CN103178754B - 柔性温差发电微单元结构 - Google Patents

柔性温差发电微单元结构 Download PDF

Info

Publication number
CN103178754B
CN103178754B CN201310087811.5A CN201310087811A CN103178754B CN 103178754 B CN103178754 B CN 103178754B CN 201310087811 A CN201310087811 A CN 201310087811A CN 103178754 B CN103178754 B CN 103178754B
Authority
CN
China
Prior art keywords
type film
power generation
temperature differential
differential power
unit structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310087811.5A
Other languages
English (en)
Other versions
CN103178754A (zh
Inventor
梅德庆
史尧光
姚喆赫
陈子辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201310087811.5A priority Critical patent/CN103178754B/zh
Publication of CN103178754A publication Critical patent/CN103178754A/zh
Application granted granted Critical
Publication of CN103178754B publication Critical patent/CN103178754B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种柔性温差发电微单元结构。在聚酰亚胺基底上表面沉积一层等间距分布的多个绝缘硬质薄膜,在每个绝缘硬质薄膜上面的两侧分别有相互平行且长度与厚度相等的P型薄膜热电臂和N型薄膜热电臂,每对P型薄膜热电臂和N型薄膜热电臂的一端用导线,P型薄膜热电臂的另一端与相邻上一条的N型薄膜热电臂的另一端用导线连接,N型薄膜热电臂的另一端与相邻下一条的P型薄膜热电臂的另一端用导线连接,依次构成柔性温差发电微单元结构。本发明具有柔性,可在多个方向变形,当温差发电单元发生结构变形时,绝缘硬质薄膜可避免延展性差的碲化铋热电材料发生断裂,避免失效。本发明主要针对体内植入式医疗微装置的供能,具有推广应用价值。

Description

柔性温差发电微单元结构
技术领域
本发明涉及一种温差发电结构,尤其涉及一种柔性温差发电微单元结构。
背景技术
体内植入式医疗装置应用越来越广泛,例如心脏起搏器、除颤器、人工括约肌、植入式药物泵等,能够代替或提高器官的功能或者治疗某种疾病。为植入式医疗装置提供持久稳定的供能是当今世界一个研究热点和难题。现有供能方式主要依靠锂电池供电,其有效工作时间为通常不超过五年,更换电池需要外科手术,给患者带来身体上的痛苦。而可充电的二次锂电池需要外界电磁耦合、红外线辐射等充电,给患者带来很多不便。
此外还有一些新型的供能方式,例如核电池、生物燃料电池、外界电磁耦合供能、温差发电等。核电池工作寿命可以超过十年,但一般体积较大,而且对人体具有毒性和辐射危险;生物燃料电池利用酶或者微生物作为催化剂,将葡萄糖等生物燃料的化学能转换成电能,但是供电寿命一般只有几天;通过体外电磁感应的方式供电在体外需要携带额外的装置,将会增加患者行动的负担。
温差发电利用热电半导体的塞贝克效应,可将热能转化为电能。由于温差发电器件具有无移动部件、无噪音、无污染、结构简单、易于小型化等优点,同时,由于正常人体的体温恒定且体内与体表间具有较小的温差,而温差发电对温差的下限没有要求,因此,可以直接利用人体存在的温差进行发电。
现有的微型柔性温差发电构件通常是在块体的微型热电材料间采用柔性连接,这类温差发电构件的总体体积小型化程度和柔性都比较有限,不适合植入人体作为供能电源,因为人体内环境存在许多曲面而且人体活动具有灵活性,就需要体内植入式温差发电构件具有更小的尺寸和更好的柔性;还有一些研究者将热电半导体材料浆液通过MEMS方法加工在柔性基底结构上,由于室温下碲化铋材料的热电优值较高,因此,采用碲化铋及其合金可以提高温差发电装置的发电功率。但是,碲化铋(BiTe)材料力学性能较差,该材料的结构为-Te-Bi-Te-Te-Bi-Te-层状结构,在Ti-Ti之间为范德瓦尔斯键,材料较脆,碲化铋材料在受到压力时Te-Te层易产生滑移,会导致断裂变形,这样直接加工在柔性基底上的碲化铋及其合金材料容易断裂,使温差发电单元失效。因此,开发一种能够减小冲击,柔性较好的温差发电微单元结构是十分必要的。
发明内容
本发明的目的在于提供能够适应曲面、工艺简单、热电转换效率高、可靠性高、可加工成多种温差发电器的一种柔性温差发电微单元结构。
本发明的基本原理是:
根据塞贝克效应,P型及N型薄膜热电臂的温度差会在两端产生电压差,由于单个热电偶产生的电压很低,因此,可采用“热路并联,电路串联”的方式,将P型和N型薄膜热电臂组成的热电偶设计并布置形成单排或多排阵列型的热电模块从而提高输出电压值。
室温下碲化铋材料的热电优值较高,采用碲化铋及其合金可以提高温差发电装置的发电功率。但是,由于碲化铋(BiTe)材料力学性能较差,该材料的结构为-Te-Bi-Te-Te-Bi-Te-层状结构,在Ti-Ti之间为范德瓦尔斯键,容易断裂,所以碲化铋材料在受到压力时Te-Te层易产生滑移,导致断裂变形。使得直接加工在柔性基底上的碲化铋材料容易断裂引起温差发电单元失效。所以,若在聚酰亚胺基底上附加一层绝缘硬质薄膜,可以提高刚度、保持热电材料的原有形状结构,从而避免热电材料断裂引起温差发电单元失效。
本发明解决其技术问题所采用的技术方案是:
本发明在聚酰亚胺基底上表面沉积一层等间距分布的多个绝缘硬质薄膜,在每个绝缘硬质薄膜上面的两侧分别有相互平行且长度与厚度相等的一条P型薄膜热电臂和一条N型薄膜热电臂,每对P型薄膜热电臂和N型薄膜热电臂的一端用导电银胶导线,P型薄膜热电臂的另一端与相邻上一条的N型薄膜热电臂的另一端用导电银胶导线连接,N型薄膜热电臂的另一端与相邻下一条的P型薄膜热电臂的另一端用导电银胶导线连接,以相同连接方式依次构成柔性温差发电微单元结构。
所述的绝缘硬质薄膜的材料为氮化硅或类金刚石。
所述的薄膜热电臂的材料为掺杂的碲化铋。
本发明具有的有益效果是:
采用聚酰亚胺基底和导电银胶导线使温差发电单元结构具有柔性,可在多个方向变形,当温差发电单元发生结构变形时,绝缘硬质薄膜可避免延展性差的碲化铋热电材料发生断裂,避免温差发电单元的失效。该发明主要针对体内植入式医疗微装置的供能,具有推广应用价值。
附图说明
图1是本发明的结构示意图。
图2是图1的左视图。
图3是本发明卷曲封装的柔性温差发电装置示意图。
图4是本发明并联后平面柔性温差发电薄膜示意图。
图5是图4折叠后的柔性温差发电薄膜示意图。
图6是图5封装折叠后的柔性温差发电装置示意图。
图中:1.聚酰亚胺基底,2.绝缘硬质薄膜,3.P型薄膜热电臂,4.N型薄膜热电臂,5.导电银胶导线,6.导热绝缘聚合物封装层。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
如图1、图2所示,本发明在聚酰亚胺基底1上表面通过PECVD方法沉积一层等间距分布的多个绝缘硬质薄膜(图1中为5个),在每个绝缘硬质薄膜2上面的两侧分别有相互平行且长度与厚度相等的一条P型薄膜热电臂3和一条N型薄膜热电臂4,每对P型薄膜热电臂3和N型薄膜热电臂4的一端用导电银胶导线5,P型薄膜热电臂3的另一端与相邻上一条的N型薄膜热电臂4的另一端用导电银胶导线5连接,N型薄膜热电臂3的另一端与相邻下一条的P型薄膜热电臂4的另一端用导电银胶导线5连接,以相同连接方式依次构成柔性温差发电微单元结构。导电银胶导线5可采用中温固化导电银胶导线材料,通过丝网印刷加工,导电银胶导线5与热电臂之间可实现导电、绝热。
所述的绝缘硬质薄膜的材料为氮化硅或类金刚石。
所述的薄膜热电臂的材料为掺杂的碲化铋及其合金,P型薄膜热电臂3和N型薄膜热电臂4交替排列,绝缘硬质薄膜2与薄膜热电臂之间可实现导热、绝缘。
柔性温差发电微单元结构,可以折弯成所需形状,再通过封装PVDF/AlN复合薄膜或环氧树脂复合导热薄膜等导热绝缘的柔性材料,形成能量密度高的温差发电装置。采用的封装材料具有良好的生物相容性。
P型薄膜热电臂3和N型薄膜热电臂4可通过丝网印刷、电化学沉积、磁控溅射等方式加工在绝缘硬质薄膜2上。例如采用磁控溅射的方式加工,P型薄膜热电臂3和N型薄膜热电臂4分两次加工,使用相应的掩膜板。先利用光刻的方法加工用于溅射的掩膜板,掩膜板上要设计定位孔,保证溅射热电臂的平行,P型和N型薄膜热电臂交替排列,相互平行组成热电偶,绝缘硬质薄膜与薄膜热电臂之间可以导热绝缘。P型薄膜热电臂3和N型薄膜热电臂4长度与绝缘硬质薄膜2长度与厚度相等。
如图1、图3所示,将柔性温差发电微单元结构经过卷曲形成圆盘状,采用PVDF/AlN复合薄膜或环氧树脂复合导热薄膜等导热绝缘的柔性材料上下封装,6为导热绝缘聚合物封装层,形成能量密度高的柔性温差发电装置,图3中,柔性温差发电装置的上端为热端,下端为冷端。
多个柔性温差发电微单元结构并联加工,形成平面柔性温差发电薄膜,如图4所示;折叠后形成成波纹形状柔性温差发电薄膜结构,如图5所示;用PVDF/AlN复合薄膜或环氧树脂复合导热薄膜等导热绝缘的柔性材料封装,形成柔性温差发电装置,如图6所示,6为导热绝缘聚合物封装层;图6中柔性温差发电装置的上端为热端,下端为冷端。柔性温差发电装置的材料和结构都具有柔性,可以贴合曲面。

Claims (3)

1.一种柔性温差发电微单元结构,其特征在于:在聚酰亚胺基底(1)上表面沉积一层等间距分布的多个绝缘硬质薄膜,在每个绝缘硬质薄膜(2)上面的两侧分别有相互平行且长度与厚度相等的一条P型薄膜热电臂(3)和一条N型薄膜热电臂(4),每对P型薄膜热电臂(3)和N型薄膜热电臂(4)的一端用导电银胶导线(5),P型薄膜热电臂(3)的另一端与相邻上一条的N型薄膜热电臂(4)的另一端用导电银胶导线(5)连接,N型薄膜热电臂(3)的另一端与相邻下一条的P型薄膜热电臂(4)的另一端用导电银胶导线(5)连接,以相同连接方式依次构成柔性温差发电微单元结构,导电银胶导线(5)采用中温固化导电银胶导线材料,导电银胶导线(5)与热电臂之间实现导电、绝热。
2.根据权利要求1所述的一种柔性温差发电微单元结构,其特征在于:所述的绝缘硬质薄膜的材料为氮化硅或类金刚石。
3.根据权利要求1所述的一种柔性温差发电微单元结构,其特征在于:所述的薄膜热电臂的材料为掺杂的碲化铋。
CN201310087811.5A 2013-03-19 2013-03-19 柔性温差发电微单元结构 Expired - Fee Related CN103178754B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310087811.5A CN103178754B (zh) 2013-03-19 2013-03-19 柔性温差发电微单元结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310087811.5A CN103178754B (zh) 2013-03-19 2013-03-19 柔性温差发电微单元结构

Publications (2)

Publication Number Publication Date
CN103178754A CN103178754A (zh) 2013-06-26
CN103178754B true CN103178754B (zh) 2015-07-08

Family

ID=48638411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310087811.5A Expired - Fee Related CN103178754B (zh) 2013-03-19 2013-03-19 柔性温差发电微单元结构

Country Status (1)

Country Link
CN (1) CN103178754B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141492B2 (en) 2015-05-14 2018-11-27 Nimbus Materials Inc. Energy harvesting for wearable technology through a thin flexible thermoelectric device
US10290794B2 (en) 2016-12-05 2019-05-14 Sridhar Kasichainula Pin coupling based thermoelectric device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10566515B2 (en) 2013-12-06 2020-02-18 Sridhar Kasichainula Extended area of sputter deposited N-type and P-type thermoelectric legs in a flexible thin-film based thermoelectric device
US10367131B2 (en) 2013-12-06 2019-07-30 Sridhar Kasichainula Extended area of sputter deposited n-type and p-type thermoelectric legs in a flexible thin-film based thermoelectric device
US11024789B2 (en) 2013-12-06 2021-06-01 Sridhar Kasichainula Flexible encapsulation of a flexible thin-film based thermoelectric device with sputter deposited layer of N-type and P-type thermoelectric legs
US20180090660A1 (en) 2013-12-06 2018-03-29 Sridhar Kasichainula Flexible thin-film based thermoelectric device with sputter deposited layer of n-type and p-type thermoelectric legs
CN104183691B (zh) * 2014-07-18 2017-01-25 浙江大学 平面型柔性温差发电结构
US11276810B2 (en) 2015-05-14 2022-03-15 Nimbus Materials Inc. Method of producing a flexible thermoelectric device to harvest energy for wearable applications
US11283000B2 (en) 2015-05-14 2022-03-22 Nimbus Materials Inc. Method of producing a flexible thermoelectric device to harvest energy for wearable applications
CN106206923B (zh) * 2016-08-30 2018-06-08 北京理工大学 一种柔性穿戴式温差发电装置
CN106361258A (zh) * 2016-11-07 2017-02-01 马根昌 医用压舌板
CN108054272B (zh) * 2017-08-29 2021-02-19 南京航空航天大学 一种低成本可快速大量制备集成化微型薄膜热电器件的制造方法
CN108963063A (zh) * 2018-06-27 2018-12-07 东北大学 采用八面体结构热电臂的倾斜式半导体热电模块
CN111244256B (zh) * 2018-11-28 2022-03-08 中国科学院上海硅酸盐研究所 一种硫化银基无机热电材料及其制备方法和应用
CN110649151B (zh) * 2019-10-15 2021-05-25 华东师范大学 一种图形化n、p型热电薄膜及制备方法和柔性薄膜热电器件
CN111092145B (zh) * 2019-12-23 2023-01-24 南方科技大学 一种温差发电件及其制备方法
CN111799237B (zh) * 2020-07-21 2022-08-26 京东方科技集团股份有限公司 一种显示基板及其制造方法、显示装置
CN112737414B (zh) * 2020-12-30 2022-09-06 上海宸云环境科技有限公司 基于温差发电的scr本地供电系统
CN113299818A (zh) * 2021-04-14 2021-08-24 江西理工大学 一种“w”型可折叠薄膜柔性温差发电器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1890821A (zh) * 2003-12-02 2007-01-03 巴特尔纪念研究所 热电装置及其应用
CN202221775U (zh) * 2011-09-20 2012-05-16 苏州晶能科技有限公司 具有图形化透明薄膜电极的led模块
CN203119810U (zh) * 2013-03-19 2013-08-07 浙江大学 一种柔性温差发电微单元结构

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129552A (ja) * 2009-12-15 2011-06-30 Fujitsu Ltd 熱発電モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1890821A (zh) * 2003-12-02 2007-01-03 巴特尔纪念研究所 热电装置及其应用
CN202221775U (zh) * 2011-09-20 2012-05-16 苏州晶能科技有限公司 具有图形化透明薄膜电极的led模块
CN203119810U (zh) * 2013-03-19 2013-08-07 浙江大学 一种柔性温差发电微单元结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141492B2 (en) 2015-05-14 2018-11-27 Nimbus Materials Inc. Energy harvesting for wearable technology through a thin flexible thermoelectric device
US10290794B2 (en) 2016-12-05 2019-05-14 Sridhar Kasichainula Pin coupling based thermoelectric device

Also Published As

Publication number Publication date
CN103178754A (zh) 2013-06-26

Similar Documents

Publication Publication Date Title
CN103178754B (zh) 柔性温差发电微单元结构
CN203119810U (zh) 一种柔性温差发电微单元结构
Zhao et al. Self‐Powered implantable medical devices: photovoltaic energy harvesting review
Sheng et al. Recent advances of energy solutions for implantable bioelectronics
Vallem et al. Energy harvesting and storage with soft and stretchable materials
CN105406769B (zh) 具有可延展导线的穿戴式柔性温差发电结构
Ghomian et al. Survey of energy scavenging for wearable and implantable devices
Lee et al. Self-powered flexible inorganic electronic system
Dargusch et al. Thermoelectric generators: alternative power supply for wearable electrocardiographic systems
Lee et al. Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device
Carpi et al. Electroactive polymer-based devices for e-textiles in biomedicine
TW466786B (en) Semiconductor module for light-emitting or light-receiving and method of producing the same
Hasan et al. Energy harvesters for wearable electronics and biomedical devices
Wu et al. Self-powered skin electronics for energy harvesting and healthcare monitoring
US9496474B2 (en) Thermoelectric conversion apparatus
Hesham et al. Energy harvesting schemes for wearable devices
Watkins et al. Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors
CN102931879A (zh) 热电-压电复合型柔性微发电装置
US20130087180A1 (en) Wearable thermoelectric generator system
US20090192575A1 (en) Thermal management of implantable medical devices
JPWO2011065185A1 (ja) 熱電変換モジュール及びその製造方法
CN205356191U (zh) 一种具有可延展导线的穿戴式柔性温差发电结构
CN203871377U (zh) 一种柔性温差发电微单元结构
US20210108793A1 (en) Micro-light emitting device array contacting skin, method for fabricating the same, and charging system for living-body implantable electronic device
CN206271760U (zh) 一种基于mems工艺的柔性可穿戴温差能量收集器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150708

Termination date: 20160319

CF01 Termination of patent right due to non-payment of annual fee