CN103141033B - 用于控制dsl系统中的干扰的方法和装置 - Google Patents

用于控制dsl系统中的干扰的方法和装置 Download PDF

Info

Publication number
CN103141033B
CN103141033B CN201180047858.8A CN201180047858A CN103141033B CN 103141033 B CN103141033 B CN 103141033B CN 201180047858 A CN201180047858 A CN 201180047858A CN 103141033 B CN103141033 B CN 103141033B
Authority
CN
China
Prior art keywords
channel
network terminal
crosstalk
signal
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180047858.8A
Other languages
English (en)
Other versions
CN103141033A (zh
Inventor
C·J·努兹曼
A·J·德林德范维杰恩加登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Optical Networks Israel Ltd
Original Assignee
Alcatel Optical Networks Israel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Optical Networks Israel Ltd filed Critical Alcatel Optical Networks Israel Ltd
Publication of CN103141033A publication Critical patent/CN103141033A/zh
Application granted granted Critical
Publication of CN103141033B publication Critical patent/CN103141033B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/08Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • H04B3/487Testing crosstalk effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/18Automatic or semi-automatic exchanges with means for reducing interference or noise; with means for reducing effects due to line faults with means for protecting lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • H04M11/062Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/26Arrangements for supervision, monitoring or testing with means for applying test signals or for measuring
    • H04M3/34Testing for cross-talk

Abstract

一种通信系统的接入节点,被配置为对与通信系统的第一网络终端相关联的激活信道和与该系统的相应其他网络终端相关联的活动信道之间的串扰进行控制。该接入节点检测第一网络终端在第一网络终端的初始化处理的指定阶段通过激活信道所发送的控制信号,从所检测的控制信号确定误差信号,将该误差信号与相应的其他网络终端通过活动信道所发送的一个或多个相对应信号相关,基于该相关估计从活动信道到激活信道中的串扰,并且配置矢量化信号处理模块以对所估计的串扰进行控制。第一网络终端所发送的控制信号包括由第一网络终端从两个或更多数值的集合中所选择的数值,并且该特定的所选择数值在其被检测之前不被接入节点所知。

