.06~0.08,Si=0.15~0.30,Mn=1.40~1.60,P≤0.015,S≤0.005,Nb+V+ Ti≤0.6,Cr+ Mo≤0.4,Alt≥0.020,Pcm≤0.21。
主要工艺步骤为:
  a. 转炉炼钢:铁水硫含量控制在S≤0.020%,温度≥1250℃,铁水入转炉前将渣扒干净;转炉终点控制目标为C-T协调出钢P≤0.015%,S≤0.020%;挡渣出钢渣厚≤50mm,出钢时间4~7min;出钢1/5加入合金,出钢2/5加完合金;出钢后打入Al线不少于250~300m脱氧。
b. 钢包炉精炼:LF炉控制钢水通电时间≥20min,总吹氩时间≥40分钟,白渣保持时间≥15min;喂Al线调Alt,钢水出站定氧≤5ppm;出站时喂SiCa线或FeCa线400~700m,出站前对钢水进行软吹氩操作,软吹氩时间应大于5min;VD炉控制钢水进VD炉全程吹氩,总吹氩时间≥35分钟;抽真空目标0.5 tor 以下,保持时间不小于15min;钢水出VD炉前软吹大于12分钟,出站上连铸台温度1555~1563℃。
c.连铸:钢水过热度小于15℃,液相线温度1518℃,中包温度1528~1533℃;铸坯厚度180 mm、220mm、260mm、300mm的最大拉速分别为为1.3 m/min、1.2 m/min、1.0 m/min、0.8 m/min.。
d.轧制:加热炉加热段温度1210~1240℃,均热段温度1200~1220℃,板坯采用热装炉加热,加热速度9~11min/cm;粗轧
Figure 178662DEST_PATH_IMAGE003
阶段开轧温度≥1050℃,终轧温度≥980℃,中间坯厚度大于等于3倍成品厚度,
Figure 785224DEST_PATH_IMAGE003
阶段轧制采用大压下制度,保证展宽后有连续2道次压下率≥15%;精轧
Figure 778587DEST_PATH_IMAGE004
阶段开轧温度880~1000℃,终轧温度820~920℃,精轧前几个道次压下率≥13%。
e.在线淬火:开冷温度≥800℃,终冷温度≤160℃,冷速25~35℃/s。
f.回火热处理:回火温度640~660℃、回火时间(板厚+60~70)min,空冷。
本发明专利具备易成型的高强钢板特点,组织为回火板条贝氏体+回火针状铁素体+少量回火粒状贝氏体。其技术原理是控制在线淬火的冷却速度,降低在线淬火后钢板的位错密度,从而降低屈服强度、降低钢板的屈强比;钢中不添加B元素提高钢板淬火后针状铁素体的含量,从而大幅度提高钢板形变时的均匀延伸;均匀延伸的提高及位错密度降低减少了钢板在冷弯成型时横向开裂的可能;Pcm0.21%以下的成分设计,提高了钢板的焊接性能,该钢板在不预热及低预热的条件下可正常焊接;热铸坯直装及在线淬火降低了加热的燃料消耗;合金的大幅度降低、离线淬火工艺路线的去除、热铸坯的直接装炉等措施,极大地降低了钢板的生产成本。
因此,与现有DQ工艺生产的高强钢技术相比,本发明具有以下优点:钢板200mm宽冷弯完好,钢板实物冷弯性能满足用户易成型的要求;钢板屈强比小于0.92,均匀延伸率大于8%,满足相关设计的使用要求;强塑积提高35%以上,提高了高强钢板抵抗动态载荷作用能力,提升了设备的安全性;连铸坯的热装及在线淬火降低了生产成本;Pcm0.21%以下的成分设计,提高了高强钢板的焊接性能。
附图说明
图1、图2分别为本发明方法生产的Q620E钢金相组织图、拉伸曲线图。
具体实施方式
实施例1: 20mm Q620E钢板生产方法
钢的化学组成如表3。
表3  20mmQ620E钢板成分实绩(%)
化学成份 C Si Mn P S Nb+V+ Ti Cr+ Mo Alt Pcm CEV
实绩 0.08 0.20 1.57 0.013 0.001 0.068 0.42 0.035 0.20 0.49
主要工艺步骤:
a.铁水硫含量S≤0.020%,温度≥1250℃,铁水入转炉前必须将渣扒干净。转炉终点控制目标:C-T协调出钢、P 0.014%、S 0.018%;严格挡渣出钢,渣厚≤50mm,出钢时间7min,出钢1/5加入合金,出钢2/5加完合金;出钢后打入Al线280m脱氧。
b.钢水在LF炉通电时间23min,总吹氩时间43min,白渣保持时间17min。喂Al线调Alt,氩站处理钢水结束Als0.038%,钢水出站定氧4ppm。出站时喂 Fe-Ca线,喂入量560m。出站前对钢水进行软吹氩操作,软吹氩时间7min。钢水进VD炉即开启全程吹氩,在VD炉总吹氩时间37分钟。抽真空0.4 tor,保持时间17min。对钢水中C、Si、Mn等成分进行微调。钢水出VD炉前软吹19min。钢水出站上连铸台温度1559℃。
c.中包温度1528℃,拉速1.0m/min。连铸成260X2280断面板坯。
d.加热炉加热段温度控制在1230~1240℃,均热段温度控制在1210~1220℃。热板坯加热速度9min/cm。
Figure 719868DEST_PATH_IMAGE003
阶段开轧温度1060℃,终轧温度990℃。中间坯厚度75mm,连续2道次压下率≥18%,成品厚度20mm。
Figure 456879DEST_PATH_IMAGE004
阶段开轧温度910℃,终轧温度870℃。
e.在线淬火:开冷温度850℃,终冷温度52℃,冷速33℃/s。
f .回火温度660℃、回火时间90 min、空冷。
实测20mm钢板性能:屈服强度693MPa、抗拉强度776 MPa、屈强比0.91、延伸率21%、均匀延伸率9.8%、200mm宽冷弯(D=3a、180°)完好、-40℃冲击功Kv2平均值278J。
实施例230mm Q620E钢板生产方法
钢的化学组成如表4。
表4  30mmQ620E钢板成分实绩 ( %)
Figure 917948DEST_PATH_IMAGE006
主要工艺步骤:
a.铁水硫含量S≤0.020%,温度≥1250℃,铁水入转炉前必须将渣扒干净。转炉终点控制目标:C-T协调出钢、P= 0.012%、S =0.017%;严格挡渣出钢,渣厚≤50mm,出钢时间6min,出钢1/5加入合金,出钢2/5加完合金;出钢后打入Al线280m脱氧。
b.钢水在LF炉通电时间26min,总吹氩时间43min,白渣保持时间17min。喂Al线调Alt,氩站处理钢水结束Als0.040%,钢水出站定氧4ppm。出站时喂 Fe-Ca线,喂入量590m。出站前对钢水进行软吹氩操作,软吹氩时间7min。钢水进VD炉即开启全程吹氩,在VD炉总吹氩时间37分钟。抽真空0.4 tor,保持时间18min。对钢水中C、Si、Mn等成分进行微调。钢水出VD炉前软吹19min。钢水出站上连铸台温度1560℃。
c.中包温度1530℃,拉速1.0m/min。连铸成260X2280断面板坯。
d.加热炉加热段温度控制在1220~1230℃,均热段温度控制在1200~1220℃。热板坯加热速度8.5min/cm。
Figure 347792DEST_PATH_IMAGE003
阶段开轧温度1050℃,终轧温度980℃。中间坯厚度90mm,连续2道次压下率≥19%,成品厚度30mm。阶段开轧温度880℃,终轧温度870℃。
e.在线淬火:开冷温度860℃,终冷温度34℃,冷速26℃/s。
f.回火温度640℃、回火时间100min、空冷。
实测30mmQ620E钢板性能:屈服强度683MPa、抗拉强度750 MPa、屈强比0.91、延伸率21%、均匀延伸率9.0%、200mm宽冷弯(D=3a、180°)完好、-40℃冲击功Kv2平均值277J。

Claims (1)

1.一种易成型高强中厚钢板的生产方法,工艺步骤为转炉炼钢→钢包炉精炼→真空处理→连铸→加热→轧制→预矫直→在线淬火→回火热处理,其特征在于:
钢的质量百分组成为:C=0.06~0.08,Si=0.15~0.30,Mn=1.40~1.60,P≤0.015,S≤0.005,Nb+V+ Ti≤0.6,Cr+ Mo≤0.4,Alt≥0.020,Pcm≤0.21;
主要工艺步骤为:
a. 转炉炼钢:铁水硫含量控制在S≤0.020%,温度≥1250℃,铁水入转炉前将渣扒干净;转炉终点控制目标为C-T协调出钢P≤0.015%,S≤0.020%;挡渣出钢渣厚≤50mm,出钢时间4~7min;出钢1/5加入合金,出钢2/5加完合金;出钢后打入Al线不少于250~300m脱氧;
b. 钢包炉精炼:LF炉控制钢水通电时间≥20min,总吹氩时间≥40分钟,白渣保持时间≥15min;喂Al线调Alt,钢水出站定氧≤5ppm;出站时喂SiCa线或FeCa线400~700m,出站前对钢水进行软吹氩操作,软吹氩时间应大于5min;VD炉控制钢水进VD炉全程吹氩,总吹氩时间≥35分钟;抽真空目标0.5 tor 以下,保持时间不小于15min;钢水出VD炉前软吹大于12分钟,出站上连铸台温度1555~1563℃;
c.连铸:钢水过热度小于15℃,液相线温度1518℃,中包温度1528~1533℃;铸坯厚度180 mm、220mm、260mm、300mm的最大拉速分别为为1.3 m/min、1.2 m/min、1.0 m/min、0.8 m/min.;
d.轧制:加热炉加热段温度1210~1240℃,均热段温度1200~1220℃,板坯采用热装炉加热,加热速度9~11min/cm;粗轧                                                
Figure 849343DEST_PATH_IMAGE001
阶段开轧温度≥1050℃,终轧温度≥980℃,中间坯厚度大于等于3倍成品厚度,
Figure 430497DEST_PATH_IMAGE001
阶段轧制采用大压下制度,保证展宽后有连续2道次压下率≥15%;精轧
Figure 2013101737491100001DEST_PATH_IMAGE002
阶段开轧温度880~1000℃,终轧温度820~920℃,精轧前几个道次压下率≥13%;
e.在线淬火:开冷温度≥800℃,终冷温度≤160℃,冷速25~35℃/s;
f.回火热处理:回火温度640~660℃、回火时间(板厚+60~70)min,空冷。
CN201310173749.1A 2013-05-13 2013-05-13 一种易成型高强度中厚钢板的生产方法 Active CN103215503B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310173749.1A CN103215503B (zh) 2013-05-13 2013-05-13 一种易成型高强度中厚钢板的生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310173749.1A CN103215503B (zh) 2013-05-13 2013-05-13 一种易成型高强度中厚钢板的生产方法

Publications (2)

Publication Number Publication Date
CN103215503A true CN103215503A (zh) 2013-07-24
CN103215503B CN103215503B (zh) 2015-02-18

Family

ID=48813648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310173749.1A Active CN103215503B (zh) 2013-05-13 2013-05-13 一种易成型高强度中厚钢板的生产方法

Country Status (1)

Country Link
CN (1) CN103215503B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540729A (zh) * 2013-09-30 2014-01-29 湖南华菱湘潭钢铁有限公司 一种高韧性耐磨钢的生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102363859A (zh) * 2011-11-14 2012-02-29 湖南华菱湘潭钢铁有限公司 一种耐磨钢板的生产方法
CN102899556A (zh) * 2012-11-02 2013-01-30 湖南华菱湘潭钢铁有限公司 一种低合金中厚钢板的生产方法
CN103014554A (zh) * 2011-09-26 2013-04-03 宝山钢铁股份有限公司 一种低屈强比高韧性钢板及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014554A (zh) * 2011-09-26 2013-04-03 宝山钢铁股份有限公司 一种低屈强比高韧性钢板及其制造方法
CN102363859A (zh) * 2011-11-14 2012-02-29 湖南华菱湘潭钢铁有限公司 一种耐磨钢板的生产方法
CN102899556A (zh) * 2012-11-02 2013-01-30 湖南华菱湘潭钢铁有限公司 一种低合金中厚钢板的生产方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540729A (zh) * 2013-09-30 2014-01-29 湖南华菱湘潭钢铁有限公司 一种高韧性耐磨钢的生产方法

Also Published As

Publication number Publication date
CN103215503B (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
CN103215499B (zh) 一种易成型高强度中厚钢板的生产方法
EP3789508A1 (en) Yield strength 460 mpa grade hot-rolled high-toughness low-temperature-resistant h-beam and preparation method therefor
CN107151763A (zh) 薄规格高强度冷成型用热轧钢带及其生产方法
CN113846260B (zh) 一种工程机械用高强度钢板的生产方法
CN110184528A (zh) 一种高温模拟焊后热处理条件下具有优异性能的q345r钢板及其制造方法
CN103233175B (zh) 一种易成型高强度中厚钢板的生产方法
CN106282770A (zh) 一种高强度耐腐蚀钢hy800厚板及生产方法
CN107937807A (zh) 770MPa级低焊接裂纹敏感性压力容器钢及其制造方法
CN111926253A (zh) 一种耐硫化氢腐蚀高强韧性正火钢及其制造方法
CN113278867A (zh) 一种前分散冷却模式下q355nhc耐候结构用钢带的制备方法
CN103233178B (zh) 一种易成型高强度中厚钢板的生产方法
CN103540839B (zh) 一种球罐用无Cr高强度调质钢板的生产方法
CN103540840A (zh) 一种球罐用无Cr高强度调质钢板的生产方法
CN103540842B (zh) 一种球罐用无Cr高强度调质钢板的生产方法
CN103215504B (zh) 一种易成型高强度中厚钢板的生产方法
CN103215500B (zh) 一种易成型高强度中厚钢板的生产方法
CN103233177B (zh) 一种易成型高强度中厚钢板的生产方法
CN103215502B (zh) 一种易成型高强度中厚钢板的生产方法
CN103225042B (zh) 一种易成型高强度中厚钢板的生产方法
CN114438407B (zh) 一种高疲劳强度大梁钢厚板及其制备方法
CN103215503B (zh) 一种易成型高强度中厚钢板的生产方法
CN108359899A (zh) 一种超高强结构钢bg960及制备方法
CN114875205A (zh) 非微合金hrb400e热轧带肋钢筋普速棒材及其生产方法
CN103215501B (zh) 一种易成型高强度中厚钢板的生产方法
CN111235479B (zh) 一种经济型管线钢的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant