CN103121842B - Low-medium low-loss LTCC (Low Temperature Co-Fired Ceramic) microwave ceramic material and preparation method thereof - Google Patents

Low-medium low-loss LTCC (Low Temperature Co-Fired Ceramic) microwave ceramic material and preparation method thereof Download PDF

Info

Publication number
CN103121842B
CN103121842B CN201310087656.7A CN201310087656A CN103121842B CN 103121842 B CN103121842 B CN 103121842B CN 201310087656 A CN201310087656 A CN 201310087656A CN 103121842 B CN103121842 B CN 103121842B
Authority
CN
China
Prior art keywords
low
ceramic material
loss
microwave
cawo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310087656.7A
Other languages
Chinese (zh)
Other versions
CN103121842A (en
Inventor
唐晓莉
章著
苏桦
张怀武
荆玉兰
李元勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201310087656.7A priority Critical patent/CN103121842B/en
Publication of CN103121842A publication Critical patent/CN103121842A/en
Application granted granted Critical
Publication of CN103121842B publication Critical patent/CN103121842B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

The invention discloses a low-medium low-loss LTCC (Low Temperature Co-Fired Ceramic) microwave ceramic material and a preparation method thereof. The material is composite ceramic containing double phases, wherein the principal crystalline phase is tetragonal-phase scheelite CaWO4; the auxiliary phase is a trigonal crystal system phenacite structure Li2WO4 with the molecular formula of (1-x) CaWo4-xLi2WO4. The preparation method of the low-medium low-loss LTCC microwave ceramic material comprises the following steps of: with CaCO3, WO3 and Li2CO3 as initial materials, calculating the mass percentages of CaCO3, WO3 and Li2CO3 according to the molar ratio of each element in the molecular formula (1-x)CaWo4-xLi2WO4; weighing the materials, preliminarily ball-milling the materials, drying the materials, pre-sintering, secondarily ball-milling the materials; and obtaining the low-medium low-loss microwave ceramic material by carrying out a series of processes including drying, pelletizing, forming, sintering and the like.

Description

A kind of low Jie's low-loss LTCC microwave ceramic material and preparation method thereof
Technical field
The invention belongs to electron ceramic material and manufacture field thereof, relate to a kind of low sintering low Jie's low-loss microwave stupalith and preparation method thereof.
Background technology
In recent years, be that universal electric complete machine, signal equipment or civilian consumer electronic product are all rapidly to miniaturization, lightweight, integrated, multifunction and high reliability future development in the world.LTCC(LTCC) technology is as a kind of advanced person's 3 D stereo assembling integrated technology, created condition, and in lamination sheet type passive device, obtain a wide range of applications rapidly for passive device and passive/active part mix integrated development.A lot of internationally recognizable electronically materials and component manufacturing enterprise enters this field one after another, as Japanese Murata, Kyocera, TDK, TAIYO YUDAN, Ferro, and U.S. Johanson Technology, Dupont company etc.The enterprises such as domestic 999sunlord electronics, phoenix China high-tech, University of Electronic Science and Technology, Tsing-Hua University and colleges and universities have also launched research and development and have produced various LTCC planar passive devices and assembly.And in order to obtain high performance LTCC passive integrated devices and assembly, first need to have high performance LTCC material.But the high-performance LTCC material of commercialization is at present main, still by external Ferro, Dupont, Hereus Deng Jijia major company, monopolized, domesticly in this field, fail all the time to obtain key breakthrough, this not only causes LTCC integrated device and the assembly cost of China's research and development very high, be unfavorable for application and the popularization of corresponding product, due under one's control in core key technology, also seriously hindered the development of China LTCC industry on the other hand.Therefore it is extremely urgent that, exploitation has the high-performance LTCC material of independent intellectual property right.
LTCC microwave ceramic material is in LTCC material, to apply Yi Ge branch very widely.General microwave ceramic material sintering temperature is all more than 1100 ℃, for its sintering temperature being reduced to and below 950 ℃ of LTCC process compatible (being generally between 800 ℃ ~ 950 ℃), the method for employing mainly comprises that interpolation eutectic oxide compound or glass help burning, introduce chemical synthesis process and adopts superfine powder to do raw material etc.Latter two is due to high costs and have certain process limitation, therefore adds eutectic oxide compound or glass is the main method that realizes at present LTCC microwave ceramic material.Even if but take this method, and the sintering temperature of current many microwave ceramic materials is too high, is also difficult to realize low-temperature sintering, and secondly, too much mixing of eutectic oxide compound or glass, also can form very large impact to the drain performance of material, causes Q * f to decline very large.Therefore, in order to realize high performance LTCC microwave ceramic material, first need to select to have lower sintering temperature and the better microwave ceramic material system of dielectric properties, and then by various compound or doping way, realize low-temperature sintering and good microwave dielectric property on its basis.
This patent has proposed a kind of with CaWO 4the high-performance low-temperature sintered microwave ceramic material of preparing for principal crystalline phase.In the past both at home and abroad about AWO 4the research of (A=Ca, Sr, Ba) stupalith and application mainly concentrate on the aspects such as photo cathode, scintillator detector and fiber optic applications.Discovered in recent years CaWO 4system material also has better microwave dielectric property, has therefore also carried out some research work as microwave dielectric material.CaWO 4for scheelite-type structure, belong to tetragonal system, ignore group is I4 1/ a (No.88).For CaWO 4, a=0.524nm, c=1.138nm, its crystalline structure is as shown in Figure 1.Each structure cell contains four CaWO 4molecule, calcium ion is positioned at (0,0,1/2), and tungsten is from being positioned at (0,0,0), and oxonium ion is positioned at (0.25,0.15,0.075).CaWO 4sintering temperature be l200 ℃ of left and right, its dielectric properties are as follows: DIELECTRIC CONSTANT ε rbe about 9~10, Q * f and be about 50,000 ~ 60,000GHz, temperature factor τ f=(50~-40) ppm/ ° C.CaWO 4the people such as an outstanding shortcoming of stupalith is exactly difficult one-tenth porcelain, and sintered sample hollow air-gap is more, Sung HunYoon have studied employing hot pressing sintering method and have improved CaWO 4the one-tenth porcelain density of sample, and under 1150 ℃ of sintering temperatures, obtained the following ceramic ε of microwave property r=10.4, Q * f=63,000GHz, τ f=-53ppm/ ° C(" Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds ", J.Eur.Ceram.Soc., 2006,26,2051-2054).I1-Hwan Park has reported CaWO 4with Mg 2siO 4carry out compoundly, improved the one-tenth porcelain density of material system and obtained good microwave property: 0.9 CaWO 4-0.1 Mg 2siO 4under 1200 ℃ of sintering, ε r=10.0, Q * f=129,858GHz, τ f=-49.6ppm/ ° C(" Microwave dielectric properties and mixture behavior of CaWO 4-Mg 2siO 4ceramics ", Jpn.J.Appl.Phys.Vol.40 (2001) pp.4956-4960), this composite system has very low dielectric loss, but can only realize high temperature sintering.Eung Soo Kim has reported at CaWO 4in add 0.5wt.%Bi 2o 3-9wt.%H 3bO 3sintering at 850 ℃, its microwave property is: ε r=8.7, Q * f=70,220GHz and τ f=-15ppm/ ° C (" Low-temperature sintering and microwave dielectric properties of CaWO 4ceramics for LTCC applications ", J.Eur.Ceram.Soc., 26 (2006) 2101 – 2104).By adding eutectic oxide compound and glassy phase can realize low-temperature sintering, but the membership that adds of glassy phase reduces ceramic microwave property, and is being made into after device or substrate by LTCC technique, if run into soldering, pottery has the risk of cracking.The existence of glassy phase has simultaneously increased and the interactional possibility of conductor material, has reduced the reliability of substrate, therefore without the stupalith of glass ingredient, starts to cause people's attention.Generally speaking, CaWO 4the sintering temperature of material itself is not very high, and has good microwave property.If can, by reasonably compound or doping design, be expected to realize the good low Jie's low-loss LTCC material of over-all properties.
Summary of the invention
The object of this invention is to provide a kind of with CaWO 4for prepared by principal crystalline phase, without glass ingredient and can realize 900 ℃ of low-temperature sinterings, specific inductivity is about 9.0, and have the preparation method of the LTCC microwave dielectric ceramic material of extremely low lossy microwave.This microwave ceramics, when as LTCC microwave-medium substrate or device material, can significantly reduce the loss of microwave device or module.
The present invention is to achieve these goals by the following technical solutions:
A kind of low Jie's low-loss LTCC microwave ceramic material, it is characterized in that: the composite ceramic material that comprises two-phase, wherein principal crystalline phase is Tetragonal sheelite CaWO4, and auxiliary phase is trigonal system phenakite structure Li2WO4, and its formula molecular formula is (1-x) CaWO4-xLi2WO4.When sintering temperature is 900 ℃ of left and right, can realize extremely low dielectric loss, its Q * f value can reach 117,600GHz.
A kind of low Jie's low-loss LTCC microwave ceramic material in such scheme, the span that its formula molecular formula is x in (1-x) CaWO4-xLi2WO4 is 0.08~0.12.
In the present invention, adopt Tetragonal sheelite CaWO 4for principal crystalline phase, it has lower sintering temperature (1200 ℃ of left and right), less specific inductivity (<12) and lower microwave dielectric loss (Q * f >50,000GHz).The Li of trigonal system 2wO 4be mainly because its fusing point lower (742 ℃) can produce liquid phase parcel to main phase grain when sintering, can effectively impel grain growth, improve densification degree, reduce crystal boundary and defect, to reach the object that reduces sintering temperature, reduces dielectric loss.While Li 2wO 4itself also has good microwave dielectric property: ε rbe about 5.5, Q * f and be about 60,000GHz, therefore a small amount of Li 2wO 4introducing can be as not adding other eutectic sintering agents the microwave property of obvious reduction principal phase material, also may improve because of densification degree on the contrary, microtexture improves and make material system obtain the low loss performance while even surpassing high temperature sintering.
In such scheme, a kind of preparation method of low Jie's low-loss LTCC microwave ceramic material, is characterized in that comprising the following steps:
Step 1: with CaCO 3, WO 3, Li 2cO 3for initial feed, according to (1-x) CaWO 4-xLi 2wO 4in ceramic formula molecular formula, the molar ratio of each element is converted out CaCO 3, WO 3and Li 2cO 3mass percent, carry out weighing, ball milling, the even post-drying of batch mixing;
Step 2: put into crucible and compacting after the oven dry material of step 1 gained is sieved, rise to 850~950 ℃ carry out pre-burning by the temperature rise rates of 2 ℃/minute, be incubated 2~3 hours, furnace cooling obtains Preburning material;
Step 3: the block Preburning material of step 2 gained is taken out from crucible to put into mortar first levigate roughly, then carry out secondary ball milling in ball mill;
Step 4: after the resulting secondary ball abrasive material of step 3 is dried, add massfraction be 10%~20% PVA solution carry out granulation and dry-pressing formed be cylinder;
Step 5: the sample of step 4 gained is put into sintering oven, by the temperature rise rate of 1 ~ 2 ℃/minute, slowly rise to 600 ℃ and be incubated 2 hours, to get rid of moisture and the glue in green compact, and then by the temperature rise rate of 2 ℃~5 ℃/minute, be warming up to 850 ℃~950 ℃ and carry out sintering, be incubated 2~3 hours, by the rate of temperature fall of 2 ℃~5 ℃/minute, be cooled to 600 ℃ again, furnace cooling obtains low Jie's low-loss microwave stupalith subsequently.
In such scheme, a kind of preparation method of low Jie's low-loss LTCC microwave ceramic material, described formula molecular formula is that the span of x in (1-x) CaWO4-xLi2WO4 is 0.08~0.12.
In such scheme, a kind of preparation method of low Jie's low-loss LTCC microwave ceramic material, the concentration of described PVA solution is 10%.
Through above five steps, just can obtain low Jie's low-loss LTCC microwave ceramic material of the present invention.After tested, low Jie's low-loss LTCC microwave ceramic material provided by the invention, its specific inductivity between 8.38~9.01, Q * f value all 44,000GHz GHz above (be up to 117,600GHz), temperature coefficient of resonance frequency τ fbe about-60ppm/ ° C.
The major advantage of low Jie's low-loss LTCC microwave ceramic material provided by the invention is:
1, specific inductivity, in 8.38~9.01 left and right, can be widely used in LTCC microwave base plate, laminated microwave device and module.
2, have extremely low dielectric loss, when 900 ℃ of low-temperature sinterings, Q * f reaches as high as 117,600GHz GHz.
3, in material system, do not add glass to fall burning, while having avoided when making LTCC device or module easily in soldering, occur the problem of crackle, be conducive to improve processing compatibility and the yield rate of product.
4, raw materials for production are cheap, and process engineering is simple, and handled easily being beneficial to reduces costs.
Accompanying drawing explanation
Fig. 1 is this CaWO 4crystalline structure schematic diagram;
Fig. 2 is preparation technology's schematic flow sheet of low Jie's low-loss LTCC microwave ceramic material provided by the invention;
Fig. 3 is the microwave dielectric property of material system when x changes and sintering temperature changes.
Embodiment
Below described be a kind of specific embodiments of LTCC microwave ceramic material of the present invention.As shown in Figure 2, the concrete preparation method of this material is as follows:
Step 1: with CaCO 3, WO 3, Li 2cO 3for initial feed, according to 0.9 CaWO 4-0.1 Li 2wO 4in formula molecular formula, the molar ratio of each element is converted out CaCO 3, WO 3and Li 2cO 3mass percent, carry out accurate weighing, in planetary ball mill, ball milling is 12 hours, after ball milling, material is placed in baking oven and dries at 100 ℃.
Step 2: the oven dry of step 1 gained was expected to put into crucible and compacting after 40 mesh sieve, rise to 900 ℃ of pre-burnings by the temperature rise rates of 2 ℃/minute, and be incubated 2 hours, it is standby that furnace cooling obtains Preburning material.
Step 3: the resulting block Preburning material of step 2 is first levigate roughly in mortar, secondary ball milling 12 hours in planetary ball mill then, after ball milling, material is placed in baking oven and dries at 100 ℃.
Step 4: add the PVA solution (PVA concentration is 10%) of 15wt% left and right to carry out granulation after the secondary ball abrasive material of step 3 gained is dried, being pressed into diameter is 12mm, and height is the cylindric green compact sample of 6mm.
Step 5: the green compact sample that step 4 is obtained is put into sintering oven, by the temperature rise rate of 1 ℃/minute, slowly rise to 600 ℃ and be incubated 2 hours, to get rid of moisture and the glue in green compact, and then by the temperature rise rate of 5 ℃/minute, be warming up to 900 ℃ and carry out sintering, be incubated 2 hours, and then being cooled to 600 ℃ by the rate of temperature fall of 5 ℃/minute, furnace cooling obtains low Jie's low-loss microwave ceramic material sample subsequently.This development type is tested through XRD, and most of crystalline phase is CaWO 4, have in addition a small amount of Li 2wO 4crystalline phase exists, without other third phase.The LTCC material property that this specific embodiments obtains is DIELECTRIC CONSTANT ε rbe that 9.01, Q * f is 117,600GHz GHz, temperature factor τ f=-60 ppm/ ° C.This dielectric material loss is very low, but temperature factor performance is also not so good, and next step can consider that the compound pottery in right amount with positive temperature coefficient improves whole temperature factor performance on this material system basis.
In addition, by appropriate change (1-x) CaWO 4-xLi 2wO 4the value of x in (wherein the span of x is 0.08~0.12), and final sintering temperature (850 ~ 950 ° of C), the microwave property of material system has certain variation.Specifically as shown in Figure 3, but work as x=0.10, when sintering temperature is 900 ° of C, dielectric loss is minimum.

Claims (2)

1. a preparation method for low Jie's low-loss LTCC microwave ceramic material, low Jie's low-loss LTCC microwave ceramic material is the composite ceramic material that comprises two-phase, wherein principal crystalline phase is Tetragonal sheelite CaWO 4, auxiliary phase is trigonal system phenakite structure Li 2wO 4, its formula molecular formula is (1-x) CaWO 4-xLi 2wO 4, formula molecular formula is (1-x) CaWO 4-xLi 2wO 4the span of middle x is 0.08~0.12, it is characterized in that comprising the following steps:
Step 1: with CaCO 3, WO 3, Li 2cO 3for initial feed, according to (1-x) CaWO 4-xLi 2wO 4in formula molecular formula, the molar ratio of each element is converted out CaCO 3, WO 3and Li 2cO 3mass percent, carry out weighing, ball milling, the even post-drying of batch mixing;
Step 2: put into crucible and compacting after the oven dry material of step 1 gained is sieved, rise to 850~950 ℃ carry out pre-burning by the temperature rise rates of 2 ℃/minute, be incubated 2~3 hours, furnace cooling obtains Preburning material;
Step 3: the block Preburning material of step 2 gained is taken out from crucible to put into mortar first levigate roughly, then carry out secondary ball milling in ball mill;
Step 4: after the resulting secondary ball abrasive material of step 3 is dried, add massfraction be 10%~20% PVA solution carry out granulation and dry-pressing formed be cylinder;
Step 5: the sample of step 4 gained is put into sintering oven, by the temperature rise rate of 1 ~ 2 ℃/minute, slowly rise to 600 ℃ and be incubated 2 hours, to get rid of moisture and the glue in green compact, and then by the temperature rise rate of 2 ℃~5 ℃/minute, be warming up to 850 ℃~950 ℃ and carry out sintering, be incubated 2~3 hours, by the rate of temperature fall of 2 ℃~5 ℃/minute, be cooled to 600 ℃ again, furnace cooling obtains low Jie's low-loss microwave stupalith subsequently.
2. according to the preparation method of a kind of low Jie's low-loss LTCC microwave ceramic material described in claim 1, it is characterized in that: the concentration of described PVA solution is 10%.
CN201310087656.7A 2013-03-19 2013-03-19 Low-medium low-loss LTCC (Low Temperature Co-Fired Ceramic) microwave ceramic material and preparation method thereof Expired - Fee Related CN103121842B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310087656.7A CN103121842B (en) 2013-03-19 2013-03-19 Low-medium low-loss LTCC (Low Temperature Co-Fired Ceramic) microwave ceramic material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310087656.7A CN103121842B (en) 2013-03-19 2013-03-19 Low-medium low-loss LTCC (Low Temperature Co-Fired Ceramic) microwave ceramic material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN103121842A CN103121842A (en) 2013-05-29
CN103121842B true CN103121842B (en) 2014-07-16

Family

ID=48453030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310087656.7A Expired - Fee Related CN103121842B (en) 2013-03-19 2013-03-19 Low-medium low-loss LTCC (Low Temperature Co-Fired Ceramic) microwave ceramic material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN103121842B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539449B (en) * 2013-10-07 2015-11-25 桂林理工大学 Low temperature sintering microwave dielectric ceramic BiNbW 2o 10and preparation method thereof
CN105801119B (en) * 2016-05-11 2018-06-19 电子科技大学 A kind of micro-wave dielectric LTCC materials and preparation method thereof
CN106699179A (en) * 2016-12-09 2017-05-24 陈忠燕 Low-dielectric low-loss LTCC microwave dielectric ceramic material and preparation method thereof
WO2019126969A1 (en) * 2017-12-25 2019-07-04 深圳市大富科技股份有限公司 Dielectric ceramic material and method for preparing same
CN108298982A (en) * 2018-04-11 2018-07-20 长安大学 A method of AWO4 one-component ceramics are prepared based on high-energy ball milling method
KR102127578B1 (en) * 2018-12-28 2020-06-26 한국세라믹기술원 Ultra-low temperature co-fired ceramics/glass composite and manufacturing method thereof
CN112441833A (en) * 2020-11-12 2021-03-05 南方科技大学 Composite microwave dielectric ceramic material, preparation method thereof and electronic device
CN117342871B (en) * 2023-12-06 2024-02-02 山东理工大学 In-situ biphase symbiotic high-entropy ceramic and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Microwave dielectric properties of 0.85CaWO4–0.15SmNbO4 ceramics with sintering additives;Sung Joo Kim et al.;《Ceramics International》;20071223;第35卷;第137页右栏-第138页右栏2.试验过程,第139-140页3.结果和讨论,图1,图4和图5 *
Sung Joo Kim et al..Microwave dielectric properties of 0.85CaWO4–0.15SmNbO4 ceramics with sintering additives.《Ceramics International》.2007,第35卷第137页右栏-第138页右栏2.试验过程,第139-140页3.结果和讨论,图1,图4和图5.

Also Published As

Publication number Publication date
CN103121842A (en) 2013-05-29

Similar Documents

Publication Publication Date Title
CN103121842B (en) Low-medium low-loss LTCC (Low Temperature Co-Fired Ceramic) microwave ceramic material and preparation method thereof
CN106747412B (en) A kind of Ti base LTCC microwave dielectric ceramic material and preparation method thereof
CN103771842B (en) LTCC (Low Temperature Co-fired Ceramics) microwave ceramic material with low cost, low dielectric constant and low loss and preparation method thereof
CN102674829B (en) Low-temperature co-fired Li2MgTi3O8 microwave dielectric ceramic material and preparation method thereof
CN103145420B (en) Vanadate microwave dielectric ceramic LiMVO4 capable of being sintered at low temperature and preparation method thereof
CN101870584A (en) Molybdenum-based ultralow-temperature sintering microwave medium ceramic materials and preparation method thereof
CN102503405B (en) Compound BZT microwave ceramic dielectric material and preparation method thereof
CN104211391A (en) Low-temperature sintering temperature-stable medium dielectric constant microwave dielectric ceramic Bi3La5Ti7O26 and preparation method thereof
CN103030394B (en) V-based low temperature sintering microwave medium ceramic material and preparation method thereof
CN104003722A (en) Ultralow-dielectric constant microwave dielectric ceramic Li3AlV2O8 capable of being sintered at low temperature and preparation method thereof
CN103319176A (en) Microwave dielectric ceramic BaCu2V2O8 with low temperature sintering function and preparation method thereof
CN105801119B (en) A kind of micro-wave dielectric LTCC materials and preparation method thereof
CN104557019A (en) Ultralow sintering temperature stable type microwave dielectric ceramic LiBiB2O5 and preparation method thereof
CN108863322A (en) A kind of low dielectric microwave media ceramic and preparation method thereof
CN104058746A (en) Microwave dielectric ceramic LiNd2V3O11 allowing low-temperature sintering and preparation method thereof
CN104671783A (en) Low-loss temperature stabilized microwave dielectric ceramic LiMg3NbWO9
CN107935584A (en) A kind of microwave dielectric ceramic materials for LTCC and preparation method thereof
CN104311008A (en) Temperature-stable medium-dielectric constant microwave dielectric ceramic BaNb4V2O16 and preparation method thereof
CN103601492B (en) KNN-LT leadless piezoelectric ceramics and preparation method thereof
CN108546113A (en) A kind of high performance microwave dielectric ceramic material and preparation method thereof
CN104671776A (en) Low-loss low-dielectric-constant microwave dielectric ceramic Li2Ba3Ti8O20 and preparation method thereof
CN104744040A (en) Temperature-stable microwave dielectric ceramic LiNd2VO6 with ultralow dielectric constant
CN103467091B (en) Low-sintering microwave dielectric ceramic Ba4Nb2V2O14 and preparation method of microwave dielectric ceramic
CN104446379A (en) Temperature-stable microwave dielectric ceramics with ultralow dielectric constant and preparation method thereof
CN104671782A (en) Low-loss ultralow dielectric constant microwave dielectric ceramic Bi2WO6

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140716

CF01 Termination of patent right due to non-payment of annual fee