Description

用于控制DSL系统中的干扰的方法和装置
技术领域
本发明总体上涉及通信系统,并且更具体地,涉及用于缓解、抑制或以其他方式控制这样的系统中的通信信道之间的干扰的技术。
背景技术
多信道通信系统经常易于受各个信道之间的干扰所影响,该干扰也被称作串扰或信道间串扰。例如,数字用户线路(DSL)宽带接入系统通常在双绞铜线上采用离散多音(DMT)调制。这样的系统中的主要损害之一是相同线缆束(binder)内或跨多个线缆束的多个用户线路之间的串扰。因此,通过一条用户线路所传送的信号可能被耦合至其他用户线路,导致使得系统的吞吐量性能退化的干扰。更一般地,给定的“受害方”信道会体验到来自多个“干扰方”信道的串扰,这同样导致所不期望的干扰。
已经研发出不同技术来缓解、抑制或以其他方式控制串扰以及使得有效吞吐量、范围和线路稳定性最大化。这些技术从静态或动态频谱管理技术逐渐演进为多信道信号协调。
作为示例,某些以上所提到的技术允许通过使用预编码器主动消除信道间串扰。在DSL系统中,预编码器的使用被认为实现了端局(CO)或其他类型的接入节点(AN)与用户端设备(CPE)单元或其他类型的网络终端(NT)之间的下游通信的串扰消除。还可能使用通过后编码器所实施的所谓后补偿技术来针对从NT到AN的上游通信实施串扰控制。
一种针对DSL系统中的下游或上游串扰消除估计串扰系数的已知方式涉及通过系统的AN和相应NT之间的相应用户线路传送不同的导频信号。随后使用来自NT的基于所传送导频信号的误差反馈来对串扰进行估计。其他的已知方式涉及信噪比(SNR)或其他干扰信息的反馈和预编码器系数的扰动。
通常在一个或多个非活动线路在DSL系统中被激活的情况下采用串扰估计。被激活的线路被称作“激活线路”或“加入线路”。例如,可能有必要激活已经包括多个活动线路的同步群组中的一个或多个非活动线路,其中同步在该环境中是指不同线路的DMT符号在时间上对准。这样激活另外的线路可能需要相应地对串扰补偿进行调节以便优化系统性能。题为“A Transient Crosstalk Controlling Device”的欧洲专利申请公开号EP1936825A1中公开了用于控制与加入线路相关联的串扰的技术,其通过引用结合于此。串扰估计也在其他情况下使用,例如作为追踪串扰随时间变化的手段。
给定通信系统可以结合有符合不同DSL标准的各种不同类型的CPE单元。例如,一些CPE单元可能与特定矢量化(vectoring)标准相符,而其他“传统(legacy)”CPE单元则并不符合该特定矢量化标准。在这样的通信系统中,会特别难以确定从活动的矢量化相符线路到激活的传统线路中的串扰的估计。结果,激活的传统线路可能无法实现全速率激活,并且对系统性能造成不利影响。这种情形在许多实际通信系统中出现,诸如其中CPE单元逐渐升级以支持最近在ITU-T建议G.993.5中成为标准的G.vector技术的那些通信系统。所预见到的是,特别是在CPE单元的远程软件更新并不是期待或可行的情况下,这些系统将在相当时间段内将包括G.vector相符CPE单元和传统CPE单元的混合。
发明内容
本发明的说明性实施例提供了用于在包括矢量化相符的CPE单元和并不矢量化相符的传统CPE单元组合的系统中生成串扰估计的改进的技术。
在本发明的一个方面,一种通信系统的接入节点被配置为对与该通信系统的第一网络终端相关联的激活信道和与该通信系统的相应其他网络终端相关联的活动信道之间的串扰进行控制。接入节点可以包括例如DSL系统的DSL接入多路复用器。在这样的实施例中,给定的一个其他网络终端是矢量化相符的网络终端,其可以包括实质上符合G.vector矢量化标准的CPE单元,并且第一网络终端是传统网络终端,其可以包括实质上并不符合G.vector矢量化标准的CPE单元。
该接入节点检测第一网络终端在该第一网络终端的初始化处理的指定阶段通过激活信道所发送的控制信号,从所检测的控制信号确定误差信号,将该误差信号与相应的其他网络终端通过活动信道所发送的一个或多个相对应信号相关,基于该相关估计从活动信道到激活信道中的串扰,并且配置矢量化信号处理模块以对所估计的串扰进行控制。第一网络终端所发送的控制信号包括由第一网络终端从两个或更多数值的集合中所选择的数值,并且该特定的所选择数值在其被检测之前不被接入节点所知。
可以对串扰估计的质量进行评估,并且如果串扰估计的质量低于指定质量,则针对一次或多次附加迭代重复该检测、确定、相关和估计操作,直至所产生的串扰估计处于或高于指定质量。
该初始化处理的指定阶段的持续时间可以相对于该指定阶段的指定持续时间有所增加,从而允许有充分的时间用于执行该检测、确定、相关和估计操作的至少一次迭代。
有利地,说明性实施例提供了在传统线路的初始化期间消除从G.vector线路到传统线路中的串扰的能力。这可以允许针对传统CPE单元实现全速率激活,并且避免了针对符合G.vector的CPE单元采用诸如上游功率回退(UPBO)之类的数据速率降低技术。激活的传统线路在其活动状态(例如,VDSL系统中的“工作时间(show-time)”状态)开始时所能够实现的数据速率因此实质上将不会受到存在高功率的G.vector相符线路的影响。说明性实施例在其中CPE单元在部署G.vector技术时逐渐被升级以使得G.vector相符CPE单元和传统CPE单元实质上在相同接入网络中出现或者以其他方式而难以更新或替换某些传统CPE单元的接入网络中是特别有利的。
通过附图和下面的详细描述,本发明的这些和其他特征和优势将变得更为明显。
附图说明
图1是本发明说明性实施例中的多信道通信系统的框图。
图2示出了说明性实施例中的图1的系统的一种可能的DSL实现方式。
图3是图示图2的系统中的DSL接入多路复用器中的矢量化处理的操作的流程图。
图4和图5示出了图2的系统中的相应矢量化相符的DSL线路和传统DSL线路的初始化时间线。
具体实施方式
这里将结合示例性通信系统以及用于这样的系统中的串扰控制的相关技术对本发明进行阐述。串扰控制实质上可以连续应用,或者与这样的系统中的用户线路或其他通信信道的激活相结合地应用,对串扰随时间的变化进行追踪,或者可以在其他线路管理应用中得以应用。然而,应当理解的是,本发明并不局限于随所公开的特定类型的通信系统和串扰控制应用所使用。本发明可以在各种其他通信系统以及在多种可替换的串扰控制应用中实施。例如,虽然以基于DMT调制的DSL系统的环境中进行图示,但是所公开的技术可以以直接的方式而用于各种其他类型的有线或无线通信系统,包括蜂窝系统、多输入多输出(MIMO)系统、Wi-Fi或WiMax系统等。该技术因此可应用于DSL环境之外的其他类型的正交频分复用(OFDM)系统,以及可应用于在时域中采用更高阶调制的系统。
图1示出了包括接入节点(AN)102和网络终端(NT)104的通信系统100。更具体地,NT 104包括L个不同NT部件,它们被单独表示为NT 1,NT 2,...NT L,并且如所示出的,进一步由相应的附图标记104-1,104-2,...104-L所标示。例如,给定NT部件可以包括调制解调器、计算机或者其他类型的通信设备,或者这样的设备的组合。接入节点120经由相应信道106-1,106-2,...106-L与这些NT部件进行通信,上述信道也被表示为信道1,信道2,...信道L。
如这里之前所指示的,在系统100被实施为DSL系统的实施例中,AN 102例如可以包括端局(CO),并且NT 104可以包括例如用户端设备(CPE)单元的相应实例。这样的DSL系统中的信道106包括相应用户线路。每个这样的用户线路可以包括例如双绞铜线连接。线路可以处于相同线缆束中或在相邻的线缆束中,从而在线路之间会出现串扰。以下的描述部分将假设系统100为DSL系统,但是应当理解这仅是作为示例。
在说明性的DSL实施例中,少于所有的L条线路106-1至106-L是初始活动线路,并且L条线路中的至少一条是要被激活并加入到现有活动线路集合中的“加入线路”。这样的加入线路在这里也被称作“激活线路”。例如,给定的线路集合可以是同步群组,其也可以被称作预编码群组或矢量群组,或者活动和/或非活动线路的任意其他组合。
AN 102和NT 104之间的通信包括每个活动线路的下游和上游通信。下游方向是指从AN到NT的方向,而上游方向则是从NT到AN的方向。虽然在图1中并未明确示出,但是在没有限制的情况下假设存在与系统100的每个用户线路关联的用于在下游方向中进行通信时使用的AN传送器和NT接收器,以及用于在上游方向中进行通信时使用的NT传送器和AN接收器。将AN传送器和AN接收器或者NT传送器和NT接收器相结合的给定模块在这里通常被称作收发器。相对应的收发器电路可以使用公知的常规技术实现在AN和NT中,并且这样的技术将不在这里进行详细描述。
该实施例中的AN 102包括耦合至串扰控制模块112的串扰估计模块110。AN利用串扰估计模块来获得线路106的至少一个子集中相应线路的串扰估计。串扰控制模块112用来基于该串扰估计缓解、抑制或以其他方式控制线路106的至少一个子集之间的串扰。例如,串扰控制模块可以被用来对从AN传送至NT的下游信号提供预补偿,以及除此之外或可替换地,对从NT传送至AN的上游信号提供后补偿。以下将结合图2和3对本发明说明性实施例中所实施的后补偿技术的更为详细的示例进行描述。
串扰估计模块110可以被配置为基于从NT 104所接收的信号或者NT 104中所生成并且从NT 104反馈回AN 102的量度(measurement),从误差样本、SNR数值或AN 102中所生成的其他类型的量度而生成串扰估计。应当注意的是,这里所使用的术语SNR意在宽泛地被理解以便包含诸如信干噪比(SINR)之类的其他类似量度。
在其他实施例中,串扰估计可以在AN 102之外生成并且被提供至AN以便进行进一步处理。例如,这样的估计可以在NT 104中生成并且被返回至AN以便在预编码、后补偿或其他串扰控制应用中使用。串扰估计在这里可以更为一般地被称作串扰信道系数、串扰消除系数或简单地称作串扰系数。
串扰估计模块110可以结合有内插功能以便生成内插的串扰估计。可以随本发明使用的内插技术的示例在题为“Interpolation Method and Apparatus for IncreasingEfficiency of Crosstalk Estimation”的美国专利申请公开号2009/0116582中有所公开,其因此被同样指定并通过引用结合于此。
除此之外或可替换地,AN 102可以被配置为使用线性模型内插来实施用于信道估计的方法。在实施这样的技术时AN通过相应的线路106传送导频信号。诸如误差样本或SNR数值之类的相对应量度从NT反馈回AN并且被用来在串扰估计模块110中生成串扰估计。AN随后基于该串扰估计执行预补偿、后补偿或以其他方式控制串扰。与这些和其他类似部署相关的附加细节在2009年6月29日提交的题为“Crosstalk Estimation and PowerSetting Based on Interpolation in a Multi-Channel Communication System”的美国专利申请序列号12/493,328中有所描述,其因此被同样指定并通过引用结合于此。
串扰估计模块110可以整合有去噪功能以便生成去噪串扰估计。适于随本发明实施例使用的串扰估计去噪技术在题为“Power Control Using Denoised CrosstalkEstimates in a Multi-Channel Communication System”的美国专利申请公开号2010/0177855中有所描述,其此被同样指定并通过引用结合于此。然而,所要意识到的是,本发明并不要求使用任何特定的去噪技术。这里所要描述的说明性实施例可以使用频率滤波器作为信道系数估计处理的一部分而结合去噪功能。
AN 102进一步包括耦合至存储器120的处理器115。该存储器可以被用来存储被处理器执行以实施这里所描述的功能的一个或多个软件程序。例如,与串扰估计模块110和串扰控制模块112相关联的功能可以至少部分地以这样的软件程序的形式来实施。该存储器是在这里更一般地被称作存储可执行程序代码的计算机可读存储介质的示例。计算机可读存储介质的其他示例可以包括磁盘或其他类型的磁性或光学介质。
所要意识到的是,如图1所示的AN 102仅是如这里所使用的术语“接入节点”的一种图示。这样的接入节点可以包括例如DSL接入多路复用器(DSLAM)。然而,如这里所使用的术语“接入节点”意在宽泛地被理解以便例如包含CO内诸如DSLAM的特定部件或者CO自身,以及并不包括CO的系统中的其他类型的接入点部件。
在图1的说明性实施例中,线路106全部与相同的AN 102相关联。然而,在其他实施例中,这些线路可以跨多个接入节点进行分布。这样的多个接入节点中的不同接入节点可以来自于不同提供商。例如,已知在常规系统中,不同提供商的若干接入节点可以连接至DSL线路的相同线缆束。在这些和其他条件之下,各个接入节点可能必须彼此进行交互以便实现最优的干扰消除。
每个NT 104可以响应于AN 102在控制信号路径上所提供的控制信号而被配置为多种操作模式,如题为“Fast Seamless Joining of Channels in a Multi-ChannelCommunication System”的美国专利申请公开号2009/0245081中所描述,其因此被同样指定并通过引用结合于此。这样的操作模式可以包括例如加入模式或追踪模式。然而,本发明并不要求这种类型的多模式操作。
以下将参考图2和3对包括后补偿器的图1的系统100的实施方式进行描述。这样的后补偿器被用于针对从NT 104到AN 102的上游通信的活动串扰消除。然而,应当强调的是,类似技术可被适配以便在针对下游通信控制串扰时使用。此外,这里所公开的技术可应用于包含其中没有特别定义的下游或上游方向的对称通信的系统。
现在参考图2,矢量DSL系统200表示之前所描述的多信道通信系统100的可能实施方式。运营商接入节点中的DSLAM 202经由线缆束206中相应的铜质双绞线连接至多个CPE单元204。更具体地,CPE单元204包括远程VDSL收发器单元(VTU-R)204-1、204-2、204-3和204-4。这些VTU-R与相应的运营商侧VDSL收发器单元(VTU-O)208-1、208-2、208-3和208-4进行通信。DSLAM 202进一步包括矢量控制实体(VCE)210和矢量化信号处理模块212。
在该实施例中,在没有限制的情况下假设VTU-R 204-1和204-2符合特定矢量化标准,更具体地是2010年4月在ITU-T建议G.993.5“Self-FEXT cancellation(vectoring)foruse with VDSL2 transceivers”中所公开的G.vector标准,其通过引用结合于此。这样的VTU-R在这里被称作“相符”VTU-R。其他两个VTU-R 204-3和204-4是在这里被称作“传统”VTU-R的示例,并且在该实施例中假设为不符合G.vector而是符合2006年2月的ITU-T建议G.993.2“Very high speed digital subscriberline transceiver 2(VDSL2)”,其通过引用结合于此。假设不能对传统VTU-R进行改变。应当注意的是,仅是通过示例而使用这些特定标准来定义相符VTU-R和传统VTU-R,并且本发明的技术可以以直接的方式应用于其他类型和配置的矢量化相符CPE单元和传统CPE单元。
DSLAM 202中的矢量化信号处理单元212被配置为在VCE 210的控制之下对以下游方向传送的信号实施预补偿以及对以上游方向接收的信号实施后补偿。如之前所指出的,这需要串扰信道系数的准确知识。然而,在诸如图2的系统200之类的包括G.vector相符CPE单元204和传统CPE单元204的系统中会出现问题。更具体地,在常规实践中会特别成问题的是了解从G.vector相符VTU-R 204-1和204-2中的传送器到连接至传统VTU-R 204-3和204-4的VTU-O 208-3和308-4的接收器中的串扰系数。
如在图4和5的初始化时间线的激活线路部分中所示出的,G.vector VTU-R和传统VTU-R都使用多个阶段进行初始化,包括握手阶段、信道发现阶段、训练阶段和信道分析阶段。信道发现和训练被认为是分开的阶段,但是在这些图中被表示为信道发现/训练。信道分析阶段也被称作信道分析和交换(CAE)阶段。VCE 210通常需要在受害方进入初始化的信道分析阶段之前了解从活动VTU-R(“干扰方”)集合到正在被激活的加入VTU-R(“受害方”)的串扰信道。随后能够使用后补偿以使得加入的线路能够以最高的可能数据速率而被激活,这在这里也被称作“全速率激活”。G.vector ITU G.993.5建议提供了针对上游和下游方向中的全速率激活的机制。
例如,在上游方向,诸如204-1或204-2的G.vector相符VTU-R将在信道发现/训练阶段之后暂停并且在进入信道分析阶段之前进行至表示为O-P-VECTOR-2/R-P-VECTOR-2(“矢量-2”阶段)的新阶段。参见图4中的初始化时间线的激活线路部分。矢量-2阶段被用来使得激活VTU-R上行发送已知导频序列。如图4中的初始化时间线中的活动线路部分中所指示的,活动的干扰方线路也在同步符号期间定期发送导频序列。相对应的上游VTU-O接收器随后测量误差信号,也就是预期信号和所接收信号之间的差异。通过将该误差信号与干扰线路所发送的导频信号相关,能够对来自每个干扰方的串扰信道进行估计。这允许使用后补偿来实现全速率激活以便初始化G.vector相符VTU-R 204-1或204-2。
在图2的实施例中,诸如204-3或204-4的传统VTU-R并不具有该能力,原因在于矢量-2阶段并不是原始的VDSL2初始化过程的一部分。更一般地,传统VTU-R的初始化过程并不包括任何用于测量来自活动VTU-R的串扰的规定,这导致了之前所提到的问题。因此,在常规实践下,当激活VTU-R并不符合G.vector时,通常无法在上游方向实现全速率激活。该问题在该说明性实施例中以以下所描述的方式而有利地得以解决。
图3示出了在DSLAM 202中为了针对给定的传统VTU-R 204-3或204-4之一提供全速率激活而实施的处理。假设G.vector相符VTU-R 204-1或204-2中的至少一个在传统VTU-R开始其初始化时是活动的。这些G.vector相符VTU-R 204-1和204-2中的至少一个因此在传统VTU-R初始化时处于其活动或工作时间操作模式之中,因此如图4和5的初始化时间线的活动线路部分中所指示的,传送散布有导频信号的数据。如所示出的,图3的处理包括步骤302至316,并且使用VCE 210、矢量化信号处理模块212以及VTU-O 208的至少子集进行实施。
在步骤302中,对在初始化处理的早期部分中与激活的传统VTU-R相关联的信道中上游传送的控制信号进行检测。在步骤304中,这些所检测的控制信号被用来确定至少一个误差信号。在步骤306中,获取与在与一个或多个干扰方VTU-R相关联的一个或多个干扰信道中同时发送的信号相关的信息。在步骤308中,误差信号与在干扰信道上同时发送的信号相关,以确定干扰信道特性和残留噪声。在步骤310中,对信道特征的质量进行评估,并且在步骤312中,对信道中的变化和残留噪声分量的特征进行分析。在步骤314中,确定所导出的参数中是否足够可信。如果否,则如所指示的,处理返回至步骤302和306。如果步骤314中的确定为肯定,则如步骤316所指示的,所产生的串扰系数被应用于矢量化信号处理模块212内的后补偿器。
图3的处理因此通过检测传统VTU-R的初始化处理的早期部分中鲁棒传输的控制信号而对来自系统200中其他活动信道的干扰进行估计。误差信号被导出、评估并且与通过活动线路发送的信号相关,以便确定串扰系数。对串扰估计处理进行监视以确定估计质量以及可能出现的信道变化。
