CN103136397B - 一种获得电磁响应曲线特征参数的方法及其装置 - Google Patents

一种获得电磁响应曲线特征参数的方法及其装置 Download PDF

Info

Publication number
CN103136397B
CN103136397B CN201110390851.8A CN201110390851A CN103136397B CN 103136397 B CN103136397 B CN 103136397B CN 201110390851 A CN201110390851 A CN 201110390851A CN 103136397 B CN103136397 B CN 103136397B
Authority
CN
China
Prior art keywords
parameter
sigma
electromagnetic
hybrid models
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110390851.8A
Other languages
English (en)
Other versions
CN103136397A (zh
Inventor
刘若鹏
季春霖
刘斌
牛攀峰
张建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuang Chi Institute of Advanced Technology
Original Assignee
Kuang Chi Institute of Advanced Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuang Chi Institute of Advanced Technology filed Critical Kuang Chi Institute of Advanced Technology
Priority to CN201110390851.8A priority Critical patent/CN103136397B/zh
Publication of CN103136397A publication Critical patent/CN103136397A/zh
Application granted granted Critical
Publication of CN103136397B publication Critical patent/CN103136397B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Prostheses (AREA)

Abstract

本发明公开了一种获得人工电磁材料单元结构的电磁响应曲线特征参数的方法及其装置,所述方法包括:建立用于描述所述电磁材料单元结构几何参数与电磁响应曲线特征参数之间对应关系的高斯混合模型;根据所述建立的高斯混合模型,确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数。通过上述方式,本发明能够在指定待测量结构单元尺寸时,立即得到该尺寸下此结构单元对应的电磁响应曲线特征参数,无需花费时间进行电磁材料单元结构特性测量,方便地实现人工电磁材料自动化、标准化的设计流程,为进行大规模设计和产业化应用提供了保障。

