CN103214850A - 一种混炼硅橡胶基电导非线性绝缘材料 - Google Patents

一种混炼硅橡胶基电导非线性绝缘材料 Download PDF

Info

Publication number
CN103214850A
CN103214850A CN2013101755377A CN201310175537A CN103214850A CN 103214850 A CN103214850 A CN 103214850A CN 2013101755377 A CN2013101755377 A CN 2013101755377A CN 201310175537 A CN201310175537 A CN 201310175537A CN 103214850 A CN103214850 A CN 103214850A
Authority
CN
China
Prior art keywords
parts
insulating material
nano
melting silicone
silicone rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101755377A
Other languages
English (en)
Other versions
CN103214850B (zh
Inventor
韩宝忠
李忠华
李长明
陈宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201310175537.7A priority Critical patent/CN103214850B/zh
Publication of CN103214850A publication Critical patent/CN103214850A/zh
Application granted granted Critical
Publication of CN103214850B publication Critical patent/CN103214850B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种混炼硅橡胶基电导非线性绝缘材料,它涉及一种橡胶基非线性电介质材料。它要解决现有硅橡胶基电导非线性复合材料因非线性功能填料掺量大而引起的击穿强度低、物理—机械性能差的问题。本发明非线性绝缘材料由混炼硅橡胶、非线性功能填料、气相法白炭黑、纳米三氧化二铁、二苯基硅二醇和有机过氧化物制成,非线性功能填料由纳米氧化锌、纳米二氧化钛、纳米碳化硅、碳纳米管、导电炭黑和纳米石墨组成。制备得到的非线性绝缘材料的交流击穿强度不小于30kV/mm,直流击穿强度不小于60kV/mm,最大非线性系数6~18,拉伸强度不小于9.0MPa,断裂伸长率不小于200%。本发明主要用于高压复合绝缘材料。

Description

一种混炼硅橡胶基电导非线性绝缘材料
技术领域
本发明涉及一种橡胶基非线性电介质材料。
背景技术
硅橡胶具有电绝缘性能好,耐高低温,耐臭氧老化、氧老化、光老化、气候老化,憎水性好,耐燃烧等优点,因而在电气绝缘领域得到广泛应用。将聚合物,如聚烯烃、橡胶、环氧树脂等与某些功能无机填料复合,可制得非线性绝缘材料,由于非线性绝缘材料的电导率或(和)介电常数能随外施电场强度的增大而提高,电导或(和)介电常数呈非线性,因而其在非均匀电场中具有自行均化电场分布的能力,能有效抑制空间电荷的产生及电树枝的形成与生长,显著提高绝缘性能。
现有的聚烯烃基非线性复合材料是由聚烯烃树脂与一种或多种填料共混制得,具有非线性电导或(和)非线性介电常数。受基体树脂聚烯烃自身性能的影响,聚烯烃基非线性复合材料的应用领域受到限制,无法应用到某些需使用橡胶制品的场合。
在2009年《功能材料》第10期第40卷《电场处理对碳化硅/聚合物复合材料电导特性的影响》和博士后研究工作报告《聚合物基非线性复合材料制备过程中施加电、磁场对其性能及微观结构的影响》中公开了碳化硅/硅橡胶复合材料具有电导非线性特性,其文中应用的碳化硅分别为平均粒径7μm~10μm和20μm~30μm的微米碳化硅和纳米碳化硅。文中碳化硅的最小添加量为11.1Vol%,计算时碳化硅和液体硅橡胶的比重分别确定为3.2g/cm3和1.0g/cm3,也即实际配方是在100份液体硅橡胶中至少添加40份的微米或纳米碳化硅。公开的文献只是从理论研究的角度指出所研究的碳化硅/硅橡胶具有电导非线性特性,没有介绍该材料的其它性能,但因碳化硅的添加量很大,导致碳化硅/硅橡胶复合材料出现以下问题:(1)复合材料击穿强度低,直流击穿强度不超过10kV/mm,不能应用于高电压绝缘;(2)复合材料的机械性能不好,拉伸断裂强度小于2.5MPa,断裂伸长率小于40%;(3)复合材料粘度大,搅拌混合困难,不易排除气泡。同时虽然文献中也介绍了添加炭黑能提高微米碳化硅/硅橡胶复合材料的电导非线性特性,但所提及的材料中碳化硅和炭黑添加量最少的材料为:碳化硅的添加量15.8Vol%,炭黑的添加量1.3Vol%,也即该材料的配方为98.5份硅橡胶、60份微米碳化硅、3份炭黑,炭黑比重设为2.0g/cm3。由于添加的碳化硅更多,且又添加了炭黑,得到的碳化硅/硅橡胶复合材料的直流击穿强度也不超过10kV/mm;机械性能更加不好,拉伸断裂强度和断裂伸长率分别为1.5MPa和20%,同时又因复合材料的粘度大,加大了搅拌混合和排气的难度。
现有的硅橡胶基电导非线性复合材料中的非线性功能填料多为一种或两种组分,且功能填料的掺量较大,从而使非线性复合材料的击穿强度低、物理―机械性能较差,以致其很难应用于高电压绝缘。
发明内容
本发明目的是为了解决现有硅橡胶基电导非线性复合材料因非线性功能填料掺量大而引起的击穿强度低、物理―机械性能差的问题,而提供一种混炼硅橡胶基电导非线性绝缘材料。
本发明混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,10~20份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成,非线性功能填料由纳米氧化锌、纳米二氧化钛、纳米碳化硅、碳纳米管、导电炭黑和纳米石墨组成;
其中混炼硅橡胶为热硫化混炼型硅橡胶,气相法白炭黑的粒径为10nm~100nm,纳米三氧化二铁的粒径为10nm~100nm,纳米氧化锌的粒径为10nm~100nm,纳米二氧化钛的粒径为10nm~100nm,纳米碳化硅的粒径为10nm~100nm,碳纳米管为直径5nm~80nm、管长1μm~15μm的单臂碳纳米管、双臂碳纳米管或多壁碳纳米管,导电炭黑的粒径为10nm~100nm,纳米石墨的片厚为10nm~100nm、片径为1μm~2μm。
采用开炼机或密炼机将混炼硅橡胶与各种填料在70℃以下混合均匀,成型后经硫化得到混炼硅橡胶基电导非线性绝缘材料。
本发明采用多种非线性功能填料复配,充分发挥各功能填料的协同效应,100份混炼硅橡胶中添加的非线性功能填料不超过20份,制备得到的混炼硅橡胶基电导非线性绝缘材料的交流击穿强度不小于30kV/mm,直流击穿强度不小于60kV/mm,在8kV/mm以下电场中下体积电阻率不小于1013Ω·m,最大非线性系数6~18,拉伸强度不小于9.0MPa,断裂伸长率不小于200%。本发明主要用于高压复合绝缘材料。
具体实施方式
具体实施方式一:本实施方式混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,10~20份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成,非线性功能填料由纳米氧化锌、纳米二氧化钛、纳米碳化硅、碳纳米管、导电炭黑和纳米石墨组成;
其中混炼硅橡胶为热硫化混炼型硅橡胶,气相法白炭黑的粒径为10nm~100nm,纳米三氧化二铁的粒径为10nm~100nm,纳米氧化锌的粒径为10nm~100nm,纳米二氧化钛的粒径为10nm~100nm,纳米碳化硅的粒径为10nm~100nm,碳纳米管为直径5nm~80nm、管长1μm~15μm的单臂碳纳米管、双臂碳纳米管或多壁碳纳米管,导电炭黑的粒径为10nm~100nm,纳米石墨的片厚为10nm~100nm、片径为1μm~2μm。
本实施方式所用原料均为市售产品,非线性功能填料均为纳米材料,由于纳米材料颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大,具有独特的量子尺寸效应、表面效应、小尺寸效应和宏观量子隧道效应。非线性功能填料纳米氧化锌、纳米二氧化钛、纳米碳化硅、碳纳米管、导电炭黑和纳米石墨可按任意比组成,本发明充分发挥各纳米功能填料的协同效应,得到混炼硅橡胶基电导非线性绝缘材料的交流击穿强度不小于30kV/mm,直流击穿强度不小于60kV/mm,在8kV/mm以下电场中下体积电阻率不小于1013Ω·m,最大非线性系数6~18,拉伸强度不小于9.0MPa,断裂伸长率不小于200%的非线性绝缘材料。
具体实施方式二:本实施方式与具体实施方式一不同的是有机过氧化物为过氧化苯甲酰、过氧化二叔丁基、过氧化二异丙苯或2,5-二甲基-2,5-二叔丁基过氧化己烷。其它参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一不同的是混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,12~18份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成。其它参数与具体实施方式一相同。
具体实施方式四:本实施方式与具体实施方式一不同的是混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,12~18份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成,非线性功能填料中含有0.5~3份的纳米二氧化钛。其它参数与具体实施方式一相同。
具体实施方式五:本实施方式与具体实施方式一不同的是混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,19份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成,非线性功能填料中含有5~15份的纳米氧化锌。其它参数与具体实施方式一相同。
具体实施方式六:本实施方式与具体实施方式一不同的是混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,16份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成,非线性功能填料中含有4~6份的纳米氧化锌和6~8份的纳米碳化硅。其它参数与具体实施方式一相同。
具体实施方式七:本实施方式与具体实施方式一不同的是混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,10~20份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成,非线性功能填料中含有0.5~3份的导电炭黑。其它参数与具体实施方式一相同。
具体实施方式八:本实施方式与具体实施方式一不同的是混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,19.5份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成,非线性功能填料由10份纳米氧化锌、2份纳米二氧化钛、6份纳米碳化硅、0.5份碳纳米管、0.5份导电炭黑和0.5份纳米石墨组成。其它参数与具体实施方式一相同。
具体实施方式九:本实施方式与具体实施方式一不同的是气相法白炭黑的粒径为20nm~40nm,纳米三氧化二铁的粒径为50nm~70nm,纳米氧化锌的粒径为30nm~50nm,纳米二氧化钛的粒径为40nm~60nm,纳米碳化硅的粒径为30nm~60nm,碳纳米管为直径10nm~20nm、管长5μm~15μm的多臂碳纳米管,导电炭黑的粒径为20nm~40nm,纳米石墨的片厚为40nm~60nm、片径为1μm~2μm。其它参数与具体实施方式一相同。
实施例一:本实施例混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,非线性功能填料,15份气相法白炭黑,1份纳米三氧化二铁,3份二苯基硅二醇和1.5份过氧化苯甲酰制成,非线性功能填料由10份纳米氧化锌、2份纳米二氧化钛、6份纳米碳化硅、0.5份碳纳米管、0.5份导电炭黑和0.5份纳米石墨组成;
其中混炼硅橡胶为分子量为(60~80)×104的甲基乙烯基硅橡胶,气相法白炭黑的粒径为30nm~60nm,纳米三氧化二铁的粒径为30nm~60nm,纳米氧化锌的粒径为20nm~50nm,纳米二氧化钛的粒径为40nm~60nm,纳米碳化硅的粒径为30nm~60nm,碳纳米管为直径5nm~10nm、管长5μm~15μm的单臂碳纳米管,导电炭黑的粒径为20nm~40nm,纳米石墨的片厚为40nm~60nm、片径为1μm~2μm。
采用开炼机将混炼硅橡胶与各种填料在60℃下混合均匀,成型后经硫化得到混炼硅橡胶基电导非线性绝缘材料。
本实施例得到的混炼硅橡胶基电导非线性绝缘材料在8kV/mm以下电场中体积电阻率为5×1013Ω·m,交流击穿强度为31kV/mm,直流击穿强度为62kV/mm,最大非线性系数为17,拉伸强度为11.8MPa,断裂伸长率为230%。
实施例二:本实施例混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,非线性功能填料,10份气相法白炭黑,1.5份纳米三氧化二铁,2份二苯基硅二醇和1.2份过氧化二异丙苯制成,非线性功能填料由5份纳米氧化锌、1份纳米二氧化钛、7份纳米碳化硅、1份碳纳米管、0.5份导电炭黑和1份纳米石墨组成;
其中混炼硅橡胶为分子量为(45~70)×104的甲基-苯基-乙烯基硅橡胶,气相法白炭黑的粒径为20nm~50nm,纳米三氧化二铁的粒径为45nm~70nm,纳米氧化锌的粒径为40nm~60nm,纳米二氧化钛的粒径为50nm~70nm,纳米碳化硅的粒径为40nm~60nm,碳纳米管为直径10nm~20nm、管长5μm~10μm的双臂碳纳米管,导电炭黑的粒径为20nm~45nm,纳米石墨的片厚为20nm~40nm、片径为1μm~2μm。
采用开炼机将混炼硅橡胶与各种填料在70℃下混合均匀,成型后经硫化得到混炼硅橡胶基电导非线性绝缘材料。
本实施例得到的混炼硅橡胶基电导非线性绝缘材料在8kV/mm以下电场中体积电阻率为2×1014Ω·m,交流击穿强度为33kV/mm,直流击穿强度为65kV/mm,最大非线性系数为12.7,拉伸强度为10.2MPa,断裂伸长率为280%。
实施例三:本实施例混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,非线性功能填料,20份气相法白炭黑,1.5份纳米三氧化二铁,3份二苯基硅二醇和1.5份2,5-二甲基-2,5-二叔丁基过氧化己烷制成,非线性功能填料由3份纳米氧化锌、0.5份纳米二氧化钛、4份纳米碳化硅、1份碳纳米管、1份导电炭黑和0.5份纳米石墨组成;
其中混炼硅橡胶为分子量为(40~60)×104的氟硅橡胶,气相法白炭黑的粒径为20nm~40nm,纳米三氧化二铁的粒径为50nm~70nm,纳米氧化锌的粒径为30nm~50nm,纳米二氧化钛的粒径为40nm~60nm,纳米碳化硅的粒径为30nm~60nm,碳纳米管为直径10nm~20nm、管长5μm~15μm的多臂碳纳米管,导电炭黑的粒径为20nm~40nm,纳米石墨的片厚为40nm~60nm、片径为1μm~2μm。
采用密炼机将混炼硅橡胶与各种填料在50℃下混合均匀,成型后经硫化得到混炼硅橡胶基电导非线性绝缘材料。
本实施例得到的混炼硅橡胶基电导非线性绝缘材料在8kV/mm以下电场中体积电阻率为5×1014Ω·m,交流击穿强度为32kV/mm,直流击穿强度为63kV/mm,最大非线性系数为8.1,拉伸强度为10.8MPa,断裂伸长率为270%。

Claims (9)

1.一种混炼硅橡胶基电导非线性绝缘材料,其特征在于混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,10~20份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成,非线性功能填料由纳米氧化锌、纳米二氧化钛、纳米碳化硅、碳纳米管、导电炭黑和纳米石墨组成;
其中混炼硅橡胶为热硫化混炼型硅橡胶,气相法白炭黑的粒径为10nm~100nm,纳米三氧化二铁的粒径为10nm~100nm,纳米氧化锌的粒径为10nm~100nm,纳米二氧化钛的粒径为10nm~100nm,纳米碳化硅的粒径为10nm~100nm,碳纳米管为直径5nm~80nm、管长1μm~15μm的单臂碳纳米管、双臂碳纳米管或多壁碳纳米管,导电炭黑的粒径为10nm~100nm,纳米石墨的片厚为10nm~100nm、片径为1μm~2μm。
2.根据权利要求1所述的一种混炼硅橡胶基电导非线性绝缘材料,其特征在于有机过氧化物为过氧化苯甲酰、过氧化二叔丁基、过氧化二异丙苯或2,5-二甲基-2,5-二叔丁基过氧化己烷。
3.根据权利要求1所述的一种混炼硅橡胶基电导非线性绝缘材料,其特征在于混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,12~18份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成。
4.根据权利要求1所述的一种混炼硅橡胶基电导非线性绝缘材料,其特征在于混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,12~18份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成,非线性功能填料中含有0.5~3份的纳米二氧化钛。
5.根据权利要求1所述的一种混炼硅橡胶基电导非线性绝缘材料,其特征在于混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,19份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成,非线性功能填料中含有5~15份的纳米氧化锌。
6.根据权利要求1所述的一种混炼硅橡胶基电导非线性绝缘材料,其特征在于混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,16份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成,非线性功能填料中含有4~6份的纳米氧化锌和6~8份的纳米碳化硅。
7.根据权利要求1所述的一种混炼硅橡胶基电导非线性绝缘材料,其特征在于混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,10~20份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成,非线性功能填料中含有0.5~3份的导电炭黑。
8.根据权利要求1所述的一种混炼硅橡胶基电导非线性绝缘材料,其特征在于混炼硅橡胶基电导非线性绝缘材料按重量份数由100份混炼硅橡胶,19.5份非线性功能填料,5~20份气相法白炭黑,0.5~3份纳米三氧化二铁,0.5~5份二苯基硅二醇和0.5~1.5份有机过氧化物制成,非线性功能填料由10份纳米氧化锌、2份纳米二氧化钛、6份纳米碳化硅、0.5份碳纳米管、0.5份导电炭黑和0.5份纳米石墨组成。
9.根据权利要求1至8任一项所述的一种混炼硅橡胶基电导非线性绝缘材料,其特征在于气相法白炭黑的粒径为20nm~40nm,纳米三氧化二铁的粒径为50nm~70nm,纳米氧化锌的粒径为30nm~50nm,纳米二氧化钛的粒径为40nm~60nm,纳米碳化硅的粒径为30nm~60nm,碳纳米管为直径10nm~20nm、管长5μm~15μm的多臂碳纳米管,导电炭黑的粒径为20nm~40nm,纳米石墨的片厚为40nm~60nm、片径为1μm~2μm。
CN201310175537.7A 2013-05-13 2013-05-13 一种混炼硅橡胶基电导非线性绝缘材料 Expired - Fee Related CN103214850B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310175537.7A CN103214850B (zh) 2013-05-13 2013-05-13 一种混炼硅橡胶基电导非线性绝缘材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310175537.7A CN103214850B (zh) 2013-05-13 2013-05-13 一种混炼硅橡胶基电导非线性绝缘材料

Publications (2)

Publication Number Publication Date
CN103214850A true CN103214850A (zh) 2013-07-24
CN103214850B CN103214850B (zh) 2015-11-25

Family

ID=48813037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310175537.7A Expired - Fee Related CN103214850B (zh) 2013-05-13 2013-05-13 一种混炼硅橡胶基电导非线性绝缘材料

Country Status (1)

Country Link
CN (1) CN103214850B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468000A (zh) * 2013-09-13 2013-12-25 江苏远洋东泽电缆股份有限公司 舰船高载流量低表面温升电缆绝缘橡胶及其制造方法
CN103694706A (zh) * 2013-12-26 2014-04-02 昆山攀特电陶科技有限公司 高导热磁性复合材料及其制备方法
CN104830072A (zh) * 2015-04-24 2015-08-12 北京化工大学 一种氟硅橡胶介电弹性体复合材料及其制备方法
CN105331110A (zh) * 2015-11-17 2016-02-17 镇江高美新材料有限公司 液体硅橡胶基电导非线性绝缘材料
CN106832937A (zh) * 2017-01-05 2017-06-13 西安交通大学 一种利用原子层沉积技术修饰碳纳米管制备耐高压复合材料及方法
CN107686629A (zh) * 2017-05-04 2018-02-13 清华大学 低阀值场强高机械性能的非线性电导复合物材料
WO2018184144A1 (en) * 2017-04-05 2018-10-11 Abb Schweiz Ag Insulation material for a dc electrical component
CN109694217A (zh) * 2019-01-27 2019-04-30 湖北工业大学 非线性电导复合材料及其制备方法和应用以及避雷器
CN110467818A (zh) * 2019-08-23 2019-11-19 国网天津市电力公司 一种微-纳米混合ZnO非线性硅橡胶复合绝缘子及制备工艺
CN110564156A (zh) * 2019-05-24 2019-12-13 湖北工业大学 一种低填充比且具有非线性电导特性的智能绝缘材料的制备方法
CN113292859A (zh) * 2021-06-30 2021-08-24 陕西能源研究院有限公司 一种纳米改性快速成型高分子绝缘材料及其制备方法
CN114773857A (zh) * 2022-03-28 2022-07-22 青岛科技大学 二元复合硅橡胶材料及其制备方法和用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109796765A (zh) * 2019-01-09 2019-05-24 清华大学 高机械性能的非线性电导复合物材料

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101440180A (zh) * 2008-12-26 2009-05-27 哈尔滨理工大学 聚烯烃基非线性电介质材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101440180A (zh) * 2008-12-26 2009-05-27 哈尔滨理工大学 聚烯烃基非线性电介质材料

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468000A (zh) * 2013-09-13 2013-12-25 江苏远洋东泽电缆股份有限公司 舰船高载流量低表面温升电缆绝缘橡胶及其制造方法
CN103468000B (zh) * 2013-09-13 2015-07-08 江苏远洋东泽电缆股份有限公司 舰船高载流量低表面温升电缆绝缘橡胶及其制造方法
CN103694706A (zh) * 2013-12-26 2014-04-02 昆山攀特电陶科技有限公司 高导热磁性复合材料及其制备方法
CN103694706B (zh) * 2013-12-26 2016-09-07 昆山攀特电陶科技有限公司 高导热磁性复合材料及其制备方法
CN104830072A (zh) * 2015-04-24 2015-08-12 北京化工大学 一种氟硅橡胶介电弹性体复合材料及其制备方法
CN105331110A (zh) * 2015-11-17 2016-02-17 镇江高美新材料有限公司 液体硅橡胶基电导非线性绝缘材料
CN106832937A (zh) * 2017-01-05 2017-06-13 西安交通大学 一种利用原子层沉积技术修饰碳纳米管制备耐高压复合材料及方法
CN106832937B (zh) * 2017-01-05 2019-06-11 西安交通大学 一种利用原子层沉积技术修饰碳纳米管制备耐高压复合材料及方法
WO2018184144A1 (en) * 2017-04-05 2018-10-11 Abb Schweiz Ag Insulation material for a dc electrical component
US11342095B2 (en) 2017-04-05 2022-05-24 Hitachi Energy Switzerland Ag Insulation material for a DC electrical component
CN107686629A (zh) * 2017-05-04 2018-02-13 清华大学 低阀值场强高机械性能的非线性电导复合物材料
CN109694217A (zh) * 2019-01-27 2019-04-30 湖北工业大学 非线性电导复合材料及其制备方法和应用以及避雷器
CN109694217B (zh) * 2019-01-27 2021-07-09 湖北工业大学 非线性电导复合材料及其制备方法和应用以及避雷器
CN110564156A (zh) * 2019-05-24 2019-12-13 湖北工业大学 一种低填充比且具有非线性电导特性的智能绝缘材料的制备方法
CN110467818A (zh) * 2019-08-23 2019-11-19 国网天津市电力公司 一种微-纳米混合ZnO非线性硅橡胶复合绝缘子及制备工艺
CN113292859A (zh) * 2021-06-30 2021-08-24 陕西能源研究院有限公司 一种纳米改性快速成型高分子绝缘材料及其制备方法
CN114773857A (zh) * 2022-03-28 2022-07-22 青岛科技大学 二元复合硅橡胶材料及其制备方法和用途

Also Published As

Publication number Publication date
CN103214850B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
CN103214850B (zh) 一种混炼硅橡胶基电导非线性绝缘材料
CN103214851B (zh) 一种液体硅橡胶基电导非线性绝缘材料
Azizi et al. Performance improvement of EPDM and EPDM/Silicone rubber composites using modified fumed silica, titanium dioxide and graphene additives
CN103214747B (zh) 一种三元乙丙橡胶基电导非线性绝缘材料
Li et al. Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network
Wang et al. Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/Polydopamine
Cao et al. High thermal conductivity and high electrical resistivity of poly (vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers
Kim et al. Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition modeling 3D printing
Dang et al. Preparation and dielectric properties of surface modified TiO2/silicone rubber nanocomposites
Mondal et al. Elastomer reinforcement by graphene nanoplatelets and synergistic improvements of electrical and mechanical properties of composites by hybrid nano fillers of graphene-carbon black & graphene-MWCNT
Jiang et al. Reduction in percolation threshold of injection molded high‐density polyethylene/exfoliated graphene nanoplatelets composites by solid state ball milling and solid state shear pulverization
Li et al. Polydopamine coating layer on graphene for suppressing loss tangent and enhancing dielectric constant of poly (vinylidene fluoride)/graphene composites
Jiang et al. Improving electrical conductivity and mechanical properties of high density polyethylene through incorporation of paraffin wax coated exfoliated graphene nanoplatelets and multi-wall carbon nano-tubes
Dang et al. Suppression of elevated temperature space charge accumulation in polypropylene/elastomer blends by deep traps induced by surface-modified ZnO nanoparticles
Tong et al. Simultaneously facilitating dispersion and thermal reduction of graphene oxide to enhance thermal conductivity of poly (vinylidene fluoride)/graphene nanocomposites by water in continuous extrusion
CN105331110A (zh) 液体硅橡胶基电导非线性绝缘材料
CN104371153A (zh) 一种由碳纳米管和石墨烯共同改性的橡胶复合材料
Xu et al. Dielectric properties of polypropylene-based nanocomposites with ionic liquid-functionalized multiwalled carbon nanotubes
Zhao et al. Synergistic effect of ZnO microspherical varistors and carbon fibers on nonlinear conductivity and mechanical properties of the silicone rubber-based material
Backes et al. Electrical, thermal and mechanical properties of epoxy/CNT/calcium carbonate nanocomposites
Qian et al. Enhanced mechanical and dielectric properties of natural rubber using sustainable natural hybrid filler
Xie et al. Construction of thermal conduction networks and decrease of interfacial thermal resistance for improving thermal conductivity of epoxy natural rubber composites
Jia et al. Rational design for enhancing mechanical and conductive properties of Ti3C2 MXene based elastomer composites
Pan et al. Influences of porous reduction graphene oxide/molybdenum disulfide as filler on dielectric properties, thermal stability, and mechanical properties of natural rubber
Bhadra Low percolation threshold and enhanced electrical and dielectric properties of graphite powder/poly (vinyl alcohol) composites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151125

Termination date: 20180513

CF01 Termination of patent right due to non-payment of annual fee