CN103196949A - Heat resistance heat flow meter calibration method and implementation device thereof - Google Patents
Heat resistance heat flow meter calibration method and implementation device thereof Download PDFInfo
- Publication number
- CN103196949A CN103196949A CN2013101514614A CN201310151461A CN103196949A CN 103196949 A CN103196949 A CN 103196949A CN 2013101514614 A CN2013101514614 A CN 2013101514614A CN 201310151461 A CN201310151461 A CN 201310151461A CN 103196949 A CN103196949 A CN 103196949A
- Authority
- CN
- China
- Prior art keywords
- plate
- flow meter
- heat flow
- thermal conductivity
- thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000004907 flux Effects 0.000 claims abstract description 27
- 230000035945 sensitivity Effects 0.000 claims abstract description 13
- 238000009413 insulation Methods 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000004642 Polyimide Substances 0.000 claims description 3
- 239000000498 cooling water Substances 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 238000005485 electric heating Methods 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000012546 transfer Methods 0.000 abstract description 2
- 238000011000 absolute method Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000012733 comparative method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
一种传热技术领域的热阻式热流计校准方法及其实施装置,包括绝热板、热板、冷板、导热系数标准板和热阻式热流计,在绝热板与冷板之间依次布置热板、导热系数标准板、热阻式热流计,导热系数标准板的两侧分别布置温度传感器。通过测量导热系数标准板的厚度及其两侧温差得到通过导热系数标准板的热流密度,根据导热系数标准板与通过热阻式热流计的热流密度相等原则,以及热阻式热流计的输出电势,就可以得到热阻式热流计的灵敏系数。本发明设计合理,结构简单,适用利用轴向导热原理的热阻式热流计校准方法。
A method for calibrating a thermal resistance heat flow meter in the field of heat transfer technology and its implementation device, comprising a thermal insulation plate, a hot plate, a cold plate, a thermal conductivity standard plate and a thermal resistance heat flow meter, which are sequentially arranged between the thermal insulation plate and the cold plate The thermal plate, the thermal conductivity standard plate, the thermal resistance heat flow meter, and the two sides of the thermal conductivity standard plate are respectively arranged with temperature sensors. The heat flux passing through the thermal conductivity standard plate is obtained by measuring the thickness of the thermal conductivity standard plate and the temperature difference on both sides, according to the principle that the thermal conductivity standard plate is equal to the heat flux passing through the thermal resistance heat flow meter, and the output potential of the thermal resistance heat flow meter , the sensitivity coefficient of the thermal resistance heat flow meter can be obtained. The invention has reasonable design and simple structure, and is applicable to the calibration method of the thermal resistance heat flow meter utilizing the principle of axial heat conduction.
Description
技术领域technical field
本发明涉及的是一种传热技术领域的热流计校准方法,特别是利用轴向导热原理的热阻式热流计校准方法及其实施装置。The invention relates to a method for calibrating a heat flow meter in the field of heat transfer technology, in particular to a method for calibrating a heat resistance type heat flow meter utilizing the principle of axial heat conduction and an implementation device thereof.
背景技术Background technique
热流计是用来测试热流密度的传感器,目前应用最广泛的热流传感器有两大类:一种是利用轴向导热原理的热阻式传感器,使用温度通常在200℃以下,热流密度在2kW/m2以下,用来测试地热、管道或者壁面的保温性能和热量损失,符合国家相应节能测试标准,在节能工作中使用广泛,也是热流计最常用的一种应用;另一种是径向导热原理的圆箔式传感器,使用温度较高,热流密度范围可达到500kW/m2,主要用于冶金、化工等工业领域的高强度辐射热流的测试。热流传感器在出厂前或使用前都要进行校准,通过校准结果对传感器的灵敏系数进行调整,灵敏系数是由通过传感器的热流密度和输出电势决定的。为了确定热流传感器的灵敏系数,需要有一个稳定的具有确定方向的一维热流,其热流密度的数值能够准确测定。校准热流传感器需要建立稳态的一维热流场,其热流密度的数值要求能够准确给出。防护热板法是国际上最通用的产生可计算的热流密度的方法之一,美、英、德等国家都制定有通过防护热板法来测试绝热材料导热系数的国家标准。根据测定热流密度的方式,校准方法分成绝对法和比较法两大类。绝对法指的是热流发生源产生的热流密度的数值可以通过溯源至其他物理参数(如电流、电压等)计算出来,从而根据可计算的热流密度和电势值得到传感器的灵敏系数。比较法指的是在形成的一维稳态热流场内,把被校准的热流计与标准热流计的读数进行比较,从而得到被校准热流计的灵敏系数的方法。采用比较法的校准装置结构与采用绝对法的有类似之处,但是热流密度的计算不是通过对加热功率的测试得到。The heat flow meter is a sensor used to test the heat flux density. At present, there are two types of heat flow sensors that are most widely used: one is a thermal resistance sensor that uses the principle of axial heat conduction, and the operating temperature is usually below 200°C. Below m2 , it is used to test the thermal insulation performance and heat loss of geothermal heat, pipes or walls. It meets the corresponding national energy-saving test standards. It is widely used in energy-saving work and is also the most commonly used application of heat flow meters; the other is radial heat conduction The principle of the circular foil sensor, the use temperature is high, the heat flux range can reach 500kW/m 2 , it is mainly used for the test of high-intensity radiation heat flux in metallurgy, chemical industry and other industrial fields. The heat flow sensor must be calibrated before leaving the factory or before use, and adjust the sensitivity coefficient of the sensor through the calibration result. The sensitivity coefficient is determined by the heat flux density and output potential of the sensor. In order to determine the sensitivity coefficient of the heat flow sensor, it is necessary to have a stable one-dimensional heat flow with a definite direction, and the value of its heat flux density can be accurately measured. To calibrate the heat flow sensor, a steady-state one-dimensional heat flow field needs to be established, and the numerical value of the heat flow density can be accurately given. The guarded hot plate method is one of the most commonly used methods to generate calculable heat flux in the world. The United States, Britain, Germany and other countries have formulated national standards for testing the thermal conductivity of thermal insulation materials by the guarded hot plate method. According to the method of measuring heat flux, calibration methods are divided into two categories: absolute method and comparative method. The absolute method means that the value of the heat flux generated by the heat flux source can be calculated by tracing to other physical parameters (such as current, voltage, etc.), so that the sensitivity coefficient of the sensor can be obtained according to the calculable heat flux and potential value. The comparison method refers to the method of comparing the readings of the calibrated heat flow meter with the standard heat flow meter in the formed one-dimensional steady-state heat flow field, so as to obtain the sensitivity coefficient of the calibrated heat flow meter. The structure of the calibration device using the comparative method is similar to that using the absolute method, but the calculation of the heat flux is not obtained by testing the heating power.
在绝对法中,通过将加热部分的电功率精确计算出来,与加热面积相除,得到通过试件的热流密度。这种绝对法应用的前提是,热流全部是沿与加热面垂直的方向流动,忽略侧面热量损失。但是在实际应用的时候,由于加热板本身有一定的厚度,且与环境温度存在一定温差,侧面热损往往不能忽略,而侧面热损的量也很难精确计算,对于侧面热损的补偿要求很高。所以长期以来,绝对法的推广应用受到了很大的限制。另外一种是相对法,即采用较高准确度等级的热流传感器来标定工作用的热流传感器,但是目前因为热流传感器本身准确度不高,且没有定级的国家标准,所以这种方法在国内没有实际的应用案例。In the absolute method, the heat flux through the specimen is obtained by accurately calculating the electric power of the heating part and dividing it by the heating area. The premise of the application of this absolute method is that all the heat flow flows in the direction perpendicular to the heating surface, ignoring the side heat loss. However, in practical applications, since the heating plate itself has a certain thickness and there is a certain temperature difference with the ambient temperature, the side heat loss cannot be ignored, and the amount of side heat loss is difficult to calculate accurately. The compensation requirements for side heat loss very high. Therefore, for a long time, the popularization and application of jus cogens have been greatly restricted. The other is the relative method, that is to use a heat flow sensor with a higher accuracy level to calibrate the heat flow sensor for work. There are no practical use cases.
在现有技术文献中,与热流计校准方法相关的专利文献也比较少。In the prior art documents, there are relatively few patent documents related to the heat flow meter calibration method.
发明内容Contents of the invention
本发明针对上述现有技术的不足,提供了一种热阻式热流计校准方法及其实施装置,可以较少的考虑热板的侧面热流损失。The present invention aims at the deficiencies of the above-mentioned prior art, and provides a thermal resistance heat flow meter calibration method and its implementation device, which can less consider the side heat flow loss of the heat plate.
本发明涉及一种热阻式热流计校准方法,包括如下步骤:步骤一,在热板与冷板之间依次布置导热系数标准板和热阻式热流计,在导热系数标准板的两侧分别布置温度传感器;步骤二,测量导热系数标准板的厚度及其两侧温差,根据公式来计算通过导热系数标准板的热流密度,其中q为通过导热系数标准板的热流密度,λ为导热系数标准板的导热系数,△t为导热系数标准板两侧的温差,δ—导热系数标准板的厚度;步骤三,测量热阻式热流计的输出电势,根据公式来计算热流计的灵敏系数,其中C为热阻式热流计的灵敏系数,q为通过热阻式热流计的热流密度,E为热阻式热流计的输出电势。The invention relates to a method for calibrating a thermal resistance heat flow meter, comprising the following steps: step 1, arranging a thermal conductivity standard plate and a thermal resistance heat flow meter in sequence between a hot plate and a cold plate, respectively Arrange the temperature sensor; Step 2, measure the thickness of the thermal conductivity standard plate and the temperature difference on both sides, according to the formula To calculate the heat flux through the thermal conductivity standard plate, where q is the heat flux through the thermal conductivity standard plate, λ is the thermal conductivity of the thermal conductivity standard plate, △t is the temperature difference on both sides of the thermal conductivity standard plate, δ—the thermal conductivity standard The thickness of the plate;
本发明还涉及一种实施以上所述热阻式热流计校准方法的装置,包括绝热板、热板、冷板、导热系数标准板和,冷板的控温方式为恒温冷却水套,在绝热板和冷板之间依次布置热板、导热系数标准板和热阻式热流计,导热系数标准板的两侧分别布置温度传感器,热板的加热元件为聚酰亚胺电热膜。The present invention also relates to a device for implementing the above-mentioned calibration method for a thermal resistance heat flow meter, which includes a thermal insulation plate, a hot plate, a cold plate, a thermal conductivity standard plate, and a temperature control method of the cold plate is a constant temperature cooling water jacket. A hot plate, a thermal conductivity standard plate and a thermal resistance heat flow meter are arranged in sequence between the plate and the cold plate, temperature sensors are arranged on both sides of the thermal conductivity standard plate, and the heating element of the hot plate is a polyimide electrothermal film.
在本发明的工作过程中,通过已知的导热系数标准板的厚度、两侧温差以及其导热系数,就可以计算出通过导热系数标准板的热流密度,由于通过导热板的热流密度与通过热阻式热流计的热流密度相同,再加上已知的热阻式热流计的输出电势,就可以计算出热阻式热流计的灵敏系数,从而实现对热阻式热流计的校准。In the working process of the present invention, just can calculate the heat flux density by the thermal conductivity standard plate by the thickness of the known thermal conductivity standard plate, the temperature difference on both sides and its thermal conductivity, because the heat flux density by the thermal conductivity plate and the passing heat The heat flux density of the resistance heat flow meter is the same, coupled with the known output potential of the heat resistance heat flow meter, the sensitivity coefficient of the heat resistance heat flow meter can be calculated, so as to realize the calibration of the heat resistance heat flow meter.
与现有技术相比,本发明具有如下有益效果为:本发明设计合理,结构简单;在校准过程中,只需要保证热阻式热流计放置区域无侧面热损即可,不需要像绝对法那样,考虑整个加热面积的侧面热损。Compared with the prior art, the present invention has the following beneficial effects: the present invention is reasonable in design and simple in structure; in the calibration process, it is only necessary to ensure that there is no side heat loss in the area where the thermal resistance heat flow meter is placed, and there is no need for absolute methods. That way, the side heat loss over the entire heating area is taken into account.
附图说明Description of drawings
图1为本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
其中:1、绝热板,2、热板,3、冷板,4、导热系数标准板,5、热阻式热流计。Among them: 1. Insulation board, 2. Hot board, 3. Cold board, 4. Thermal conductivity standard board, 5. Thermal resistance heat flow meter.
具体实施方式Detailed ways
下面结合附图对本发明的实施例作详细说明,本实施例以本发明技术方案为前提,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. This embodiment is based on the technical solution of the present invention, and provides detailed implementation methods and specific operating procedures, but the scope of protection of the present invention is not limited to the following embodiments. .
实施例Example
如图1所示,本发明包括绝热板1、热板2、冷板3、导热系数标准板4和热阻式热流计5,冷板3的控温方式为恒温冷却水套,在绝热板1和冷板3之间依次布置热板2、导热系数标准板4和热阻式热流计5,导热系数标准板4的两侧分别布置温度传感器,热板2的加热元件为聚酰亚胺电热膜。As shown in Fig. 1, the present invention comprises heat insulation plate 1, heat plate 2,
在本发明的工作过程中,根据公式就可以计算出通过导热系数标准板的热流密度,其中q为通过导热系数标准板的热流密度,λ为导热系数标准板的导热系数,△t为导热系数标准板两侧的温差,δ—导热系数标准板的厚度;根据公式就可以计算出热流计的灵敏系数,其中C为热阻式热流计的灵敏系数,q为通过热阻式热流计的热流密度即通过导热系数标准板的热流密度,E为热阻式热流计的输出电势。从而实现对热阻式热流计的校准。In the working process of the present invention, according to the formula The heat flux through the thermal conductivity standard plate can be calculated, where q is the heat flux through the thermal conductivity standard plate, λ is the thermal conductivity of the thermal conductivity standard plate, △t is the temperature difference on both sides of the thermal conductivity standard plate, δ—thermal conductivity Coefficient of the thickness of the standard plate; according to the formula The sensitivity coefficient of the heat flow meter can be calculated, where C is the sensitivity coefficient of the thermal resistance heat flow meter, q is the heat flux passing through the thermal resistance heat flow meter, that is, the heat flux passing through the thermal conductivity standard plate, and E is the thermal resistance heat flow meter output potential. In order to realize the calibration of the thermal resistance heat flow meter.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101514614A CN103196949A (en) | 2013-04-26 | 2013-04-26 | Heat resistance heat flow meter calibration method and implementation device thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101514614A CN103196949A (en) | 2013-04-26 | 2013-04-26 | Heat resistance heat flow meter calibration method and implementation device thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103196949A true CN103196949A (en) | 2013-07-10 |
Family
ID=48719641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013101514614A Pending CN103196949A (en) | 2013-04-26 | 2013-04-26 | Heat resistance heat flow meter calibration method and implementation device thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103196949A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103411996A (en) * | 2013-08-05 | 2013-11-27 | 电子科技大学 | Measuring equipment and measuring method for heat conductivity coefficients of solid materials |
CN103557945A (en) * | 2013-10-09 | 2014-02-05 | 中国科学院力学研究所 | Method for calibrating heat flow meter through blackbody radiation |
CN103575427A (en) * | 2013-09-24 | 2014-02-12 | 中国科学院力学研究所 | Method for calibrating heat flow meter by adopting heat conduction |
CN103868948A (en) * | 2014-02-26 | 2014-06-18 | 天津大学 | Method for correcting heat exchange power of heat conductivity tester through single-test piece guarded hot plate method |
CN104155005A (en) * | 2014-08-21 | 2014-11-19 | 中国航空工业集团公司北京长城计量测试技术研究所 | Comparison method radiant heat-flow meter calibration apparatus |
CN104215658A (en) * | 2014-08-20 | 2014-12-17 | 中国科学院力学研究所 | High-temperature heat conduction calibration method and high-temperature heat conduction calibration device |
CN104180929B (en) * | 2014-08-06 | 2016-08-17 | 山东省计算中心(国家超级计算济南中心) | A kind of calibration steps of TR heat flow transducer |
CN106323493A (en) * | 2016-08-10 | 2017-01-11 | 清华大学 | Temperature field and heat flow density field measurement integrated device and manufacturing method therefor |
CN108152325A (en) * | 2017-12-15 | 2018-06-12 | 浙江省计量科学研究院 | A kind of method based on Guarded hot plate calibration heat-flow meter method conductometer |
CN108844993A (en) * | 2018-06-28 | 2018-11-20 | 广州市建筑科学研究院有限公司 | A method of for correcting enclosure structure heat transfer coefficient on-site test result |
CN109781309A (en) * | 2018-12-26 | 2019-05-21 | 西安交通大学 | A high-precision calibration device and method for a thin-film heat flow meter |
CN111579131A (en) * | 2020-06-22 | 2020-08-25 | 辽宁省计量科学研究院 | Calibration device |
CN113176294A (en) * | 2021-04-27 | 2021-07-27 | 内蒙合成化工研究所 | Calibration method of heat conductivity coefficient tester by protective heat flow meter method |
CN114184033A (en) * | 2021-12-16 | 2022-03-15 | 北京智冶互联科技有限公司 | A method for detecting the falling position, thickness and size of refractory material in rotary kiln |
CN114609178A (en) * | 2022-01-06 | 2022-06-10 | 珠海市运泰利自动化设备有限公司 | A calibration method for high-precision heat flow parameter measurement equipment based on thermocouples |
CN114624283A (en) * | 2022-01-06 | 2022-06-14 | 珠海市运泰利自动化设备有限公司 | Calibration method of TMP 117-based high-precision heat flow parameter measurement equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2752768Y (en) * | 2004-10-14 | 2006-01-18 | 武汉大学 | Thermal conductivity coefficient measuring device |
CN101290299A (en) * | 2007-04-16 | 2008-10-22 | 上海轮胎橡胶(集团)股份有限公司轮胎研究所 | A measuring device and method for variable thermal conductivity |
CN202171579U (en) * | 2011-05-19 | 2012-03-21 | 绍兴文理学院 | Double test piece protection hot plate method heat conducting instrument |
-
2013
- 2013-04-26 CN CN2013101514614A patent/CN103196949A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2752768Y (en) * | 2004-10-14 | 2006-01-18 | 武汉大学 | Thermal conductivity coefficient measuring device |
CN101290299A (en) * | 2007-04-16 | 2008-10-22 | 上海轮胎橡胶(集团)股份有限公司轮胎研究所 | A measuring device and method for variable thermal conductivity |
CN202171579U (en) * | 2011-05-19 | 2012-03-21 | 绍兴文理学院 | Double test piece protection hot plate method heat conducting instrument |
Non-Patent Citations (3)
Title |
---|
国防科工委科技与质量司: "《热学计量》", 30 September 2002, article "热阻式热流侧头的校准", pages: 343-350 * |
杨家健 等: "热流计校准装置测量控制系统的建立", 《电子测量与仪器学报》, vol. 25, no. 7, 31 July 2011 (2011-07-31), pages 620 - 625 * |
胡文涛 等: "热流计校准装置自适应温度控制方法研究", 《低温与超导》, no. 2, 28 February 2012 (2012-02-28), pages 61 - 62 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103411996A (en) * | 2013-08-05 | 2013-11-27 | 电子科技大学 | Measuring equipment and measuring method for heat conductivity coefficients of solid materials |
CN103411996B (en) * | 2013-08-05 | 2016-03-02 | 电子科技大学 | Solid material heat conductivity measurement mechanism and measuring method |
CN103575427A (en) * | 2013-09-24 | 2014-02-12 | 中国科学院力学研究所 | Method for calibrating heat flow meter by adopting heat conduction |
CN103575427B (en) * | 2013-09-24 | 2016-01-13 | 中国科学院力学研究所 | A kind of method adopting heat conduction to demarcate heat flow meter |
CN103557945A (en) * | 2013-10-09 | 2014-02-05 | 中国科学院力学研究所 | Method for calibrating heat flow meter through blackbody radiation |
CN103557945B (en) * | 2013-10-09 | 2016-05-04 | 中国科学院力学研究所 | A kind of black body radiation is demarcated the method for heat-flow meter |
CN103868948B (en) * | 2014-02-26 | 2016-08-17 | 天津大学 | The modification method of the hot exchange power of single test specimen Guarded hot plate Conduction Coefficient Detector Basing |
CN103868948A (en) * | 2014-02-26 | 2014-06-18 | 天津大学 | Method for correcting heat exchange power of heat conductivity tester through single-test piece guarded hot plate method |
CN104180929B (en) * | 2014-08-06 | 2016-08-17 | 山东省计算中心(国家超级计算济南中心) | A kind of calibration steps of TR heat flow transducer |
CN104215658A (en) * | 2014-08-20 | 2014-12-17 | 中国科学院力学研究所 | High-temperature heat conduction calibration method and high-temperature heat conduction calibration device |
CN104155005B (en) * | 2014-08-21 | 2017-02-15 | 中国航空工业集团公司北京长城计量测试技术研究所 | Comparison method radiant heat-flow meter calibration apparatus |
CN104155005A (en) * | 2014-08-21 | 2014-11-19 | 中国航空工业集团公司北京长城计量测试技术研究所 | Comparison method radiant heat-flow meter calibration apparatus |
CN106323493A (en) * | 2016-08-10 | 2017-01-11 | 清华大学 | Temperature field and heat flow density field measurement integrated device and manufacturing method therefor |
CN108152325A (en) * | 2017-12-15 | 2018-06-12 | 浙江省计量科学研究院 | A kind of method based on Guarded hot plate calibration heat-flow meter method conductometer |
CN108152325B (en) * | 2017-12-15 | 2020-02-21 | 浙江省计量科学研究院 | A method for calibrating heat flow meter method thermal conductivity meter based on protective hot plate method |
CN108844993A (en) * | 2018-06-28 | 2018-11-20 | 广州市建筑科学研究院有限公司 | A method of for correcting enclosure structure heat transfer coefficient on-site test result |
CN109781309A (en) * | 2018-12-26 | 2019-05-21 | 西安交通大学 | A high-precision calibration device and method for a thin-film heat flow meter |
CN111579131A (en) * | 2020-06-22 | 2020-08-25 | 辽宁省计量科学研究院 | Calibration device |
CN113176294A (en) * | 2021-04-27 | 2021-07-27 | 内蒙合成化工研究所 | Calibration method of heat conductivity coefficient tester by protective heat flow meter method |
CN114184033A (en) * | 2021-12-16 | 2022-03-15 | 北京智冶互联科技有限公司 | A method for detecting the falling position, thickness and size of refractory material in rotary kiln |
CN114609178A (en) * | 2022-01-06 | 2022-06-10 | 珠海市运泰利自动化设备有限公司 | A calibration method for high-precision heat flow parameter measurement equipment based on thermocouples |
CN114624283A (en) * | 2022-01-06 | 2022-06-14 | 珠海市运泰利自动化设备有限公司 | Calibration method of TMP 117-based high-precision heat flow parameter measurement equipment |
CN114624283B (en) * | 2022-01-06 | 2024-10-08 | 珠海市运泰利自动化设备有限公司 | Calibration method of high-precision heat flow parameter measurement equipment based on TMP117 |
CN114609178B (en) * | 2022-01-06 | 2024-11-08 | 珠海市运泰利自动化设备有限公司 | A calibration method for high-precision thermal flow parameter measurement equipment based on thermocouples |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103196949A (en) | Heat resistance heat flow meter calibration method and implementation device thereof | |
CN101126729B (en) | Measuring method of thermal conductivity of materials by double heat flow meter steady state method | |
CN100533133C (en) | Heat pipe plate type thermal conductivity tester | |
CN103454306B (en) | A kind of detection measuring method of heat conduction coefficient tester | |
CN104180929B (en) | A kind of calibration steps of TR heat flow transducer | |
Li et al. | Improving the accuracy of the transient plane source method by correcting probe heat capacity and resistance influences | |
CN102384928B (en) | Method for measuring thermal conductivity of high-conductivity thermal solid material | |
CN103411996A (en) | Measuring equipment and measuring method for heat conductivity coefficients of solid materials | |
CN102297877A (en) | Device and method for measuring thermoelectric parameters of film | |
CN107085007B (en) | Equipment and method for detecting thermoelectric performance parameters of one-dimensional micro-nano materials | |
CN103868948B (en) | The modification method of the hot exchange power of single test specimen Guarded hot plate Conduction Coefficient Detector Basing | |
CN107817054A (en) | A kind of infrared thermoviewer temp measuring method for vacuum chamber part | |
US8583385B2 (en) | Thermal, flow measuring device | |
CN102608154A (en) | System for measuring thermal performance transiently by using pulsing method or constant current method | |
CN103557959B (en) | Fiber grating temperature sensor probe | |
CN102062642A (en) | High-precision temperature sensitive probe | |
CN102778475A (en) | Method for measuring solid-solid thermal contact resistance via up-and-down constant temperature parameter identification method | |
CN103713013A (en) | Device for testing axial heat conduction coefficient of tubular material | |
Arpino et al. | Design of a calibration system for heat flux meters | |
CN106191416A (en) | A kind of steel pipe senses measuring method and the device in temperature field in heating process | |
CN104122469A (en) | Method for increasing measured seebeck coefficient accuracy of thermoelectric material | |
CN107741436A (en) | The method of measuring the thermal conductivity of VIP under different vacuum degrees in a water bath inverse vacuum | |
CN111504172A (en) | Calibration device for thin liquid film sensor of conductive ring | |
CN203720120U (en) | Device for testing axial heat conductivity coefficient of tubular material | |
CN114609177B (en) | Application method of thermoelectric generator in thermal flow parameter measurement equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130710 |