Description

一种获得电磁响应曲线特征参数的方法及其装置
技术领域
本发明涉及超材料领域,特别是涉及一种获得人工电磁材料单元结构的电磁响应曲线特征参数的方法及其装置。
背景技术
针对人工电磁材料的标准化、自动化设计方案是目前国际上一个亟需解决的难题。而针对人工电磁材料结构单元的电磁特性测量是人工电磁材料设计过程中不可或缺的一个重要环节。
目前对人工电磁材料的研究和设计尚停留在凭经验手工调节和设计的阶段,缺乏标准化的设计流程,无法进行大规模设计和产业化应用。
因此,有必要提供一种获得人工电磁材料单元结构的电磁响应曲线特征参数的方法及其装置,有效地解决上述存在的问题。
发明内容
本发明主要解决的技术问题是提供一种获得人工电磁材料单元结构的电磁响应曲线特征参数的方法及其装置,能够使人工电磁材料的研究处于标准化的设计流程,以方便进行大规模设计和产业化应用。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种获得人工电磁材料单元结构的电磁响应曲线特征参数的方法,包括:建立用于描述所述电磁材料单元结构几何参数与电磁响应曲线特征参数之间对应关系的高斯混合模型;根据所述建立的高斯混合模型,确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数。
其中,所述确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数的步骤包括:通过插值的方法确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数。
其中,所述高斯混合模型建立的步骤包括:
建立由K个高斯分布组成的高斯混合模型,每个高斯分布称为一个组分,所述K个组分线性加成在一起组成了高斯混合模型的概率密度函数:
p ( x ) = Σ k = 1 K p ( k ) p ( x | k ) = Σ k = 1 K π k N ( x | μ k , Σ k ) - - - ( 1 )
其中,K是正整数;
利用最大似然估计来确定所述参数πk、μk及∑k,其中所述高斯混合模型的似然函数为:
log Π i = 1 N p ( x i ) = Σ i = 1 N log p ( x i ) = Σ i = 1 N log Σ k = 1 K π k N ( x i | μ k , Σ k ) - - - ( 2 )
利用期望最大值算法,分布迭代地求得所述高斯混合模型似然函数的最大值,并获得在所述最大值时所述参数πk、μk及∑k的值,将所述参数的值代入(1)式,即得到高斯混合模型的概率密度函数。
其中,所述期望最大值算法分布迭代地求得所述高斯混合模型似然函数的最大值的步骤包括:
初始化参数πk、μk及∑k,通过K均值算法对数据点进行聚类,根据所述聚类结果选取参数的初始值;
根据所述参数的初始值,估计所述数据由每个组分生成的概率,其中对于每个数据xi来说,它由第k个组分生成的概率为:
γ ( i , k ) = π k N ( x i | μ k , Σ k ) Σ j = 1 K π j N ( x i | μ j , Σ j ) - - - ( 3 )
采用迭代法,即取上一次迭代所得的值或者初始值;
对所述式(3)的概率进行求导,求出所述高斯混合模型最大似然所对应的参数值:
μ k = 1 N k Σ i = 1 N γ ( i , k ) x i - - - ( 4 )
Σ k = 1 N k Σ i = 1 N γ ( i , k ) ( x i - μ k ) ( x i - μ k ) T - - - ( 5 )
其中参数πk满足在高斯混合模型的似然函数中加入拉格朗日乘子求得加入拉格朗日乘子的式(2)取得最大值时,πk对应的值:
π k = N k N - - - ( 6 )
将所述求得的参数πk、μk及∑k的值代入式(2)中,计算所述式(2)的值,检查似然函数是否收敛,若收敛,取当前参数对应的值为各参数的最大似然估计,否则,将当前参数对应的值作为(3)式中参数的初始值,对(3)式求导得到所对应的参数值,将所述参数值再次代入式(2)中,若似然函数没有收敛,则继续迭代所述步骤,直到所述似然函数收敛。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种获得人工电磁材料单元结构的电磁响应曲线特征参数的装置,包括:模型建立模块,用于建立用于描述所述电磁材料单元结构几何参数与电磁响应曲线特征参数之间对应关系的高斯混合模型;参数确定模块,用于根据所述建立的高斯混合模型,确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数。
其中,所述参数确定模块具体用于通过插值的方法确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数。
本发明的有益效果是:区别于现有技术的情况,本发明建立电磁材料单元结构几何参数与电磁响应曲线特征参数之间的高斯混合模型,根据所述模型,已知某电磁材料单元结构几何参数,可以得到对应的电磁响应曲线特征参数,有了这种对应关系,无需花费时间进行电磁材料单元结构特性测量,可以方便地实现人工电磁材料自动化、标准化的设计流程,为进行大规模设计和产业化应用提供了保障。
附图说明
图1是本发明获得人工电磁材料单元结构的电磁响应曲线特征参数的方法一实施例的流程图;
图2是本发明获得人工电磁材料单元结构的电磁响应曲线特征参数的装置一实施例的示意图。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。
图1是本发明获得人工电磁材料单元结构的电磁响应曲线特征参数的方法一实施例的流程图,如图1所示,所述方法包括如下步骤:
步骤101:建立用于描述所述电磁材料单元结构几何参数与电磁响应曲线特征参数之间对应关系的高斯混合模型。
在一优选实施例中,所述高斯混合模型建立的步骤包括:
建立由K个高斯分布组成的高斯混合模型,每个高斯分布称为一个组分,所述K个组分线性加成在一起组成了高斯混合模型的概率密度函数:
p ( x ) = Σ k = 1 K p ( k ) p ( x | k ) = Σ k = 1 K π k N ( x | μ k , Σ k ) - - - ( 1 )
其中,K是正整数;
利用最大似然估计来确定所述参数πk、μk及∑k,其中所述高斯混合模型的似然函数为:
log Π i = 1 N p ( x i ) = Σ i = 1 N log p ( x i ) = Σ i = 1 N log Σ k = 1 K π k N ( x i | μ k , Σ k ) - - - ( 2 )
利用期望最大值算法,分布迭代地求得所述高斯混合模型似然函数的最大值,并获得在所述最大值时所述参数πk、μk及∑k的值,将所述参数的值代入(1)式,即得到高斯混合模型的概率密度函数。
似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性,设总体X服从分布P(x;θ)(当X是连续型随机变量时为概率密度,当X为离散型随机变量时为概率分布),θ为待估参数,X1,X2,...Xn是来自于总体X的样本,x1,x2...xn为样本X1,X2,...Xn的一个观察值,则样本的联合分布(当X是连续型随机变量时为概率密度,当X为离散型随机变量时为概率分布)L(θ)=L(x1,x2,...,xn;θ)=∏P(xi;θ)称为似然函数。
其中,所述期望最大值算法分布迭代地求得所述高斯混合模型似然函数的最大值的步骤包括:
初始化参数πk、μk及∑k,通过K均值算法对数据点进行聚类,根据所述聚类结果选取参数的初始值;
根据所述参数的初始值,估计所述数据由每个组分生成的概率,其中对于每个数据xi来说,它由第k个组分生成的概率为:
γ ( i , k ) = π k N ( x i | μ k , Σ k ) Σ j = 1 K π j N ( x i | μ j , Σ j ) - - - ( 3 )
采用迭代法,即取上一次迭代所得的值或者初始值;
对所述式(3)的概率进行求导,求出所述高斯混合模型最大似然所对应的参数值:
μ k = 1 N k Σ i = 1 N γ ( i , k ) x i - - - ( 4 )
Σ k = 1 N k Σ i = 1 N γ ( i , k ) ( x i - μ k ) ( x i - μ k ) T - - - ( 5 )
其中参数πk满足在高斯混合模型的似然函数中加入拉格朗日乘子求得加入拉格朗日乘子的式(2)取得最大值时,πk对应的值:
π k = N k N - - - ( 6 )
将所述求得的参数πk、μk及∑k的值代入式(2)中,计算所述式(2)的值,检查似然函数是否收敛,若收敛,取当前参数对应的值为各参数的最大似然估计,否则,将当前参数对应的值作为(3)式中参数的初始值,对(3)式求导得到所对应的参数值,将所述参数值再次代入式(2)中,若似然函数没有收敛,则继续迭代所述步骤,直到所述似然函数收敛。
所谓聚类,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高。其中每个子集叫做一个簇。K均值算法的计算过程:(1)从D中随机取k个元素,作为k个簇的各自的中心;(2)分别计算剩下的元素到k个簇中心的相异度,将这些元素分别划归到相异度最低的簇;(3)根据聚类结果,重新计算k个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数;(4)将D中全部元素按照新的中心重新聚类;(5)重复第4步,直到聚类结果不再变化。
步骤102:根据所述建立的高斯混合模型,确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数。
在一优选实施例中,所述确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数的步骤包括:通过插值的方法确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数。所谓插值方法,是函数逼近的一种重要方法,又称“内插法”,利用函数f(x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f(x)的近似值。此处插值,可以采用拉格朗日插值、牛顿插值、埃尔米特插值或者分段多项式插值等等。
区别于现有技术的情况,本发明建立电磁材料单元结构几何参数与电磁响应曲线特征参数之间的高斯混合模型,根据所述模型,已知某电磁材料单元结构几何参数,可以得到对应的电磁响应曲线特征参数,有了这种对应关系,无需花费时间进行电磁材料单元结构特性测量,可以方便地实现人工电磁材料自动化、标准化的设计流程,为进行大规模设计和产业化应用提供了保障。
图2是本发明获得人工电磁材料单元结构的电磁响应曲线特征参数的装置一实施例的结构示意图。如图2所示,所述装置包括:模型建立模块201以及参数确定模块202。
模型建立模块201用于建立用于描述所述电磁材料单元结构几何参数与电磁响应曲线特征参数之间对应关系的高斯混合模型。
所谓高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。混合高斯模型实际上是几个高斯概率密度函数的加权所组成概率密度函数。
参数确定模块202用于根据所述建立的高斯混合模型,确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数。
在一优选实施例中,所述参数确定模块具体用于通过插值的方法确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数。所谓插值方法,是函数逼近的一种重要方法,又称“内插法”,利用函数f(x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f(x)的近似值。此处插值,可以采用拉格朗日插值、牛顿插值、埃尔米特插值或者分段多项式插值等等。
区别于现有技术的情况,本发明建立电磁材料单元结构几何参数与电磁响应曲线特征参数之间的高斯混合模型,根据所述模型,已知某电磁材料单元结构几何参数,可以得到对应的电磁响应曲线特征参数,有了这种对应关系,无需花费时间进行电磁材料单元结构特性测量,可以方便地实现人工电磁材料自动化、标准化的设计流程,为进行大规模设计和产业化应用提供了保障。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (4)

1.一种获得人工电磁材料单元结构的电磁响应曲线特征参数的方法,用于方便地实现人工电磁材料自动化、标准化的设计,其特征在于,包括:
建立用于描述所述电磁材料单元结构几何参数与电磁响应曲线特征参数之间对应关系的高斯混合模型;
根据所述建立的高斯混合模型,确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数;
所述确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数的步骤包括:通过插值的方法确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数。
2.根据权利要求1所述的方法,其特征在于,
所述高斯混合模型建立的步骤包括:
建立由K个高斯分布组成的高斯混合模型,每个高斯分布称为一个组分,所述K个组分线性加成在一起组成了高斯混合模型的概率密度函数:
p ( x ) = Σ k = 1 K p ( k ) p ( x | k ) = Σ k = 1 K π k N ( x | μ k , Σ k ) - - - ( 1 )
其中,K是正整数;
利用最大似然估计来确定所述参数πk、μk及∑k,其中所述高斯混合模型的似然函数为:
l o g Π i = 1 N p ( x i ) = Σ i = 1 N log p ( x i ) = Σ i = 1 N l o g Σ k = 1 K π k N ( x i | μ k , Σ k ) - - - ( 2 )
利用期望最大值算法,分布迭代地求得所述高斯混合模型似然函数的最大值,并获得在所述最大值时所述参数πk、μk及∑k的值,将所述参数的值代入(1)式,即得到高斯混合模型的概率密度函数。
3.根据权利要求2所述的方法,其特征在于,
所述期望最大值算法分布迭代地求得所述高斯混合模型似然函数的最大值的步骤包括:
初始化参数πk、μk及∑k,通过K均值算法对数据点进行聚类,根据所述聚类结果选取参数的初始值;
根据所述参数的初始值,估计所述数据点由每个组分生成的概率,其中对于每个数据点xi来说,它由第k个组分生成的概率为:
γ ( i , k ) = π k N ( x i | μ k , Σ k ) Σ j = 1 K π j N ( x i | μ j , Σ j ) - - - ( 3 )
采用迭代法,即取上一次迭代所得的值或者初始值;
对所述式(3)的概率进行求导,求出所述高斯混合模型最大似然所对应的参数值:
μ k = 1 N k Σ i = 1 N γ ( i , k ) x i - - - ( 4 )
Σ k = 1 N k Σ i = 1 N γ ( i , k ) ( x i - μ k ) ( x i - μ k ) T - - - ( 5 )
其中参数πk满足在高斯混合模型的似然函数中加入拉格朗日乘子求得加入拉格朗日乘子的式(2)取得最大值时,πk对应的值:
π k = N k N - - - ( 6 )
将所述求得的参数πk、μk及∑k的值代入式(2)中,计算所述式(2)的值,检查似然函数是否收敛,若收敛,取当前参数对应的值为各参数的最大似然估计,否则,将当前参数对应的值作为(3)式中参数的初始值,对(3)式求导得到所对应的参数值,将所述参数值再次代入式(2)中,若似然函数没有收敛,则继续迭代所述步骤,直到所述似然函数收敛。
4.一种获得人工电磁材料单元结构的电磁响应曲线特征参数的装置,用于方便地实现人工电磁材料自动化、标准化的设计,其特征在于,包括:
模型建立模块,用于建立用于描述所述电磁材料单元结构几何参数与电磁响应曲线特征参数之间对应关系的高斯混合模型;
参数确定模块,用于根据所述建立的高斯混合模型,确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数;
所述参数确定模块具体通过插值的方法确定待测量电磁材料单元结构几何参数所对应的电磁响应曲线特征参数。
CN201110390851.8A 2011-11-30 2011-11-30 一种获得电磁响应曲线特征参数的方法及其装置 Active CN103136397B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110390851.8A CN103136397B (zh) 2011-11-30 2011-11-30 一种获得电磁响应曲线特征参数的方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110390851.8A CN103136397B (zh) 2011-11-30 2011-11-30 一种获得电磁响应曲线特征参数的方法及其装置

Publications (2)

Publication Number Publication Date
CN103136397A CN103136397A (zh) 2013-06-05
CN103136397B true CN103136397B (zh) 2016-09-28

Family

ID=48496220

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110390851.8A Active CN103136397B (zh) 2011-11-30 2011-11-30 一种获得电磁响应曲线特征参数的方法及其装置

Country Status (1)

Country Link
CN (1) CN103136397B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102606766B1 (ko) * 2018-06-01 2023-11-28 삼성전자주식회사 Em 센서 및 이를 포함하는 모바일 기기
CN109670225A (zh) * 2018-12-10 2019-04-23 百度在线网络技术(北京)有限公司 车辆尺寸模板库生成方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207228A (zh) * 2006-12-21 2008-06-25 西北工业大学 一种具有适当厚度环结构的负磁导率材料
CN102204008A (zh) * 2008-08-22 2011-09-28 杜克大学 用于表面和波导的超材料

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7925475B2 (en) * 2006-03-14 2011-04-12 The Boeing Company Analyzing structural design relative to vibrational and/or acoustic loading

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207228A (zh) * 2006-12-21 2008-06-25 西北工业大学 一种具有适当厚度环结构的负磁导率材料
CN102204008A (zh) * 2008-08-22 2011-09-28 杜克大学 用于表面和波导的超材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"新型左手材料结构设计及电磁特性研究";史鹏飞;《中国优秀硕士学位论文全文数据库 基础科学辑 (月刊)》;20110615;第2011年卷(第06期);参见正文第3章 *
漫谈Clustering (3): Gaussian Mixture Model;pluskid;《blog.pluskid.org/?p=39》;20090202;参见正文第1-4页 *

Also Published As

Publication number Publication date
CN103136397A (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
Mendelson et al. On the singular values of random matrices.
CN110488202A (zh) 基于深度神经网络的车辆电池荷电状态估计方法
Caeiro et al. Semi-parametric tail inference through probability-weighted moments
CN107705556A (zh) 一种基于支持向量机和bp神经网络结合的交通流预测方法
CN107038292A (zh) 一种基于自适应多变量非参数核密度估计的多风电场出力相关性建模方法
CN105740988A (zh) 基于灰色关联分析和多元线性回归模型对煤炭热值的预测方法
CN105354330A (zh) 一种基于稀疏数据预处理的协同过滤推荐方法
Abd El Hady Exponentiated transmuted Weibull distribution a generalization of the Weibull distribution
CN109871622A (zh) 一种基于深度学习的低压台区线损计算方法及系统
CN106355003A (zh) 基于t分布的马尔科夫链蒙特卡洛自动历史拟合方法及系统
CN103136397B (zh) 一种获得电磁响应曲线特征参数的方法及其装置
CN104795063A (zh) 一种基于声学空间非线性流形结构的声学模型构建方法
CN106384298B (zh) 一种基于两阶段插补模型的智能用电缺失数据修正方法
CN109034497A (zh) 多晶硅还原工序能耗值的预测方法、系统、介质及设备
CN103761567A (zh) 一种基于贝叶斯估计的小波神经网络权值初始化方法
Mehta et al. Statistics of stationary points of random finite polynomial potentials
CN109145258A (zh) 基于非线性拟合的威布尔分布参数置信区间估计方法
Li et al. Asymptotic normality of location invariant heavy tail index estimator
CN108108399A (zh) 一种混合高斯建模改进的协同过滤推荐算法
CN103700011B (zh) 一种特征抽取方法和装置
CN106383946A (zh) 一种加速退化模型参数估计方法
CN103593438B (zh) 一个预测社交网络演化过程和网络性质的方法
CN110288592A (zh) 一种基于概率语义分析模型的锌浮选加药状态评价的方法
CN104268386B (zh) 一种将测试性虚拟试验数据转换为实物试验数据的方法
CN107958695A (zh) 一种基于机器学习的高精度药物定量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant