CN103112899B - 一种功能化二氧化锰纳米线膜的制备方法 - Google Patents

一种功能化二氧化锰纳米线膜的制备方法 Download PDF

Info

Publication number
CN103112899B
CN103112899B CN201310069197.XA CN201310069197A CN103112899B CN 103112899 B CN103112899 B CN 103112899B CN 201310069197 A CN201310069197 A CN 201310069197A CN 103112899 B CN103112899 B CN 103112899B
Authority
CN
China
Prior art keywords
manganese dioxide
dioxide nanowire
functionalization
membrane
silane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310069197.XA
Other languages
English (en)
Other versions
CN103112899A (zh
Inventor
叶飞
蓝邦
孙明
余林
林婷
程高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201310069197.XA priority Critical patent/CN103112899B/zh
Publication of CN103112899A publication Critical patent/CN103112899A/zh
Application granted granted Critical
Publication of CN103112899B publication Critical patent/CN103112899B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种功能化二氧化锰纳米线膜的制备方法,该方法包括以下步骤:将二氧化锰纳米线超声分散在溶剂中,然后加入添加剂硅烷加热回流反应,得到功能化二氧化锰纳米线分散液;然后将所述的功能化二氧化锰纳米线分散液进行成膜处理,即得到功能化二氧化锰纳米线膜;本发明制备的功能化二氧化锰纳米线膜具有疏水/亲水可逆转换的润湿性能,通过简单的滴加溶剂/干燥就能实现疏水/亲水性能的可逆转换,可广泛用于吸附、分离、催化等工业过程。

Description

一种功能化二氧化锰纳米线膜的制备方法
技术领域
本发明涉及一种功能化二氧化锰纳米线膜的制备方法,属于功能材料技术领域。
背景技术
二氧化锰(MnO2)是一种廉价的过渡金属材料,因其具有优良的分子吸附性、阳离子交换性、氧化还原性和电磁性而广泛用于吸附、分离、催化和电化学等领域。目前使用的宏观MnO2材料主要是粉末的形态,其它具有多维结构的MnO2材料如膜、柱体、序列等的应用还比较少。荷兰《应用表面科学》(Applied Surface Science,2004年236卷217页)报道了采用悬浮粒子烧结法制备的γ-MnO2纳米分子筛膜,该膜具有良好的H2/Ar分离性能和较高的催化环己烷氧化脱氢的活性。英国《化学通讯》(Chemical Communications, 2012年48期5925页)报道了采用水热法制备具有三维结构的α-MnO2圆柱体,对染料(如甲基紫)和重金属有毒离子(如Pb2+、Ba2+和Ag+)有很好的选择性吸附能力,显示出宏观多维结构MnO2材料的广泛应用前景。由于MnO2表面裸露有大量的氧原子,容易吸附水形成氢键,所以MnO2表现出亲水性。《科学报道》(Scientific Reports,2012年2期612页)利用这一特性,制备了亲水性的MnO2纳米线膜,可以实现非极性溶剂和水乳化液的高效分离,并且吸附乙醇水溶液后,MnO2纳米线膜变成亲油性,可允许非极性溶剂通过,但是没有提供吸附非极性溶剂的相关数据。要使MnO2变成疏水性,就要对其进行表面处理,目前疏水性表面一般可通过两种方法来实现。一种是在表面上构建粗糙结构,所用方法有等离子体刻蚀、阳极氧化法、相分离法、模板法、电化学沉积法、结晶控制法等;另一种是在表面上修饰低表面能物质,常用的低表面能物质有烷基硅烷、氟聚合物、蜡等。《自然技术》(Nature Technology,2008年3卷332页)利用蒸汽沉积法在亲水性MnO2纳米线膜表面沉积了一层聚二甲基硅烷,使其变成疏水性,从而可以选择性吸附大量的非极性溶剂,并且聚二甲基硅烷可以被加热至390℃除去,使MnO2纳米线膜恢复亲水性。通过蒸气沉积和加热可以实现MnO2纳米线膜疏水性/亲水性的可逆转换。但是,蒸汽沉积法工艺复杂,技术要求高,而且疏水/亲水转换时需要高温,阻碍了该制备方法的工业化应用。因此,发明一种制备方法简单、应用性较强、可简单实现疏水/亲水可逆转换的MnO2纳米线膜是非常必要的。
发明内容
       本发明的目的在于提供一种疏水/亲水可逆转换的功能化二氧化锰纳米线膜的制备方法,本发明制备的功能化二氧化锰纳米线膜可通过简单的添加溶剂和干燥来实现疏水/亲水性能的可逆转换。
本发明提供的一种功能化二氧化锰纳米线膜的制备方法,包括以下步骤:将二氧化锰纳米线超声分散在溶剂中,然后加入添加剂硅烷进行加热回流反应,得到功能化二氧化锰纳米线分散液;然后将所述的功能化二氧化锰纳米线分散液进行成膜处理,即得到功能化二氧化锰纳米线膜。
本发明所用的二氧化锰纳米线由水热法制备,晶形为α-MnO2,长度超过100um,直径为50nm。
本发明所用的溶剂为甲醇、乙醇、丙酮、甲苯或二甲苯。
本发明所用的添加剂硅烷为正辛基三甲氧基硅烷、正辛基三乙氧基硅烷、正癸基三甲氧基硅烷、正癸基三乙氧基硅烷或十六烷基三甲基硅烷。
所述的二氧化锰纳米线与添加剂硅烷的质量比为0.5~2:1,加热回流反应温度为50~110℃,反应时间为2~10 h。
本发明所述的成膜处理为将分散液抽滤或涂覆在支撑材料上干燥。
本发明的有益效果是:
本发明制备的功能化二氧化锰纳米线膜具有良好的疏水性,水滴接触角可达到142°。通过滴加1滴乙醇、环己烷或四氯甲烷等溶剂,就可使功能化二氧化锰纳米线膜变成亲水性,水滴接触角达到32°(见附图3)。并且通过简单的加热干燥,使滴加的溶剂挥发,就可恢复功能化二氧化锰纳米线膜的疏水性。通过滴加溶剂/干燥的循环,就可以实现功能化二氧化锰纳米线膜的疏水/亲水可逆转换。本发明提供的制备方法工艺简单,操作简便,应用性强,制备的功能化二氧化锰纳米线膜可广泛用于吸附、分离、催化等工业过程。
附图说明
图1 为本发明实施例1制备的功能化二氧化锰纳米线膜的X射线衍射谱图。
图2为本发明实施例2制备的功能化二氧化锰纳米线膜的扫描电镜图。
图3为水滴在本发明实施例4制备的功能二氧化锰纳米线膜在滴加乙醇前(a)和滴加乙醇后(b)的接触角光学显微图。
图4为本发明实施例5制备的功能化二氧化锰纳米线膜上进行滴加乙醇/干燥(60℃)五个循环后,水滴接触角的变化图。
具体实施方式
实施例1:
将0.2g二氧化锰纳米线超声分散在20ml甲醇醇的烧瓶中,加入0.4g正辛基三甲氧基硅烷,在50℃的水浴中回流8h,得到功能化二氧化锰纳米线分散液。将上述分散液分批加入到聚四氟乙烯圆形槽中,60℃干燥后12h,即可从聚四氟乙烯表面剥离得到功能化二氧化锰纳米线膜。
实施例2:
将0.2g二氧化锰纳米线超声分散在20ml甲苯的烧瓶中,加入0.1g正癸基三甲氧基硅烷,在110℃的油浴中回流2h,得到功能化二氧化锰纳米线分散液。将上述分散液用分液漏斗进行真空抽滤,用乙醇洗涤三次,60℃干燥12h,即得到功能化二氧化锰纳米线膜。
实施例3:
将0.2g二氧化锰纳米线超声分散在20ml甲苯的烧瓶中,加入0.2g正辛基三乙氧基硅烷,在90℃的水浴中回流10h,得到功能化二氧化锰纳米线分散液。将上述分散液用分液漏斗进行真空抽滤,用乙醇洗涤三次,60℃干燥12h,即得到功能化二氧化锰纳米线膜。
实施例4:
将0.2g二氧化锰纳米线超声分散在20ml丙酮的烧瓶中,加入0.3g正癸基三甲氧基硅烷,在70℃的水浴中回流5h,得到功能化二氧化锰纳米线分散液。将上述分散液分批加入到聚四氟乙烯圆形槽中,60℃干燥后12h,即可从聚四氟乙烯表面剥离得到功能化二氧化锰纳米线膜。
实施例5:
将0.2g二氧化锰纳米线超声分散在20ml二甲苯的烧瓶中,加入0.2g十六烷基三甲基硅烷,在100℃的油浴中回流6h,得到功能化二氧化锰纳米线分散液。将上述分散液用分液漏斗进行真空抽滤,用乙醇洗涤三次,60℃干燥12h,即得到功能化二氧化锰纳米线膜。

Claims (1)

1.一种功能化二氧化锰纳米线膜的制备方法,其特征在于包括以下步骤:将二氧化锰纳米线超声分散在溶剂中,然后加入添加剂硅烷加热回流反应,得到功能化二氧化锰纳米线分散液;然后将所述的功能化二氧化锰纳米线分散液进行成膜处理,即得到功能化二氧化锰纳米线膜;
所述的溶剂为甲醇、乙醇、丙酮、甲苯或二甲苯;
所述的添加剂硅烷为正辛基三甲氧基硅烷、正辛基三乙氧基硅烷、正癸基三甲氧基硅烷、正癸基三乙氧基硅烷或十六烷基三甲基硅烷;
所述的二氧化锰纳米线与添加剂硅烷的质量比为0.5~2:1,加热回流反应温度为50~110℃,反应时间为2~10 h。
CN201310069197.XA 2013-03-05 2013-03-05 一种功能化二氧化锰纳米线膜的制备方法 Expired - Fee Related CN103112899B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310069197.XA CN103112899B (zh) 2013-03-05 2013-03-05 一种功能化二氧化锰纳米线膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310069197.XA CN103112899B (zh) 2013-03-05 2013-03-05 一种功能化二氧化锰纳米线膜的制备方法

Publications (2)

Publication Number Publication Date
CN103112899A CN103112899A (zh) 2013-05-22
CN103112899B true CN103112899B (zh) 2015-02-11

Family

ID=48411309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310069197.XA Expired - Fee Related CN103112899B (zh) 2013-03-05 2013-03-05 一种功能化二氧化锰纳米线膜的制备方法

Country Status (1)

Country Link
CN (1) CN103112899B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106390777A (zh) * 2016-10-28 2017-02-15 西北大学 一种氢氧化铜纳米线/聚偏氟乙烯杂化超滤膜及其制备方法
CN107308948B (zh) * 2017-07-13 2019-09-13 哈尔滨工业大学 多级纳米结构柔性无机膜的制备方法及应用
CN108704489B (zh) * 2018-06-05 2020-09-25 江苏大学 一种油水分离用柔性Janus分离膜的制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359854A (zh) * 2000-12-19 2002-07-24 中国科学技术大学 高纯四方相γ-三氧化二锰纳米晶及制备方法
CN100384522C (zh) * 2006-03-03 2008-04-30 中国科学院上海硅酸盐研究所 一种可用于过滤碳纳米管废液的氧化锰薄膜、制备及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006029230A1 (en) * 2004-09-03 2006-03-16 University Of Connecticut Manganese oxide nanowires, films, and membranes and methods of making

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359854A (zh) * 2000-12-19 2002-07-24 中国科学技术大学 高纯四方相γ-三氧化二锰纳米晶及制备方法
CN100384522C (zh) * 2006-03-03 2008-04-30 中国科学院上海硅酸盐研究所 一种可用于过滤碳纳米管废液的氧化锰薄膜、制备及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Blain Paul,etc..Surface modification of alumina nanofibres for the selective adsorption of alachlor and imazaquin herbicides.《Journal of Colloid and Interface Science》.2011,第132-138页. *

Also Published As

Publication number Publication date
CN103112899A (zh) 2013-05-22

Similar Documents

Publication Publication Date Title
Xu et al. Insights into promoted adsorption capability of layered BiOCl nanostructures decorated with TiO2 nanoparticles
Zhu et al. Metallic two-dimensional MoS2 composites as high-performance osmotic energy conversion membranes
Etman et al. Facile water-based strategy for synthesizing MoO3–x nanosheets: efficient visible light photocatalysts for dye degradation
Subhadarshini et al. One-dimensional NiSe–Se hollow nanotubular architecture as a binder-free cathode with enhanced redox reactions for high-performance hybrid supercapacitors
Fu et al. Hollow CoS x polyhedrons act as high-efficiency cocatalyst for enhancing the photocatalytic hydrogen generation of g-C3N4
Swain et al. Fabrication of hierarchical two-dimensional MoS2 nanoflowers decorated upon cubic CaIn2S4 microflowers: facile approach to construct novel metal-free p–n heterojunction semiconductors with superior charge separation efficiency
Ayman et al. CoFe2O4 nanoparticle-decorated 2D MXene: a novel hybrid material for supercapacitor applications
Zou et al. sp2-Hybridized carbon-containing block copolymer templated synthesis of mesoporous semiconducting metal oxides with excellent gas sensing property
Zhang et al. Titanate and titania nanostructured materials for environmental and energy applications: a review
Liu et al. Cobalt-based layered metal–organic framework as an ultrahigh capacity supercapacitor electrode material
Tong et al. Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance
Tan et al. Self-biased hybrid piezoelectric-photoelectrochemical cell with photocatalytic functionalities
Li et al. Closed pore structured NiCo2O4-coated nickel foams for stable and effective oil/water separation
Zhao et al. Co2. 67S4-based photothermal membrane with high mechanical properties for efficient solar water evaporation and photothermal antibacterial applications
Liu et al. Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption
Kim et al. Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites
Qu et al. Chemically binding carboxylic acids onto TiO2 nanoparticles with adjustable coverage by solvothermal strategy
Ren et al. Calcined MgAl-layered double hydroxide/graphene hybrids for capacitive deionization
Zhou et al. Opposite superwetting nickel meshes for on-demand and continuous oil/water separation
Fan et al. Fabrication of MgFe2O4/MoS2 heterostructure nanowires for photoelectrochemical catalysis
Wang et al. Bi2S3-nanowire-sensitized BiVO4 sheets for enhanced visible-light photoelectrochemical activities
Hussain et al. In situ grown heterostructure based on MOF-derived carbon containing n-type Zn–In–S and dry-oxidative p-type CuO as pseudocapacitive electrode materials
CN106099053B (zh) 一种硫化钼/硒化钼复合材料及其制备和应用
Pandit et al. Cerium selenide nanopebble/multiwalled carbon nanotube composite electrodes for solid-state symmetric supercapacitors
Sekhar et al. Hierarchically designed Ag@ Ce6Mo10O39 marigold flower-like architectures: An efficient electrode material for hybrid supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150211

CF01 Termination of patent right due to non-payment of annual fee