CN103137437B - 制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法与包含其的太阳能电池 - Google Patents

制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法与包含其的太阳能电池 Download PDF

Info

Publication number
CN103137437B
CN103137437B CN201210477835.7A CN201210477835A CN103137437B CN 103137437 B CN103137437 B CN 103137437B CN 201210477835 A CN201210477835 A CN 201210477835A CN 103137437 B CN103137437 B CN 103137437B
Authority
CN
China
Prior art keywords
iiia
compound
light absorbing
doping
absorbing zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210477835.7A
Other languages
English (en)
Other versions
CN103137437A (zh
Inventor
吕宗昕
陈富珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN103137437A publication Critical patent/CN103137437A/zh
Application granted granted Critical
Publication of CN103137437B publication Critical patent/CN103137437B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种制造掺杂Bi的IB‑IIIA‑ⅥA化合物的光吸收层的方法与包含其的太阳能电池。光吸收层的制备方法包括:将含有元素周期表IB族、ⅢA族和铋(Bi,Bismuth)的化合物置于包括ⅥA族化合物的气氛中进行热处理,使该化合物形成掺杂Bi(bismuth‑doped)的IB‑ⅢA‑ⅥA化合物。另外,本发明亦提供一种制作掺杂Bi的光吸收层的太阳能电池,该光吸收层是由上述方法制备而得,可进一步应用于制作光电材料。

Description

制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法与包含其的太阳能 电池
技术领域
本发明涉及一种制造IB-IIIA-VIA化合物的方法,特别是一种制造用以作为光电材料元件的掺杂Bi的IB-IIIA-VIA化合物的方法。
背景技术
近年来由于受到全球气候变迁、环境污染问题以及资源日趋短缺的影响,在环保意识高涨与能源危机的警讯下刺激了太阳光电产业的蓬勃发展。于各种太阳能电池中,由于硒化铜铟镓太阳电池(Cu(In,Ga)Se2,CIGS)具备高转换效率、稳定性佳、材料成本低、可制成薄膜等优点,因此受到极大的重视。
CIGS化合物属于黄铜矿(chalcopyrite)结构,其主要由IB-IIIA-VIA2族化合物所组成,其为一种直接能隙(direct bandgap)半导体材料,可通过调控组成而改变半导体的能隙(band gap),是目前常用以作为太阳电池光吸收层的主要材料。目前制作CIGS太阳能电池的光吸收层技术中,常通过掺杂(incorporate)不同离子提高光吸收层的品质,进而增进电池的光电转换效率,其中,US20090320916公开了一种添加锑(antimony,Sb)元素以得到增进光电特性的方法。然而,上述光吸收层中的Sb可掺杂量(the doping amounts ofantimony)有限,且其于光吸收层的浓度不易控制,间接影响光吸收层的特性。综上所述,若有一种新的掺杂元素且能有效控制其掺杂浓度(the dopingconcentration),将有助于改善光吸收层的晶粒大小(the grain size)和晶相成长(the grain growth),进而增加元件的光电转换效率。
发明内容
为达成上述及其他目的,本发明提供一种制造掺杂Bi的IB-IIIA-VIA化合物光吸收层的方法,其特征在于包括:(A)沉积含有元素周期表IB族、IIIA族和Bi的化合物的先驱薄膜,(B)再于含有VIA族化合物的气氛下对该先驱薄膜进行热处理,进一步形成掺杂Bi的IB-IIIA-VIA化合物的光吸收层。
根据本发明的实施方式,该IB族元素为选自铜、银、金及上述组合所构成的组群;该IIIA族元素为选自硼、铝、镓、铟、铊及上述组合所构成的组群;该VIA族元素为选自氧、硫、硒、碲、钋及上述组合所构成的组群;该IB-IIIA-ⅥA与Bi的摩尔数比为10:1至2000:1。
根据本发明的实施方式,上述步骤(A)还包括将IA族及/或ⅥA族化合物加入该先驱薄膜中;上述步骤(A)的沉积方法包括真空、非真空的镀膜制程或上述的组合;上述步骤(A)的沉积方法包含涂布、溅镀、蒸镀或上述的组合;涂布方法包括旋转涂布、狭缝涂布、挤压涂布、淋幕涂布、斜板涂布、浸镀、刮刀涂布或上述方法的组合;上述步骤(B)的气氛包括真空或非真空;该气氛包括氧气(O2)、氮气(N2)、氢气(H2)、氩气(Ar)、硒化氢(H2Se)、硫化氢(H2S)、硒(Se)蒸气、硫(S)蒸气、碲(Te)蒸气或上述的组合。
根据本发明的实施方式,上述步骤(A)还包括将先驱薄膜进行热处理,其中热处理温度为50℃-650℃,热处理时间为15分钟至12小时。其热处理可改善薄膜品质及表面型态,可干燥薄膜,或去除残碳,或增加致密性。热处理气氛包括氧气(O2)、氮气(N2)、氩气(Ar),或上述的组合。
本发明还提供一种采用掺杂Bi的IB-IIIA-VIA化合物的光吸收层制作的太阳能电池,是由上述掺杂Bi的IB-IIIA-VIA化合物的光吸收层制备方法所制得。
根据本发明所合成掺杂Bi的IB-IIIA-VIA化合物的光吸收层,其可应用作为光电材料元件。掺杂Bi的IB-IIIA-VIA化合物的光吸收层不仅有助于IB-IIIA-VIA化合物的晶粒粒径(grain size)和晶相的成长(the grain growth),同时可以改善IB-IIIA-VIA化合物的电性特性,进而能够增加光电元件的特性的优点。
根据本发明的实施方式,光吸收层的掺杂Bi的IB-IIIA-ⅥA化合物的晶粒的平均粒径大于或等于0.6μm,较佳平均粒径大于或等于0.8μm,最佳平均粒径大于或等于1.0μm。
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举出较佳实施例,并配合附图,作详细说明如下。
附图说明
图1为根据本发明一实施方式的太阳能电池的示意图;
图2为实施例1的薄膜样品1的X-ray绕射图谱;
图3为实施例1的薄膜样品1的扫描式电子显微镜(SEM)图;
图4为实施例1的铜铟镓硒薄膜太阳电池1的电流密度-电压图;
图5为比较实施例1的薄膜样品2的扫描式电子显微镜(SEM)图;
图6为比较实施例1的铜铟镓硒薄膜太阳电池2的电流密度-电压图。
【主要元件符号说明】
100太阳能电池,110基板,120接触层,130光吸收层,140缓冲层,150窗层,152透明窗层,154透明导电层。
具体实施方式
以下通过特定的具体实例说明实施方式,这些实施例仅为本发明的示例,不应据以局限本发明的范围,本领域普通技术人员均可由说明书及本申请的权利要求所公开的内容,根据需要加以适当的变化,而这些变化均含于本发明的范畴。
本发明提供制造掺杂Bi的IB-IIIA-ⅥA化合物的方法,将IB族、IIIA族及Bi的化合物置于包括ⅥA族化合物的气氛中进行热处理,以形成掺杂Bi的IB-IIIA-ⅥA化合物。进一步言之,本发明方法为先将分别含有IB族、IIIA族及Bi的化合物或上述组合的原料均匀混合或分别以涂布、溅镀或蒸镀的方式沉积于基材形成前驱化合物(the precursors),再于含有ⅥA族化合物的气氛中进行热处理的反应。
本发明方法所使用的IB族、IIIA族及Bi或上述组合的原料是指含有IB族及/或IIIA族及/或Bi及/或上述组合的合金及/或化合物,包括合金、氧化物、硝酸盐、醋酸盐、硫酸盐、草酸盐或碳酸盐。该含有IB族元素的原料实例包括铜、银、金或上述组合的合金、氟化物、氯化物、溴化物、碘化物、硝酸盐、醋酸盐、硫酸盐、草酸盐或碳酸盐;较佳为铜、银、金或上述组合的合金或硝酸盐。例如铜(Cu)、银(Ag)、金(Au)、硝酸铜(Cu(NO3)2)、亚硝酸铜(CuNO3)、硝酸银(Ag(NO3)2)、硝酸金(Au(NO3)2)。该含有IIIA族元素的原料实例包括硼、铝、镓、铟、铊或上述组合的合金、氟化物、氯化物、溴化物、碘化物、硝酸盐、醋酸盐、硫酸盐、草酸盐或碳酸盐;较佳为硼、铝、镓、铟、铊或上述组合的合金或硝酸盐。例如铝(Al)、镓(Ga)、铟(In)、硝酸铝(Al(NO3)3)、硝酸镓(Ga(NO3)3)、硝酸铟(In(NO3)3)。该含有Bi元素的原料实例包括合金、氟化物、氯化物、溴化物、碘化物、硝酸盐、醋酸盐、硫酸盐、草酸盐或碳酸盐;较佳为Bi的金属或硝酸盐。例如铋(Bi)、硝酸铋(Bi(NO3)3)。该含有ⅥA族包括硫(S)、硒(Se)、锑(Te)或上述的组合的氧化物、卤化物、卤氧化物、硫化物、硒化物、胺化物、脲化物、硒酸物、硫酸物或碲酸物,例如氧化硒(SeO2)、氧化碲(TeO2)、硫酸(H2SO4)、硒酸(H2SeO4)、碲酸(H2TeO4)、亚硫酸(H2SO3)、亚硒酸(H2SeO3)、亚碲酸(H2TeO3)、硫脲(thiourea,CS(NH2)2)、硒脲(selenourea,CSe(NH2)2)、二氯化硒(SeCl2)、四氯化硒(SeCl4)、二氯化碲(TeCl2)、四氯化碲(TeCl4)、二溴化硒(SeBr2)、四溴化硒(SeBr4)、二溴化碲(TeBr2)、四溴化碲(TeBr4)、氯氧化硒(SeOCl2)或硫化硒(SeS2)。而上述化合物的选择,并不限于上述提及的化合物,只要是能含IB族、IIIA族、Bi元素、ⅥA族的化合物皆可。
而其中IB-IIIA-ⅥA族化合物与Bi的摩尔数比为约(10~2000):1,较佳为约(20~1000):1,最佳为约(40~500):1。
本发明方法为先将上述提及的IB族、IIIA族及Bi的化合物原料沉积于基材上,沉积的厚度为约0.1-20μm,较佳厚度为0.2-15μm,最佳厚度为0.5-10μm。而选择的沉积方式包括真空制程技术、非真空制程技术或上述的组合的制程技术,例如共蒸镀(Co-evaporation)、溅镀(Sputtering)、涂布制程(CoatingProcess)、化学喷洒热解法(Chemical spray Pyrolysis)或电沉积(Electrodeposition)。涂布制程包括旋转涂布(spin coating)、狭缝涂布(slotcoating)、挤压涂布(extrusion coating)、淋幕涂布(curtain coating)、斜板式涂布(slide coating)、浸镀(dipping)、刮刀涂布(doctor blade cotaing)或上述方法的组合。
上述提及的基板包括玻璃、高分子基板、金属基板或透明导电层(transparent conducting oxide,TCO),其中高分子基板例如为聚亚酰胺(polyimide,PI)、聚对苯二甲酸乙二酯(poly(ethylene terephthalate),PET)、聚碳酸酯(poly carbonate,PC)或聚甲基丙烯酸甲酯(poly(methyl methacrylate),PMMA),而该透明导电层(TCO)例如为氧化锌:铝(ZnO:Al)、氧化铟:锡(In2O3:Sn)、二氧化锡:氟(SnO2:F)或上述的组合。
另外,上述IB族、IIIA族及Bi的化合物可反复沉积于基板上,以增加前驱化合物的厚度,再经一气氛(atmosphere)中的热处理。或者是进行热处理后,重复沉积(deposition)与热处理步骤,以控制掺杂Bi的IB-IIIA-ⅥA化合物厚度及特性。另外,重复沉积步骤中,前驱化合物的成分可予调整。
接着,将基板置于包括该气氛(atmosphere)中进行一热处理,使该基板之上形成掺杂Bi的IB-IIIA-ⅥA化合物。上述气氛包括真空或非真空,而该气体包括氧气(O2)、氮气(N2)、氢气(H2)、氩气(Ar)或上述的组合。上述热处理的温度为约350℃~650℃,较佳为约400℃~600℃,而热处理的时间为约0.1小时~8小时,较佳为约0.3小时~6小时,最佳为0.5小时~4小时,热处理之后即可得到本发明的掺杂Bi的IB-IIIA-ⅥA化合物,其能应用于光电元件。为促进反应进行,上述气体还包括ⅥA族的气体,例如硒化氢(H2Se)、硫化氢(H2S)、硒(Se)蒸气、硫(S)蒸气、碲(Te)蒸气或上述的组合。
相较于以往使用制造IB-IIIA-VIA化合物的方法,本发明方法以掺杂Bi方式得到大晶粒且具高结晶性的IB-IIIA-VIA化合物。另一方面,本发明方法其特征在于通过掺杂Bi元素,使得IB-IIIA-VIA化合物的电性特性增加,进而提升光电元件的光电特性。
图1为依照本发明的一实施方式的太阳能电池100的示意图。太阳能电池100包含基板110、接触层120、光吸收层130、缓冲层140以及透明导电堆迭结构150。但本发明本领域普通技术人员应知,太阳能电池结构不以图1所示为限。
基板110包含玻璃、高分子基板、金属基板或透明导电层。接触层120可为包含钼的金属层,以作为太阳能电池的背电极。可利用溅镀方式形成包含钼的金属层于基板110上。
光吸收层130包含以上述实施方式制造的掺杂Bi的IB-IIIA-ⅥA化合物。举例来说,可先制备Bi、IB、IIIA的前驱物的混合物,然后以非真空浆料涂布、溅镀、蒸镀或上述的组合的方式,形成前驱物块材或薄膜于基板110上。然后,进行包含VIA族元素的气氛(atmosphere)的热处理,而形成掺杂Bi的IB-IIIA-ⅥA化合物。
缓冲层140的材质例如为CdS、ZnS或In2S3薄膜。窗层150例如包含一层透明窗层152与透明导电层154。透明窗层152的材料例如为未掺杂的氧化锌(ZnO)。透明导电层154的材料例如为氧化铟锌(ITO)、氧化锌铝(AZO)或其组合。在另一实施方式中,可省略152透明窗层,以简化电池结构。本发明的实施方式形成的包含掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层130能够帮助提升太阳能电池100的光电性能,请参考下述实施例。
实施例
实施例1
将Cu(NO3)2、Ga(NO3)3和In(NO3)3依Cu(In,Ga)Se2成分溶于乙醇中配制成溶液,并加入Bi(NO3)3作为改质剂,其中Bi(NO3)3与Cu(In,Ga)Se2摩尔数比为1:100;混合均匀后,成为前驱物溶液,利用旋转涂布法将前驱物溶液涂布于玻璃基材上,先以250℃加热30分钟排除有机物,再于高纯度氮氢混合气中,以550℃加热0.5小时,并通入硒蒸气,即可获得薄膜样品1。
经X-ray绕射图谱分析,其结果如图2所示,显示薄膜样品样品1具有(112)、(211)、(220)、(204)、(312)与(116)等主要绕射锋,符合ICDD卡编号35-1101图谱,确认薄膜样品1为黄铜矿相晶体单相结构。
另外以扫描式电子显微镜(SEM)及原子力显微镜(AFM)分析化合物样品1,实验结果显示化合物样品1的表面型态致密且分布均匀。平均粒径大小约为0.7μm,其结果如图3所示;表面粗糙度约为60nm。以霍尔量测仪(Hallmeasurement)分析化合物样品1的载子浓度为8.6*1016cm-3
再者,以能量散射光谱仪(Energy Dispersive Spectrometer,EDS)与X光光电子能谱仪(XPS,X-ray Photoelectron Spectroscopy)分析化合物样品1,其中XPS分析结果于156.9eV和162.2eV处有Bi 4f7/2和Bi 4f5/2的特性锋,实验结果证明掺杂Bi的薄膜样品1中确实存在有Bi元素。
以glass/Mo/薄膜样品1/CdS/i-ZnO/ITO的结构制作铜铟镓硒薄膜太阳电池1;再者,以太阳能标准光源模拟器分析铜铟镓硒薄膜太阳电池1,实验结果如图4所示,显示铜铟镓硒薄膜太阳电池1的Voc(开路电压)为0.4V,Isc(短路电流密度)为33.7mA/cm2,光电转化效率为6.3%。
比较实施例1
将Cu(NO3)2、Ga(NO3)3和In(NO3)3依Cu(In,Ga)Se2成分溶于乙醇中配制成溶液,混合均匀后,成为前驱物溶液,利用旋转涂布法将前驱物溶液涂布于玻璃基材上,先以250℃加热30分钟排除有机物,再于高纯度氮氢混合气中,以550℃加热0.5小时,并通入硒蒸气,即可获得薄膜样品2。
经X-ray绕射图谱分析,显示薄膜样品2具有(112)、(211)、(220)、(204)、(312)与(116)等主要绕射锋,符合ICDD卡编号35-1101图谱,确认为黄铜矿相晶体单相结构。
以扫描式电子显微镜及原子力显微镜分析,粒径为0.3-0.6μm,平均粒径约为0.45μm,其结果如图5所示;表面粗糙度约为150nm。以霍尔量测仪分析化合物样品2的载子浓度为3.5*1016cm-3。与含Bi的样品1比较,发现不含铋(Bi-free)的样品2晶粒较小且薄膜表面较粗糙;载子浓度亦较低。再以EDS与XPS分析发现并无任何Bi的讯号,由此可知,Bi的添加确实可增加黄铜矿相的晶粒大小和致密性并增进其载子浓度。
以glass/Mo/薄膜样品2/CdS/i-ZnO/ITO的结构制作铜铟镓硒薄膜太阳电池2;再者,以太阳能标准光源模拟器分析铜铟镓硒薄膜太阳电池2,实验结果如图6所示,Voc(开路电压)为0.36V,Isc(短路电流密度)为31.2mA/cm2,显示铜铟镓硒薄膜太阳电池2的转化效率为4.4%。由此可知,加Bi(实施例1)的铜铟镓硒薄膜太阳电池1的转换效率(6.3%)确实大于未添加Bi(比较实施例1)的铜铟镓硒薄膜太阳电池2的转换效率。
实施例2
将CuCl2和InCl3依Cu0.8In1.2Se2.2成分溶于甲醇中配制成溶液,以旋转涂布法将溶液涂布于溅镀Mo的玻璃基材上,接着,配置BiCl3溶液作为改质剂,将BiCl3溶液以旋转涂布法涂布于前述溶液的涂布前驱薄膜上,其中BiCl3与Cu0.8In1.2Se2.2摩尔数比为1:50;最后,于含有硒蒸气的氢气(H2)气氛下,以600℃的温度条件进行煅烧,历时0.1小时,获得薄膜样品3。
经X-ray绕射图谱分析,其结果显示薄膜样品3具有(111)、(204)、(220)、(116)与(312)主要绕射锋,确定为黄铜矿相晶体单相结构。
另外,以扫描式电子显微镜及原子力显微镜分析化合物样品3,其平均粒径为3μm且表面粗糙度为43nm;以霍尔量测仪分析薄膜样品3的载子浓度为1.2*1018cm-3。此外,由表一、表二可得知,加Bi(实施例1)或添加Bi(实施例2)的薄膜样品1或3的粒径确实大于未添加Bi(比较实施例1)的化合物样品2,且薄膜样品1或3的粗糙度确实小于化合物样品2。载子浓度确实可以有效提升。
表一
平均粒径
实施例1 0.7μm
比较实施例1 0.45μm
实施例2 3μm
表二
平均粗糙度
实施例1 60nm
比较实施例1 150nm
实施例2 43nm
实施例3
将CuO、Ga2O3、和Se粉依CuGa0.8Se1.7成分以球磨法均匀混合,并加入(CH3CO2)3Bi作为改质剂,其中(CH3CO2)3Bi与CuGa0.8Se1.7摩尔数比为1:300。所得的粉体经干燥后,将其配制成浆料,以doctor-blading法涂布于玻璃基板,再于含有硒蒸气的氢气(H2)气氛下,以180℃的温度条件进行反应,历时20小时,即可获得薄膜样品4。
经X-ray绕射图谱分析,其结果显示薄膜样品4具有(112)、(220)、(204)、(312)与(116)/(303)等主要绕射锋,其中(116)与(303)为同位置的绕射锋,确定为黄铜矿相晶体单相结构。
实施例4
将Ag和Al依AgAlS2成分利用溅镀法沉积于已沉积Bi的TCO玻璃基材上,其中Bi与AgAlS2摩尔数比为1:60。再将其置于H2S气氛下在300℃下历时10小时进行反应,获得薄膜样品5。
经X-ray绕射图谱分析,其结果显示薄膜样品5具有(112)、(103)、(211)、(220)与(204)等主要绕射锋,确定为黄铜矿相晶体单相结构。
实施例5
将Ag(NO3)2和In(NO3)3依AgIn0.8Te1.7成分配制成电镀溶液。并加入Bi(NO3)3作为改质剂,其中Bi(NO3)3与AgIn0.8Te1.7摩尔数比为1:50。以电镀法将电镀溶液沉积于玻璃基材上,再将其置于Te蒸汽300℃下进行反应,获得薄膜样品6。
经X-ray绕射图谱分析,其结果显示薄膜样品6具有(112)、(220)、(204)、(312)、(303)/(116)等主要绕射锋,其中(303)与(116)为同位置的绕射锋,确定为黄铜矿相晶体单相结构。
实施例6
将CuCl2、AlCl3和SeCl4依CuAlSe2成分溶于去离子水中配制成溶液。并加入Bi(CH3COO)3作为改质剂,其中,Bi(CH3COO)3与CuAlSe2摩尔数比为1:1000混合均匀后,成为前驱物溶液,利用喷镀法将前驱物溶液涂布于高分子基板上,再于含真空环境中,以400℃加热10小时,即可获得薄膜样品7。
经X-ray绕射图谱分析,其结果显示薄膜样品7具有(112)、(220)、(204)、(312)与(116)等主要绕射锋,确定为黄铜矿相晶体单相结构。
实施例7-10
将Cu(NO3)2、Ga(NO3)3和In(NO3)3依Cu(In,Ga)Se2成分溶于乙醇中配制成溶液,并加入Bi(NO3)3作为改质剂,其中Bi(NO3)3与Cu(In,Ga)Se2摩尔数比为1.5:100;混合均匀后,成为前驱物溶液,利用旋转涂布法将前驱物溶液涂布于玻璃基材上,先以250℃加热30分钟排除有机物,再于高纯度氮氢混合气中,并通入硒蒸气,升温至350℃、400℃、450℃和500℃不持温即取出并获得薄膜样品8(实施例7)、9(实施例8)、10(实施例9)和11(实施例10)。
经X-ray绕射图谱分析,显示薄膜样品8和9的组成为黄铜矿相和Cu2-xSe相共存;薄膜样品10和11具有(112)、(211)、(220)、(204)、(312)与(116)等主要绕射锋,符合ICDD卡编号35-1101图谱,确认为黄铜矿相晶体单相结构形成。
比较实施例2-5
将Cu(NO3)2、Ga(NO3)3和In(NO3)3依Cu(In,Ga)Se2成分溶于乙醇中配制成溶液,混合均匀后,成为前驱物溶液,利用旋转涂布法将前驱物溶液涂布于玻璃基材上,先以250℃加热30分钟排除有机物,再于高纯度氮氢混合气中,并通入硒蒸气,升温至350℃、400℃、450℃和500℃不持温即取出并获得薄膜样品12(比较实施例2)、13(比较实施例3)、14(比较实施例4)和15(比较实施例5)。
经X-ray绕射图谱分析,显示薄膜样品12和13的组成属于Cu2-xSe相;薄膜样品14的组成为黄铜矿相和Cu2-xSe相共存;薄膜样品15具有(112)、(211)、(220)、(204)、(312)与(116)等主要绕射锋,符合ICDD卡编号35-1101图谱,确认为黄铜矿相晶体单相结构形成。
由此可知,加Bi(实施例9)的薄膜样品10的黄铜矿相单相生成温度(450℃)确实低于未添加Bi(比较实施例5)的薄膜样品15的黄铜矿相单相生成温度(500℃)。
实施例11
将CuGa金属与In金属依Cu(In,Ga)Se2成分以溅镀法沈积于基材上,再以溅镀沈积加入Bi金属作为改质剂,分别堆迭后做为前驱膜,在高纯度氮氢混合气中,以550℃加热0.5小时,并通入硒蒸气,即可获得薄膜样品16。
以X-ray绕射图谱进行分析,其薄膜样品显示具有(112)、(211)、(220)、(204)、(312)与(116)等主要绕射锋,符合ICDD卡编号35-1101图谱,确认薄膜样品16符合黄铜矿相晶体单相结构。另以扫描式电子显微镜(SEM)及分析化合物样品16,实验结果显示化合物样品16的表面型均匀且致密,其平均粒径约为2-2.5μm。以霍尔量测仪(Hall measurement)分析化合物样品16的载子浓度为1.2*1017cm-3。再者,以能量散射光谱仪(Energy Dispersive Spectrometer,EDS)分析化合物样品16,实验结果证明掺杂Bi的薄膜样品16中确实存在有Bi元素。
以glass基材/Mo薄膜/薄膜样品16/CdS/i-ZnO/ITO的结构结合制作铜铟镓硒薄膜太阳电池16;并以太阳能标准光源模拟器分析铜铟镓硒薄膜太阳电池16,显示铜铟镓硒薄膜太阳电池16的光电转化效率为8.55%。
比较实施例6
将CuGa金属与In金属依Cu(In,Ga)Se2成分以溅镀法沉积于基材上,分别堆迭后形成前驱膜。再于高纯度氮氢混合气中,以550℃加热0.5小时,并通入硒蒸气,即可获得薄膜样品17。
由X-ray绕射图谱分析,显示其薄膜样品17具有(112)、(211)、(220)、(204)、(312)与(116)等主要绕射锋,符合ICDD卡编号35-1101图谱,其分析结果确认为黄铜矿相晶体单相结构。
以霍尔量测仪分析薄膜样品17的载子浓度为8.6*1016cm-3。并与含Bi的样品16比较,可知不含铋(Bi-free)的样品17的载子浓度较低。再以EDS分析发现并无任何Bi的讯号,由以上结果可知,Bi的添加确实可以提高其载子浓度。
以glass基材/Mo薄膜/薄膜样品17/CdS/i-ZnO/ITO的结构结合制作铜铟镓硒薄膜太阳电池17;并以太阳能标准光源模拟器分析铜铟镓硒薄膜太阳电池17,显示铜铟镓硒薄膜太阳电池17的转化效率为7.57%。由此可知,加Bi(实施例11)的铜铟镓硒薄膜太阳电池16的转换效率(8.55%)确实大于未添加Bi(比较实施例6)的铜铟镓硒薄膜太阳电池17的转换效率。
因此,根据本发明的实施方式,光吸收层的掺杂Bi的IB-IIIA-ⅥA化合物的晶粒的平均粒径大于或等于0.6μm,较佳平均粒径大于或等于0.8μm,最佳平均粒径大于或等于1.0μm。
并由上述实施例可知,以本发明的实施方式的制程掺杂Bi至原本光吸收层材料(IB-IIIA-ⅥA化合物)中,确实明显提升光吸收层的载子浓度、提高结晶性,增加晶粒尺寸以及降低粗糙度,而能够有效提升太阳能电池的转换效率。

Claims (13)

1.一种制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法,其特征在于包括下列步骤:
(A)沉积含有元素周期表IB族、IIIA族及Bi化合物的先驱薄膜(theprecursor films),其中,沉积方法包含溶液涂布、溅镀、蒸镀或上述的组合;以及
(B)在含有ⅥA族化合物的气氛下对该先驱薄膜进行热处理,其中,该IB-IIIA-ⅥA与Bi的摩尔数比为10:1至100:1。
2.根据权利要求1所述的制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法,其中,该IB族元素为选自铜、银、金及上述组合所构成的组群。
3.根据权利要求1所述的制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法,其中,该IIIA族元素为选自硼、铝、镓、铟、铊及上述组合所构成的组群。
4.根据权利要求1所述的制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法,其中,该VIA族元素为选自氧、硫、硒、碲、钋及上述组合所构成的组群。
5.根据权利要求1所述的制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法,其中,该步骤(A)还包括将IA族及/或ⅥA族化合物加入该先驱薄膜中。
6.根据权利要求1所述的制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法,其中,该步骤(A)还包括将先驱薄膜进行热处理。
7.根据权利要求6所述的制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法,其中热处理温度为50℃–650℃。
8.根据权利要求1所述的制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法,其中,该步骤(A)的沉积方法包括真空、非真空的镀膜制程或上述的组合。
9.根据权利要求1所述的制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法,其中该溶液涂布方法包括旋转涂布、狭缝涂布、挤压涂布、淋幕涂布、斜板涂布、浸镀、刮刀涂布或上述方法的组合。
10.根据权利要求1所述的制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法,其中该步骤(B)的气氛包括真空或非真空。
11.根据权利要求10所述的制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法,其中该气氛包括氧气(O2)、氮气(N2)、氢气(H2)、氩气(Ar)、硒化氢(H2Se)、硫化氢(H2S)、硒(Se)蒸气、硫(S)蒸气、碲(Te)蒸气或上述的组合。
12.一种包含权利要求1-11中任一项所述的掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的太阳能电池。
13.根据权利要求12所述的太阳能电池,其中该光吸收层的该掺杂Bi的IB-IIIA-ⅥA化合物的晶粒的平均粒径大于或等于0.6μm。
CN201210477835.7A 2011-11-22 2012-11-22 制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法与包含其的太阳能电池 Expired - Fee Related CN103137437B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW100142833 2011-11-22
TW100142833 2011-11-23
TW101143298 2012-11-20
TW101143298A TWI500170B (zh) 2011-11-22 2012-11-20 製造摻雜Bi之IB-IIIA-VIA化合物之光吸收層的方法與包含其之太陽能電池

Publications (2)

Publication Number Publication Date
CN103137437A CN103137437A (zh) 2013-06-05
CN103137437B true CN103137437B (zh) 2016-08-03

Family

ID=48425624

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210477835.7A Expired - Fee Related CN103137437B (zh) 2011-11-22 2012-11-22 制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法与包含其的太阳能电池

Country Status (3)

Country Link
US (1) US20130125962A1 (zh)
CN (1) CN103137437B (zh)
TW (1) TWI500170B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101626933B1 (ko) * 2013-11-29 2016-06-02 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
CN106784119B (zh) * 2016-11-29 2018-04-03 苏州苏纳光电有限公司 含Bi化合物光电探测器及其制作方法
CN110676351B (zh) * 2019-10-17 2021-06-25 中山大学 一种化合物薄膜及其制备方法、化合物薄膜太阳电池
CN112968067A (zh) * 2021-02-25 2021-06-15 电子科技大学 一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法
CN113644146B (zh) * 2021-08-09 2022-10-18 重庆文理学院 一种用于太阳能电池的薄膜、太阳能电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1241804A (zh) * 1998-07-02 2000-01-19 国际太阳能电子技术公司 制造化合物半导体膜的氧化物基方法和制造有关电子器件
CN101589472A (zh) * 2006-12-08 2009-11-25 索罗能源公司 用于ibiiiavia族化合物层的掺杂技术
CN102157580A (zh) * 2010-12-20 2011-08-17 友达光电股份有限公司 太阳能电池及其制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985691A (en) * 1997-05-16 1999-11-16 International Solar Electric Technology, Inc. Method of making compound semiconductor films and making related electronic devices
US7306823B2 (en) * 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
US20090145472A1 (en) * 2007-12-10 2009-06-11 Terra Solar Global, Inc. Photovoltaic devices having conductive paths formed through the active photo absorber
US20100147364A1 (en) * 2008-12-16 2010-06-17 Solopower, Inc. Thin film photovoltaic module manufacturing methods and structures
US8512809B2 (en) * 2010-03-31 2013-08-20 General Electric Company Method of processing multilayer film
US20120214293A1 (en) * 2011-02-22 2012-08-23 Serdar Aksu Electrodepositing doped cigs thin films for photovoltaic devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1241804A (zh) * 1998-07-02 2000-01-19 国际太阳能电子技术公司 制造化合物半导体膜的氧化物基方法和制造有关电子器件
CN101589472A (zh) * 2006-12-08 2009-11-25 索罗能源公司 用于ibiiiavia族化合物层的掺杂技术
CN102157580A (zh) * 2010-12-20 2011-08-17 友达光电股份有限公司 太阳能电池及其制造方法

Also Published As

Publication number Publication date
US20130125962A1 (en) 2013-05-23
CN103137437A (zh) 2013-06-05
TWI500170B (zh) 2015-09-11
TW201322460A (zh) 2013-06-01

Similar Documents

Publication Publication Date Title
Ramasamy et al. Routes to copper zinc tin sulfide Cu 2 ZnSnS 4 a potential material for solar cells
Mane et al. Chemical deposition method for metal chalcogenide thin films
Washio et al. 6% Efficiency Cu 2 ZnSnS 4-based thin film solar cells using oxide precursors by open atmosphere type CVD
Lin et al. Mechanistic aspects of preheating effects of electrodeposited metallic precursors on structural and photovoltaic properties of Cu2ZnSnS4 thin films
Han et al. Hydrazine processed Cu 2 SnS 3 thin film and their application for photovoltaic devices
Suryawanshi et al. Improved photoelectrochemical performance of Cu2ZnSnS4 (CZTS) thin films prepared using modified successive ionic layer adsorption and reaction (SILAR) sequence
Lee et al. Fabrication of CuInS 2 films from electrodeposited Cu/In bilayers: effects of preheat treatment on their structural, photoelectrochemical and solar cell properties
Rajesh et al. Synthesis of Cu 2 ZnSnS 4 thin films by dip-coating method without sulphurization
CN103137437B (zh) 制造掺杂Bi的IB-IIIA-ⅥA化合物的光吸收层的方法与包含其的太阳能电池
Klochko et al. Development of a new thin film composition for SnS solar cell
Paraye et al. Effect of pH and sulfur precursor concentration on electrochemically deposited CZTS thin films using glycine as the complexing agent
Mkawi et al. Influence of substrate temperature on the properties of electrodeposited kesterite Cu 2 ZnSnS 4 (CZTS) thin films for photovoltaic applications
Echendu et al. Electrochemical deposition and characterization of ZnOS thin films for photovoltaic and photocatalysis applications
JP5874645B2 (ja) 化合物半導体薄膜太陽電池及びその製造方法
CN108461556A (zh) 制备高效czts太阳能电池的前驱体溶液及其电池制备与应用
Avellaneda et al. Synthesis of Cu2SnS3, Cu3SnS4, and Cu4SnS4 thin films by sulfurization of SnS-Cu layers at a selected temperature and/or Cu layers thickness
Ruan et al. Effect of potassium doping for ultrasonic sprayed Cu 2 SnS 3 thin films for solar cell application
Koskela et al. Solution processing Cu3BiS3 absorber layers with a thiol–amine solvent mixture
Medina-Montes et al. Physical properties of photoconductive Ag-Sb-S thin films prepared by thermal evaporation
Fathy et al. SnS nanocrystalline thin films for n-CdS/p-SnS solar cell devices
Saber et al. Annealing study of electrodeposited CuInSe 2 and CuInS 2 thin films
Ojo et al. The influence of ZnS crystallinity on all-electroplated ZnS/CdS/CdTe graded bandgap device properties
Fernandez et al. Preparation and photocharacterization of Cu–Sb–Se films by electrodeposition technique
Dhaygude et al. Electrodeposited nanosphere like Cd x Zn 1− x S electrodes for photoelectrochemical cell
Schimmel et al. Anodic formation of binary and ternary compound semiconductor films for photovoltaic cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160803

Termination date: 20191122

CF01 Termination of patent right due to non-payment of annual fee