应当注意的是,如这里所使用的术语“检测”意在被宽泛地理解以便包含涉及确定若干可能的控制信号数值中的哪一个已经被发送的设置。例如,在DSLAM 202先验地了解特定VTU-R 204应当在给定音调上发送四个可能信号数值之一的实施例中,检测器可以被配置为确定这四个可能信号数值中的哪一个实际被发送。这样的设置是在这里更一般地被称之为控制信号的示例,其包括激活网络终端从两个或更多数值的集合中所选择的数值,该数值在被检测之前并不被接入节点所知。
如果步骤314中的确定指示需要更多时间来完成估计处理,则可以使用多种不同的技术来放慢初始化处理,诸如延迟确认、发送否定确认或者有意损坏一些控制信号使其无法辨识而导致重传。
所要意识到的是,图3的图形中的特定处理步骤仅通过说明性示例来呈现,并且在其他实施例中可以使用另外或可替换的步骤。
现在将参考与相应VTU-R 204-1、204-2和204-3相关联的线路1、2和3提供可以在图3的流程图中执行的某些信号处理操作的更为详细的示例。在该示例中,假设与VTU-R204-1和204-2相关联的线路1和2是活动的矢量化相符线路,而与VTU-R 204-3相关联的线路3是激活的传统线路。与VTU-R 204-4相关联的线路4在该示例中既不活动也非激活。在符号周期t期间,所传送的信号可以被表示为
x1[t]=p1[t/257],如果t为257的倍数
x1[t]=d1[t],其他
x2[t]=p2[t/257],如果t为257的倍数
x2[t]=d2[t],其他
并且
x3[t]=c3[t],
其中p1和p2是导频序列,d1和d2是数据序列,并且c3是控制信号。特定控制信号并不被DSLAM 202所先验地知晓,但是已知其在每个符号周期中取四个复值之一:
v0=1+j,v1=1-j,v2=-1-j,并且v3=1-j
在通过频域均衡器(FEQ)和归一化(normalization)的补偿之后,线路3的VTU-O208-3在符号周期t期间所接收的信号为
r[t]=x3[t]+g3,1 x1[t]+g3,2 x2[t]+z3[t]
其中g3,1和g3,2分别是从线路1和线路2到线路3中的归一化串扰信道系数,而z3是归一化背景噪声。
在步骤302中,线路3的VTU-O 208-3观察r[t]并且试图确定x3[t]的数值。例如,其可以如下估计x3[t]的数值:
x ^ 3 [ t ] = arg min v ∈ v 0 , v 1 , v 2 , v 3 | v - r [ t ] |
在该示例中,所发送的数值被确定为接近于r[t]的数值。可以通过考虑在每第十个音调上发送相同数值x3[t],以固定的象限加扰旋转模式(fixed quadrant scramblingrotation pattern)为模而使得该示例性检测器更为鲁棒。因此,在消除了固定象限加扰旋转模式的效应之后,如上的检测器能够在音调1、11、21、31…上独立应用,并且随后能够通过选择各个音调上最频繁检测到的数值来进行最终决策。可替换地,能够在单个步骤中使用最大似然检测从音调1、11、21、31…上所接收的数值r[t]直接估计单个数值
在步骤304中,误差信号被确定为:
e [ t ] = r [ t ] - x ^ 3 [ t ]
如果正确进行了检测,则并且我们有
e[t]=g3,1 x1[t]+g3,2 x2[t]+z3[t]
在步骤308中,在t=257k形式的时间处所观察到的误差与线路1上所发送的导频序列相关,并且结果被乘以归一化因子C1以得到系数g3,1的估计:
g ^ 3,1 = C 1 Σ k = 0 L - 1 e [ 257 k ] p 1 [ k ] ‾
C 1 = ( Σ k = 0 L - 1 p 1 [ k ] p 1 [ k ] ‾ ) - 1
其中L是导频序列p1和p2的周期。由于这两个导频序列互相正交,所以我们有
Σ k = 0 L - 1 p 2 [ k ] p 1 [ k ] ‾ = 0
随后遵循
g ^ 3,1 = g 3,1 + C 1 Σ k = 0 L - 1 z 3 [ 257 k ] p 1 [ k ] ‾
该表达式右侧之和表示估计背景噪声对估计的损坏。这例如可以通过使得L足够长而被保持为很小。
在步骤310和312中,可以以多种不同方式来进行评估和分析。一种简单的方式将是使用L个导频符号获取估计的第一数值,随后使用第二个L个导频符号的序列获取估计的第二数值。如果第一估计具有数值x而第二估计具有数值y,则不确定性能够被估计为:
| x - y | | x | + | y |
在步骤314中,如果步骤310和312中所估计的不确定性低于指定阈值,则可以指示给定音调上的充分确信。如果充分数量的音调上每个音调的不确定性都低于阈值,则可以指示整体的充分确信。类似地,在预计相邻音调上的串扰系数大致相同的系统中,能够取数值x作为给定音调上的串扰估计,而数值y作为相邻音调上的串扰估计。随后以上表达式估计两个音调上的串扰量度的不确定性。应当注意的是,可以以许多其他方式来确定确信量度,并且可以使用内插技术。而且,能够对每个音调、每个音调群组定义阈值,或者以其他方式来定义阈值。
以上所给出的特定信号处理示例不应当被理解为以任何方式进行限制,而是仅意在对可以在图3的处理中执行的一组可能的信号处理操作进行说明。
在该实施例中,DSLAM 202被配置为对普通VDSL2初始化处理的早期部分期间所生成的控制信号进行处理以估计串扰系数。矢量化信号处理模块212与来自活动VTU-R的信号同时地在初始化处理的早期部分从传统VTU-R接收信号。对相对应的误差信号和串扰估计进行评估以确定信道的初始化是否稳定以及串扰估计是否足够准确。
如之前所指示的,图3的步骤302中所检测的控制信号是能够被准确解码的特别鲁棒的信号,这使得接收器能够测量相对应的误差信号。因此,解码预期信号、测量误差信号以及将误差信号与来自活动线路的传输相关的估计步骤能够在标准的VDSL2初始化处理期间执行。如之前所指示的,可以通过延迟确认、发送否定确认或者有意损坏信号以强制重传事件而扩展初始化处理特别是信道发现/训练阶段的持续时间。
参考图4的G.vector初始化时间线,在G.vector相符VTU-R激活线路的情况下示出了活动线路、激活线路和VCE所采取以便实现激活线路的全速率激活的动作。图5示出了传统VTU-R的激活线路的情况下的相对应初始化时间线。在该初始化处理的信道发现/训练阶段,激活线路的传统VTU-R 204上游发送未知但粗糙的信号。这些是由激活线路的相对应VTU-O 208所解码的控制信号,其随后测量预期和接收信号之间的差异。这些误差量度被转发至VCE 210,其估计串扰系数,并且使用所计算的补偿系数来确定矢量化信号处理单元212何时能够开始后补偿。一旦后补偿进行工作,激活线路进入信道分析阶段。上述的粗糙信号通常利用诸如4-QAM的低阶信号星座图,其中星座点远离并且因此易于在存在噪声和干扰/串扰的情况下进行检测。
现在将对步骤302和304中关于处理来自传统VTU-R的控制信号的其他细节进行描述。VDSL2初始化处理的早期部分要求传统VTU-R使用预先定义的加扰发送映射到4-QAM星座图上的鲁棒二进制信号。该信息使用重复进行鲁棒编码,因此即使在包括信道发现/训练阶段的初始化处理的早期部分存在强干扰和过量噪声的情况下也易于解码。由于这些信号没有在多个DMT符号上进行编码,所以矢量化信号处理模块212能够立即对它们进行解码,并且随后立即确定误差信号。这在VTU-R并不发送任何信息(即发送全零模式)时显然也是可能的。所导出的误差信号在初始化处理中被早期使用以确定串扰,特别是在信道发现/训练阶段期间使用。
控制信号一旦已经被解码,其就有效地成为已知信号,并且其能够在步骤304中被用来确定每个音调的误差信号。在解码之前,在接收器处并不知晓激活线路上所发送的控制信号。由VTU-R为该控制信号所选择的数值从之前在VTU-R和DSLAM之间交换的控制信号中独立选择。这与针对G.vector相符线路的其中DSLAM为相对应的VTU-R分配导频序列的处理相反,并且这事先确定了R-P-VECTOR-2信号。
误差信号随后可以在步骤308中针对其他线路上发送的信号相关。通过说明性示例,能够将误差信号相对干扰方线路上定期发送的导频信号相关以便估计串扰信道。在干扰方线路上发送的特定导频信号事先被VCE 210所知。因此,能够通过获取存储在存储器120中并且可被VCE 210所访问的导频信号信息来执行步骤306。
在初始化处理的早期部分,误差信号被用来确定信道是否已经稳定,并且FEQ和时域均衡器(TEQ)是否已经被训练以及例如滤波器设置的其他参数是否已经被设置。VTU-O208和VCE 210能够检测直接信道中的变化并且对一些效应进行变换以确定经调节的信道干扰参数。同样,信道发现/训练阶段仅提供在其中估计串扰并且开始对其进行补偿的有限量的时间。估计处理被设计为使得其关于信道何时已经稳定提供指示。部分干扰特征可能已经被确定,但是FEQ、TEQ和其他信道相关参数的变化可能需要进行调节以及一些额外测量以验证该变化,例如确定参数导致了阶段变化并且验证经调节的干扰参数。信道在FEQ、TEQ和滤波器设置以及其他参数已经被训练时变为稳定。
对于传统VTU-R而言,假设遵循如ITU-T建议G.993.2中所指定的标准初始化处理。然而,如之前所指示的,DSLAM 202可以被配置为对信道估计的质量进行监视并且在必要时扩展信道发现/训练阶段。在其间仅有一些音调活动的握手阶段完成之后,初始化处理以信道发现阶段继续,随后是训练阶段且最后为信道分析阶段。后三个阶段具有若干子阶段,并且在初始化处理的该后续部分VTU-O和VTU-R之间存在强干扰。在该实施例中,传统CPE单元的超时为每个阶段10秒。如果发现任意的以下事件则初始化处理被中止:任意阶段超时,在任意阶段期间丢失或未完成任务,在任意阶段期间违背初始化协议(包括确认SOC消息超时),或者检测到250ms的未调度静默。
在延迟初始化处理以允许串扰信道系数估计的额外时间时,应当理解的是,某些阶段需要最小时间来完成,并且朝向每个阶段的结束开始延迟操作通常是有利的。除非在确定串扰时存在严重问题,否则通常期望避免违背特定阶段的整体10秒钟超时。重新开始初始化处理不会导致测量的丢失,这是因为干扰信道自身实际上通常是在相当的时间间隔上恒定的。符号同步过程的重新初始化以及FEQ和TEQ参数的调节通常导致阶段变化,在测量针对直接信道和干扰信道所选择的音调时,这会使得VCE 210能够使用之前的量度来确定实际信道系数。
一旦信道被准确估计,则矢量化的系统200将能够通过矢量化信号处理模块212中实施的后补偿而对来自干扰方的串扰干扰进行抑制。如果该后补偿在信道分析阶段期间是活动的,则激活的传统VTU-R能够被配置为以活动状态实现最高的可能速率,这如之前这里所提到的也被称之为“工作时间”。
针对传统VTU-R实现全速率激活的能力是特别有利的并且是说明性实施例的重要优势。无法实现全速率激活会导致某些音调被指定为不可用,由此限制了可在工作时间期间可实现的数据速率。
还应当注意的是,在常规实践方式下,位置接近DSLAM的VTU-R通常需要利用上游功率回退(UPBO)以避免压倒来自更远VTU-R的弱信号。通过提供在传统线路的初始化期间消除从G.vector线路到传统线路中的串扰的能力,说明性实施例能够避免在G.vector线路上采用UPTO的需要,或者能够允许以较少的保守设置使用UPBO。激活的传统线路上在工作时间开始时的数据速率因此实质上将不会被高功率G.vector相符线路所影响。这些实施例在其中CPE单元在部署G.vector技术时逐渐被升级以使得符合G.vector CPE单元和传统CPE单元实质上在相同接入网络中出现或者以其他方式而难以更新或替换某些传统CPE单元的接入网络中是特别有利的。
本发明的实施例可以至少部分地以存储在系统100的AN 102的存储器或其他处理器可读介质中的一个或多个软件程序的形式来实施。这样的程序可以由AN中的处理器获取并执行。处理器115可以被视为这样的处理器的示例。当然,可以在实施依据本发明的这些和其他系统时以任意组合采用硬件、软件或固件的多种可替换配置形式。例如,本发明的实施例可以在DSL芯片或其他类似集成电路设备中实施。因此,诸如收发器208、VCE 210和矢量化信号处理模块212之类的部件可以共同在单个集成电路上实施或者使用多个集成电路来实施。作为另一个示例,本发明的示例可以使用DSLMA或其他接入节点的多个线路卡来实施。
具有可以被适配以在实施本发明实施例时使用的多个线路卡设置的接入节点的示例在于2009年6月24日提交的题为“Joint Signal Processing Across a Plurality ofLine Termination Cards”的欧洲专利申请号09290482.0中有所公开。
应当再次强调的是,以上所描述的实施例仅作为说明性示例而给出。根据特定通信应用的需求,其他实施例可以使用不同的通信系统配置、AN和NT配置、通信信道、串扰估计生成和串扰控制处理步骤。可替换实施例因此可以在需要对通信系统的多个信道之间的串扰进行控制的其他环境中采用这里所描述的技术。
还应当理解的是,在描述说明性实施例的上下文中所进行的特定假设不应当被理解为本发明的要求。本发明可以在并不应用这些特定假设的其他实施例中得以实施。
处于所附权利要求范围之内的这些和多个其他可替换实施例对于本领域技术人员而言将是轻易显而易见的。

Claims (9)

1.一种用于控制与通信系统的第一网络终端相关联的激活信道和与所述通信系统的相应其他网络终端相关联的多个活动信道之间的串扰的方法,所述方法在该通信系统的接入节点中实施,所述方法包括步骤:
检测所述第一网络终端在该第一网络终端的初始化处理的指定阶段中通过所述激活信道发送的控制信号,其中所述第一网络终端发送的所述控制信号包括由所述第一网络终端从两个或更多数值的集合中选择的数值,并且特定的所选择的数值在所述检测之前不被接入节点所知,其中所述初始化处理的所指定阶段包括信道发现阶段、训练阶段中的至少一个阶段;
从所检测的控制信号确定误差信号;
将所述误差信号与相应的其他网络终端通过所述活动信道所发送的一个或多个相对应信号相关;
基于所述相关估计从一个或多个活动信道到所述激活信道中的串扰;以及
配置所述接入节点的矢量化信号处理模块以对所估计的串扰进行控制,
其中所述其他网络终端包括实质上符合指定的矢量化标准的矢量化相符网络终端,并且所述第一网络终端包括实质上不符合所述指定的矢量化标准的传统网络终端。
2.根据权利要求1所述的方法,其中所述通信系统包括DSL系统,所述接入节点包括DSL接入多路复用器。
3.根据权利要求1所述的方法,其中配置所述接入节点的矢量化信号处理模块以对所估计的串扰进行控制进一步包括配置后补偿器以对所述接入节点从所述第一网络终端所接收的信号提供后补偿,其中所述后补偿在所述激活信道的所述初始化处理的信道分析阶段的至少一部分期间提供,并且其中在初始化处理的信道分析阶段期间提供所述后补偿允许激活信道随后以比在信道分析阶段期间没有后补偿的情况下的可能数据速率更高的数据速率处变为活动的。
4.根据权利要求1所述的方法,进一步包括相对于所指定阶段的指定持续时间,增加所述初始化处理的所指定阶段的持续时间的步骤,从而允许有充足的时间来执行检测、确定、相关和估计步骤的至少一次迭代。
5.根据权利要求4所述的方法,其中通过延迟从接入节点向所述第一网络终端的确认的传输,从所述接入节点向所述第一网络终端发送否定确认,和有意损坏从所述接入节点发送到所述第一网络终端的信号以便在所述第一网络终端处强制重传事件中的至少一个,来增加所述初始化处理的所指定阶段的所述持续时间。
6.根据权利要求1所述的方法,其中检测所述控制信号的步骤包括确定所述集合中的两个或更多数值中的哪一个已经由所述第一网络终端在特定音调上发送。
7.一种用于控制与通信系统的第一网络终端相关联的激活信道和与所述通信系统的相应其他网络终端相关联的多个活动信道之间的串扰的装置,所述装置在该通信系统的接入节点中实施,所述装置包括:
用于检测所述第一网络终端在该第一网络终端的初始化处理的指定阶段中通过所述激活信道发送的控制信号的装置,其中所述第一网络终端发送的所述控制信号包括由所述第一网络终端从两个或更多数值的集合中选择的数值,并且特定的所选择的数值在所述检测之前不被接入节点所知,其中所述初始化处理的所指定阶段包括信道发现阶段、训练阶段中的至少一个阶段;
用于从所检测的控制信号确定误差信号的装置;
用于将所述误差信号与相应的其他网络终端通过所述活动信道所发送的一个或多个相对应信号相关的装置;
用于基于所述相关估计从一个或多个活动信道到所述激活信道中的串扰的装置;以及
用于配置所述接入节点的矢量化信号处理模块以对所估计的串扰进行控制的装置,
其中所述其他网络终端包括实质上符合指定的矢量化标准的矢量化相符网络终端,并且所述第一网络终端包括实质上不符合所述指定的矢量化标准的传统网络终端。
8.一种网络装置,包括:
接入节点,其被配置为控制与通信系统的第一网络终端相关联的激活信道和与所述通信系统的相应其他网络终端相关联的多个活动信道之间的串扰,其中所述其他网络终端包括实质上符合指定的矢量化标准的矢量化相符网络终端,并且所述第一网络终端包括实质上不符合所述指定的矢量化标准的传统网络终端;
其中所述接入节点进一步包括:
多个收发器;
矢量控制实体;和
矢量化信号处理模块;
其中由所述收发器之一检测所述第一网络终端在该第一网络终端的初始化处理的指定阶段通过激活信道发送的控制信号,从所检测的控制信号确定误差信号,并且将该误差信号与相应的其他网络终端通过所述活动信道所发送的一个或多个相对应信号相关,其中所述初始化处理的所指定阶段包括信道发现阶段、训练阶段中的至少一个阶段;
其中所述第一网络终端发送的所述控制信号包括由所述第一网络终端从两个或更多数值的集合中选择的数值,并且特定的所选择的数值在所述检测之前不被所述接入节点所知;
其中所述矢量控制实体基于所述相关估计从一个或多个活动信道到所述激活信道中的串扰;以及
其中所述矢量化信号处理模块被配置为对所估计的串扰进行控制。
9.一种通信系统,包括根据权利要求8所述的接入节点。
CN201180047858.8A 2010-10-01 2011-09-22 用于控制dsl系统中的干扰的方法和装置 Active CN103141033B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/896,372 2010-10-01
US12/896,372 US8559547B2 (en) 2010-10-01 2010-10-01 Channel estimation utilizing control signals transmitted by an activating line during initialization
PCT/US2011/052706 WO2012044513A1 (en) 2010-10-01 2011-09-22 Method and apparatus for controlling interference in dsl systems

Publications (2)

Publication Number Publication Date
CN103141033A CN103141033A (zh) 2013-06-05
CN103141033B true CN103141033B (zh) 2016-11-09

Family

ID=44736088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180047858.8A Active CN103141033B (zh) 2010-10-01 2011-09-22 用于控制dsl系统中的干扰的方法和装置

Country Status (7)

Country Link
US (1) US8559547B2 (zh)
EP (1) EP2622754B1 (zh)
JP (1) JP5788986B2 (zh)
KR (1) KR101445547B1 (zh)
CN (1) CN103141033B (zh)
BR (1) BR112013007558A2 (zh)
WO (1) WO2012044513A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559547B2 (en) 2010-10-01 2013-10-15 Alcatel Lucent Channel estimation utilizing control signals transmitted by an activating line during initialization
CN103733554A (zh) * 2011-08-15 2014-04-16 夏普株式会社 无线发送装置、无线接收装置、程序、集成电路以及无线通信系统
US9893773B2 (en) * 2011-09-21 2018-02-13 Provenance Asset Group Llc System and method of wireless communication using large-scale antenna networks
CN103636230B (zh) 2012-05-31 2017-04-26 华为技术有限公司 一种dsl激活的方法、设备和系统
US8958465B2 (en) * 2012-10-16 2015-02-17 Futurewei Technologies, Inc. Initialization and tracking for low power link states
US9374132B2 (en) * 2012-12-28 2016-06-21 Broadcom Corporation Communication system capable of measuring crosstalk in legacy line
US9900049B2 (en) * 2013-03-01 2018-02-20 Adaptive Spectrum And Signal Alignment, Inc. Systems and methods for managing mixed deployments of vectored and non-vectored VDSL
EP3020138B1 (en) * 2013-04-23 2018-06-06 Assia Spe, Llc Methods systems, and apparatuses for implementing upstream power control for dsl
CN105191272B (zh) * 2013-05-05 2018-02-23 领特德国公司 使用准备加入群组来训练经向量化系统中的多个线路的优化
US9379770B2 (en) * 2013-08-29 2016-06-28 Alcatel Lucent Methods and systems for activating and deactivating communication paths
EP2843845B1 (en) * 2013-08-30 2016-05-25 Alcatel Lucent Randomization of crosstalk probing signals
EP2846526B1 (en) 2013-09-05 2021-01-20 ADTRAN GmbH Data processing in a digital subscriber line environment
PL2871828T3 (pl) * 2013-11-06 2017-09-29 Lantiq Deutschland Gmbh Monitorowanie wydajności dla trybów działania nieciągłego
EP3057241B1 (en) 2013-11-27 2018-02-28 Huawei Technologies Co., Ltd. Power adjustment device and method
CN106716929B (zh) * 2014-09-22 2019-03-08 英国电讯有限公司 创建用于在dsl连接上传输数据的信道的方法和装置
EP3021511B1 (en) 2014-11-17 2020-08-19 Alcatel Lucent Method and device for controlling a vector processor
US10141976B2 (en) * 2015-02-24 2018-11-27 Lantiq Beteiligungs-GmbH & Co. KG Crosstalk mitigation
EP3433937B1 (en) * 2016-03-24 2019-10-09 Telefonaktiebolaget LM Ericsson (PUBL) Method and system for estimating crosstalk between electrical transmission lines
US10505583B2 (en) * 2016-12-19 2019-12-10 Futurewei Technologies, Inc. Crosstalk channel estimation for legacy CPE
EP3565130B1 (en) * 2017-01-25 2021-12-01 Huawei Technologies Co., Ltd. Signal processing method, apparatus and system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69915082D1 (de) * 1999-12-14 2004-04-01 St Microelectronics Nv DSL-Übertragungsystem mit Fernnebensprechkompensation
US6885746B2 (en) * 2001-07-31 2005-04-26 Telecordia Technologies, Inc. Crosstalk identification for spectrum management in broadband telecommunications systems
KR100465640B1 (ko) * 2002-04-03 2005-01-13 주식회사 휴커넥스 원단 누화 신호를 제거하기 위한 디엠티 시스템
US20060029148A1 (en) 2004-08-06 2006-02-09 Tsatsanis Michail K Method and apparatus for training using variable transmit signal power levels
ES2382159T3 (es) 2006-12-21 2012-06-05 Alcatel Lucent Dispositivo de control de la diafonía transitoria
US8300726B2 (en) 2007-11-02 2012-10-30 Alcatel Lucent Interpolation method and apparatus for increasing efficiency of crosstalk estimation
US8300518B2 (en) 2008-04-01 2012-10-30 Alcatel Lucent Fast seamless joining of channels in a multi-channel communication system
US8094745B2 (en) 2009-01-13 2012-01-10 Alcatel Lucent Power control using denoised crosstalk estimates in a multi-channel communication system
US8243578B2 (en) * 2009-02-12 2012-08-14 Alcatel Lucent Simultaneous estimation of multiple channel coefficients using a common probing sequence
US8559547B2 (en) 2010-10-01 2013-10-15 Alcatel Lucent Channel estimation utilizing control signals transmitted by an activating line during initialization

Also Published As

Publication number Publication date
KR101445547B1 (ko) 2014-09-29
KR20130071479A (ko) 2013-06-28
WO2012044513A1 (en) 2012-04-05
US8559547B2 (en) 2013-10-15
JP2013540397A (ja) 2013-10-31
CN103141033A (zh) 2013-06-05
BR112013007558A2 (pt) 2016-07-19
EP2622754B1 (en) 2016-08-31
US20120082258A1 (en) 2012-04-05
EP2622754A1 (en) 2013-08-07
JP5788986B2 (ja) 2015-10-07

Similar Documents

Publication Publication Date Title
CN103141033B (zh) 用于控制dsl系统中的干扰的方法和装置
KR101364327B1 (ko) xDSL 시스템에서의 MIMO 프리코딩을 위한 시스템 및 방법
EP2215739B1 (en) Interpolation method and apparatus for increasing efficiency of crosstalk estimation
EP2566064B1 (en) Adaptive monitoring of crosstalk coupling strength
US6834109B1 (en) Method and apparatus for mitigation of disturbers in communication systems
KR101874541B1 (ko) 선택적 채널 추정
US9667450B2 (en) Detection and correction of impulse noise in communication channel crosstalk estimates
US20080187077A1 (en) Method for estimating crosstalk interferences in a communication network
US20090073868A1 (en) Device and associated method for measuring crosstalk
US8126042B2 (en) FEXT estimation and signaling in vector transmission
EP2673886A1 (en) System and method for improving spectral efficiency and profiling of crosstalk noise in synchronized multi-user multi-carrier communications
EP2499767B1 (en) Error reporting in multi-carrier signal communication
EP2955857B1 (en) In-service estimation of vectoring performance metrics
Guenach et al. On signal-to-noise ratio-assisted crosstalk channel estimation in downstream DSL systems
Huang Crosstalk in Wideband Wireline Systems--Curse and Blessing
CN102318207A (zh) 用于数据处理的方法和设备
EP2204920B1 (en) Method and device for reducing crosstalk

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant