CN103100438B - 含分子筛和无定形硅铝的催化剂载体材料的制备方法 - Google Patents
含分子筛和无定形硅铝的催化剂载体材料的制备方法 Download PDFInfo
- Publication number
- CN103100438B CN103100438B CN201110355826.6A CN201110355826A CN103100438B CN 103100438 B CN103100438 B CN 103100438B CN 201110355826 A CN201110355826 A CN 201110355826A CN 103100438 B CN103100438 B CN 103100438B
- Authority
- CN
- China
- Prior art keywords
- molecular sieve
- plastic
- alumina
- hydrothermal treatment
- accordance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Catalysts (AREA)
Abstract
本发明公开了一种含分子筛和无定形硅铝的催化剂载体材料的制备方法。该方法包括:在无定形硅铝成胶过程中加入分子筛与有机胺类的混合物,无定形硅铝成胶结束后进行老化,然后进行水热处理,经过滤、洗涤、干燥,得到催化剂载体材料。本发明方法可以使硅铝在分子筛表面排列有序、均匀地沉积,并增强了分子筛与硅铝的结合力,避免了无定形硅铝同分子筛之间出现团聚甚至堵塞孔道的现象,而且使硅铝与分子筛的孔道相互贯通,使硅铝和分子筛充分发挥协同作用,水热处理有助于无定形硅铝形成规则的中孔,提高了催化剂的使用性能。本发明方法所制备的载体材料可以在催化剂中用作酸性组分,特别适用作加氢裂化催化剂载体。
Description
技术领域
本发明涉及一种含分子筛和无定形硅铝的催化剂载体材料的制备方法,特别是用于加氢催化剂的复合分子筛-无定形硅铝载体材料的制备方法。
背景技术
加氢裂化技术是原油二次加工、重油轻质化的重要手段之一,目前已得到了日益广泛的应用。
催化剂中的酸性组分一般是由催化剂中所含的分子筛和/或无定形氧化硅-氧化铝(以下简称无定形硅铝)和无定形氧化铝来提供的。对于分子筛、无定形氧化硅-氧化铝和无定形氧化铝三者来说,其酸性顺序是依次递减的,而孔分布的集中度却是依次递增的,这也就决定了三者在催化剂中各自表现出了不同的特点和优点。无定形氧化铝比表面高、抗烧结性能好、作为催化剂载体时对活性金属的分散性能好,但是酸性很低,可以作为良好的活性组分分散剂;分子筛具有强酸性和规则的孔道结构,对于特定的择形反应具有很好的活性和选择性,但是富含一定量的微孔,反应的择形性也恰恰限制了其对原料的选择性;无定形硅铝酸性较无定形氧化铝强,但没有分子筛强,但同分子筛载体相比裂解产物中重组分选择性高,中油选择性好。分子筛同无定形硅铝和分子筛组合使用是加氢裂化催化剂发展的主要方向。而且通过分子筛和无定形硅铝所制得的催化剂具有良好的活性、选择性及稳定性,适合于长周期运转。
载体中的分子筛与无定形硅铝之间的结合度和分散度与其反应性能之间有着密不可分的关系,分散性好则载体的酸中心分布均匀,反应物料在催化剂中反应较为均匀;在很大程度上影响催化剂的活性以及对各种目的产品的选择性。如何解决分子筛和无定形硅铝载体之间的分散性是制备具有良好反应性能催化剂的关键。
CN201010197869.1、CN200810117102.6、CN00105235.7等专利中公开的加氢裂化催化剂都是将分子筛、氧化铝等单一的原料经过机械混合后制备的。该方法所制备的催化剂会因各种原料混合不均匀,影响各组分性能的发挥。
CN1060976A公开了一种含无定形氧化铝的超稳Y型沸石的制备方法。该方法是向硫酸铝溶液中加入氨水调节pH值为3.5~7.5,然后加入NaY沸石或HNaY沸石,混合均匀,再按水热法制备USY沸石过程进行铵离子交换和水热处理等后续处理,得到含无定形氧化铝的超稳Y型沸石。该方法是在氧化铝成胶后,加入沸石原料,再按常规方法改性所得的复合材料。该方法存在无定形氧化铝容易出现团聚现象,使无定形氧化铝在分子筛上的分布不均匀,甚至堵塞分子筛的孔道,使催化剂的比表面积和孔容大幅度减少,而且分子筛与氧化铝孔道的通畅性较差,影响催化剂的性能。该方法通过NaY沸石同无定形氧化铝复合后再进行水热处理及铵交换过程,加大了处理量,降低了处理的效率,处理过程中无定形氧化铝会一起被处理,容易对氧化铝产生不良效应。
CN200610134151.1公开了一种载体材料的制备方法,该方法是在无定形硅铝成胶过程中直接加入分子筛的方法制备的。该方法中无定形硅铝容易出现团聚现象,还容易进入对方的孔道或堵塞分子筛的孔口,影响无定形硅铝在分子筛上的分布,分子筛与无定形硅铝孔道的贯通性较差,使催化剂的比表面积和孔容减少,影响催化剂的性能。
发明内容
为了克服现有技术的不足,本发明提供了一种含分子筛和无定形硅铝的催化剂载体材料的制备方法。由该方法制备的催化剂载体能够将分子筛和无定形硅铝有机的结合在一起,具有良好的结合度及分散度,可以避免分子筛和无定形硅铝间出现团聚甚至相互堵塞孔道的现象,具有良好的使用性能。
本发明含分子筛和无定形硅铝的催化剂载体材料的制备方法,包括:
(1) 将分子筛与有机胺类混合,其中有机胺类的加入量占分子筛重量的1wt%~40wt%;
(2)在无定形硅铝成胶过程中加入步骤(1)得到的混合物物,以最终载体材料的重量为基准,分子筛加入量为5wt%~90wt%;
(3)在步骤(2)所述的无定形硅铝成胶结束后进行老化,然后进行水热处理,再经过滤、洗涤、干燥,得到催化剂载体材料。
本发明步骤(1)中,所述的有机胺类为大于10个碳数的脂肪胺、芳香胺、中的一种或多种。较适合的为含有链状的胺类,优选为含有10~20个碳的脂肪胺类中的一种或多种。例如:癸胺、十二胺、十六胺、十八胺、1,10-癸二胺、对丁基苯胺中的一种或多种。有机胺类与分子筛混合,可以直接加入分子筛中,也可以溶于溶剂中再加入分子筛中,其中的溶剂为水、低碳醇(即碳原子数为1~5的一元醇中的一种或多种)中的一种或多种。若有机胺类的加入量较大,需要过滤并干燥后再进行步骤(2)。
本发明步骤(2)中所述的无定形硅铝的成胶过程可以按本领域技术人员熟知的过程进行。无定形硅铝的成胶过程一般是酸性物料和碱性物料的中和反应过程。成胶过程可以采用酸碱连续中和滴定的方式,也可以采用两种物料并流中和的方式。硅组分可以是通过成胶过程单独引入,即铝源或沉淀剂混合完成后再进行成胶;也可以同碱性沉淀剂一起引入;也可以是上述两种方法的结合。如果通过同碱性沉淀剂一起引入,则可以同碱性沉淀剂混合的方式一起加入。该制备过程为本领域技术人员所熟知。
本发明步骤(2)中所述的无定形硅铝成胶过程可以按本领域技术人员熟知的过程进行。无定形硅铝成胶过程一般为酸性物料和碱性物料的中和反应过程,成胶过程一般采用两种物料并流成胶操作方式,或一种物料放置在成胶罐中另一种物料连续加入成胶的操作方式。成胶物料一般包括铝源(Al2(SO4)3、AlCl3、Al(NO3)3和NaAlO2等中的一种或几种)、硅源(水玻璃、硅溶胶和有机含硅化合物等中的一种或几种)、沉淀剂(NaOH、NH4OH或CO2等),根据成胶过程的不同选择使用,常规的操作方式主要有:(1)酸性铝盐(Al2(SO4)3、AlCl3、Al(NO3)3)与碱性铝盐(NaAlO2)或碱性沉淀剂(NaOH、NH4OH)中和成胶,(2)碱性铝盐(NaAlO2)与酸性沉淀剂(CO2)中和成胶。硅源一般在成胶过程中引入成胶罐,也可以与铝源或沉淀剂混合后再中和成胶,如水玻璃加入碱性铝盐或碱性沉淀剂中进行中和成胶,硅溶胶加入酸性铝盐中进行中和成胶等。硅源也可以加入铝源沉淀后物料中,也可以将上述方式两种或两种以上结合使用。上述方法均是本领域技术人员所熟知的。所述的成胶过程一般在室温~85℃下进行,较适合为40~80℃,优选为50~70℃。所述的成胶过程一般在一定的pH值条件下进行,典型的pH为6.0~10.0,较适合为7.0~9.5,优选为7.5~9.0。步骤(3)所述的老化,条件如下:pH为6.0~10.0,优选为7.0~9.5,老化时间0.25~8小时,较适合在0.5~5小时,优选为1~3小时,老化温度为室温~85℃,优选为40~80℃。老化时的温度和pH与中和时的温度和pH最好相同。
本发明步骤(1)中,所述的分子筛为已知的任何一种或者几种分子筛,最好改性分子筛中的一种或者几种。这些分子筛为本领域内技术人员所公知,比如八面沸石(比如Y型分子筛)、β沸石、Ω沸石、丝光沸石、L沸石、ZSM系列分子筛、SAPO系列分子筛、MCM系列分子筛等一种或几种。为了获得希望的催化性能,各种分子筛可以进行适当的改性过程,改性方法为本领域技术人员所熟知的过程,如水热处理、酸处理、离子交换、各种溶剂处理等中的一种或多种方法改性。本发明步骤(1)中,所述的分子筛的加入状态可以是干粉状加入,也可以是以浆液形态加入。
本发明步骤(2)中,步骤(1)所得的混合物的引入方式采用下述方式的一种或几种组合:(1)在成胶中和反应过程中,将该混合物连续加入成胶罐中;(2)将该混合物先加入到成胶罐中,然后将制备无定形硅铝的酸性物料和碱性物料中和成胶;(3)将该混合物与成胶物料的一种或几种混合,然后成胶物料中和成胶。
本发明步骤(3)中,在水热处理前,最好经过滤或加热浓缩处理,除去过量的水分及有机物。其中所述的加热浓缩为在90~110℃下加热步骤(2)所得产品,较好的温度为95~105℃,优选的为98~100℃,加热至不流动的糊膏状。
本发明步骤(3)中,所述的水热处理在密闭容器内进行的,水热处理的温度为90~300℃,较好为100~250℃,优选为150~210℃,所述的水热处理为在物料处理温度时所产生的自身的压力条件下进行。所述的水热处理时间为0.5~48h,较好的为1~36h,优选的为2~24h。
本发明步骤(3)中,所述的物料的洗涤方式是本领域技术人员所公知的,可以选择打浆洗涤、过滤时加水洗涤、低级醇类洗涤等方式,洗涤的温度应当在室温~90℃温度的范围内,优选50~70℃。所述的物料的洗涤一般在pH为1.0~9.0的范围内进行,优选pH为4.0~8.5。本发明步骤(3)中所述的物料在洗涤、过滤后应当不含或者含很少量的杂离子,杂离子包括Na+、Cl-、SO4 2-、NO3 -、K+等中的一种或多种。
本发明步骤(3)中,所述的物料在洗涤、过滤后,滤饼进行干燥,干燥方式可以采用自然干燥、烘箱干燥、喷雾干燥、微波干燥或者红外干燥,一般干燥条件如下:在50~150℃下干燥1~15小时。
本发明载体材料也可以根据需要添加其它助剂,如磷、硼、钛、锆等中的一种或多种。
本发明方法制备的载体材料是一种制备催化剂载体的原料,该载体材料经450~650℃焙烧2~10小时后,所得的性质如下:以焙烧后载体材料的重量为基准,分子筛的含量为5wt%~90wt%,无定形硅铝的含量在10wt%~95wt%,无定形硅铝中,SiO2含量一般为10wt%~50wt%,比表面积为200
~1000m2/g,孔容为0.3 ~1.8cm3/g,红外酸量为0.1~2.0mmol/g。
本发明方法所制备的载体材料可以在催化剂中用作酸性组分,特别适用作加氢裂化催化剂载体,尤其是重质油的加氢裂化催化剂载体,提高催化剂的活性和目的产品的选择性以及催化剂的长周期稳定性。
本发明催化剂载体材料的制备方法是分子筛预先与有机胺类混合,有机胺类会预先吸附到分子筛的孔道及孔口处,使分子筛的孔道结构预先得到保护, 这样可避免无定形硅铝成胶过程中碎片进入孔道、堵塞孔口或者直接在孔道内成胶;同时有机胺类在无定形硅铝成胶过程中具有对无定形硅铝孔道的导向作用,长链端基自分子筛的孔道直接延伸到溶剂中,具有亲水性的硅铝在分子筛表面排列有序、均匀地沉积在分子筛的表面,并增强了分子筛与硅铝的结合力,避免了硅铝同分子筛之间出现团聚甚至堵塞孔道的现象,而且使硅铝与分子筛的孔道相互贯通,使硅铝和分子筛充分发挥协同作用;老化有助于无定形硅铝溶胶逐渐聚集,均匀成孔,水热处理有助于无定形硅铝形成规则的中孔。分子筛在引入之前可以根据使用要求采用各种适宜的方法进行处理,分子筛的改性处理过程不会对复合载体材料产生不利的影响。
附图说明
图1为实施例2和对比例3所得载体材料的孔分布图。
具体实施方式
本发明产品的比表面积和孔容是采用低温液氮物理吸附法测定,相对结晶度和晶胞参数采用X射线衍射法测定。钠含量采用等离子发射光谱法测定。本发明中,wt%为质量分数。
下面结合具体的实施例来进一步说明本发明的制备方法,但是本发明的范围不只限于这些实施例的范围。
实施例
1
将255g固体氯化铝加入到1.5升蒸馏水中,同时加热并搅拌至溶解,得到氯化铝溶液(a)。将浓氨水加入适量蒸馏水稀释成约10wt%稀氨水(b),8g 十八胺溶解在120ml无水乙醇,在搅拌状态下向里面加入20g改性Y型分子筛Y-1(SiO2/Al2O3摩尔比11.0, 晶胞常数为24.42Å,相对结晶度为95%)中,形成溶液(c)。取10L水玻璃(工业级,模数为3.0)稀释在20L去离子水中,配置成溶液(d)。取一不锈钢反应罐,罐中加入(a)并搅拌加热至65℃后,打开存有(b)的容器的阀门,控制10分钟之内将罐中体系滴加到pH=4.5,此时向罐中加入250ml溶液(c),继续滴加(b),控制30分钟内将罐内体系滴加到pH=8.0。保持温度为65℃,pH=8.0,停留20分钟后,向体系中加入溶液(d),按照无定形硅铝中二氧化硅/氧化铝为45/55的重量比例计算的水玻璃的量在10分钟内加完。老化1小时,将罐内物料在100℃下在烘箱内干燥至干基含量15wt%,将物料转移到高压釜中,165℃条件下处理18h,然后将物料使用乙醇进行溶剂抽提除去一部分有机物,进行过滤,洗涤至无氯离子,过滤,将滤饼在110℃下干燥10小时,粉碎过筛,得到复合载体材料S-1。经550℃焙烧5小时后,主要物理化学性质见表1。
实施例
2
将266g固体硫酸铝加入到1.2升蒸馏水中,同时加热并搅拌至溶解,得到硫酸铝溶液(a)。将浓氨水加入适量蒸馏水稀释成约10wt%稀氨水(b),21g 十六胺溶解在200ml无水乙醇中,加入104g改性Y型分子筛Y-1(SiO2/Al2O3摩尔比11.0, 晶胞常数为24.42Å,相对结晶度为95%)打浆形成浆液(c)。取10L水玻璃(工业级,模数为3.0)稀释在20L去离子水中,配置成溶液(d)。取一不锈钢反应罐,罐中加入(a)并搅拌加热至65℃后,打开存有(b)的容器的阀门,控制10分钟之内将罐中体系滴加到pH=4.5,打开存有(c)的容器的阀门,继续滴加(b) ,控制30分钟内将罐内体系滴加到pH=8.0,控制(c)的容器的阀门,保证此时滴加完成。保持温度为65℃,pH=8.0,停留20分钟后,向体系中加入溶液(d),按照无定形硅铝中二氧化硅/氧化铝为45/55的重量比例计算的水玻璃的量在10分钟内加完。老化1小时,将罐内物料在100℃下在烘箱内干燥至干基含量15wt%,将物料转移到高压釜中,180℃条件下处理4h,将物料使用乙醇进行溶剂抽提一部分有机物,进行过滤,洗涤至无硫酸根离子,过滤,将滤饼在110℃下干燥10小时,粉碎过筛,得到复合载体材料S-2。经500℃焙烧5小时后,所得载体材料的主要物理化学性质见表1。孔分布见图1。
实施例
3
将255g固体硫酸铝加入到1.2升蒸馏水中,同时加热并搅拌至溶解,得到硫酸铝溶液(a)。将固体偏铝酸钠配制成浓度为20g Al2O3/l铝酸钠溶液 (b),98g癸胺溶解在2.5L无水乙醇中,向其中加入979g改性Y型分子筛Y-1(SiO2/Al2O3摩尔比11.0, 晶胞常数为24.42Å,相对结晶度为95%)打浆,制得浆液(c)。取10L水玻璃(工业级,模数为3.0)稀释在20L去离子水中,配置成溶液(d)。取一不锈钢反应罐,置入2l去离子水搅拌加热至65℃后,同时打开存有(a) 、(b) 和(c) 容器的阀门,控制体系的pH=8.0,控制45分钟内将(a) (c)和(d)滴完。保持温度为65℃,pH=8.0,停留20分钟后,向体系中加入溶液(d),按照无定形硅铝中二氧化硅/氧化铝为45/55的重量比例计算的水玻璃的量在10分钟内加完。老化1小时,将罐内物料在100℃下在烘箱内干燥至干基含量15wt%,将物料转移到高压釜中,180℃条件下处理4h,将物料使用乙醇进行溶剂抽提一部分有机物,进行过滤,洗涤至无硫酸根离子,过滤,将滤饼在110℃下干燥10小时,粉碎过筛,得到复合载体材料S-3。经500℃焙烧5小时后,所得载体材料的主要物理化学性质见表1。
实施例
4
将365g固体硫酸铝加入到1.2升蒸馏水中,同时加热并搅拌至溶解,得到硫酸铝溶液(a)。将固体铝酸钠配制成浓度为20g Al2O3/l铝酸钠溶液 (b),224g癸胺溶解在1500ml无水乙醇中,向其中加入2240g改性HZSM-5型分子筛(SiO2/Al2O3=38, 比表面积为350m2/g,相对结晶度为95%)打浆,制得浆液(c)。取10L水玻璃(工业级,模数为3.0)稀释在20L去离子水中,配置成溶液(d)。取一不锈钢反应罐,置入2l去离子水搅拌加热至65℃后,同时打开存有(a)和(c)的容器的阀门,控制体系的pH=8.0,控制45分钟内将(a) 和(c) 滴完。保持温度为65℃,pH=8.0,停留20分钟后,向体系中加入溶液(d),按照无定形硅铝中二氧化硅/氧化铝为45/55的重量比例计算的水玻璃的量在10分钟内加完。老化1小时,将罐内物料在100℃下在烘箱内干燥至干基含量15wt%,将物料转移到高压釜中,180℃条件下处理4h,将物料使用乙醇进行溶剂抽提一部分有机物,进行过滤,洗涤至无硫酸根离子,过滤,将滤饼在110℃下干燥10小时,粉碎过筛,得到复合载体材料S-4。经500℃焙烧5小时后,所得载体材料的主要物理化学性质见表1。
实施例
5
将256g固体氯化铝加入到1.2升蒸馏水中,同时加热并搅拌至溶解,得到氯化铝溶液(a)。将浓氨水加入适量蒸馏水稀释成约10%稀氨水(b),8g 十八胺溶解在60ml无水乙醇中,加入20g改性的氢型β沸石 (SiO2/Al2O3摩尔比为30.0, 晶胞常数为12.00Å,相对结晶度为90%)打浆,形成浆液(c)。取10L水玻璃(工业级,模数为3.0)稀释在20L去离子水中,配置成溶液(d)。取一不锈钢反应罐,罐中加入(a)并搅拌加热至65℃后,打开存有(b)的容器的阀门,控制10分钟之内将罐中体系滴加到pH=4.0,继续滴加(b),打开存有(c)的容器的阀门,控制30分钟内将罐内体系滴加到PH=8.0,控制(c)的容器的阀门,保证此时滴加完成。保持温度为65℃,pH=8.0,停留20分钟后,向体系中加入溶液(d),按照无定形硅铝中二氧化硅/氧化铝为45/55的重量比例计算的水玻璃的量在10分钟内加完。老化1小时,将罐内物料在100℃下在烘箱内干燥至干基含量15wt%,将物料转移到高压釜中,180℃条件下处理4h,将物料使用乙醇进行溶剂抽提一部分有机物,进行过滤,洗涤至无硫酸根离子,过滤,将滤饼在110℃下干燥10小时,粉碎过筛,得到复合载体材料S-5。经500℃焙烧5小时后,所得载体材料的主要物理化学性质见表1。
对比例
1
重复实施例2的合成,不添加有机胺类,制得对比复合载体材料DF-1。经500℃焙烧5小时后,主要物理化学性质见表1。
对比例
2
重复实施例2的合成,不添加Y型分子筛和有机胺类,制得对比载体材料DF-2。经500℃焙烧5小时后,主要物理化学性质见表1。
对比例
3
重复实施例2的合成,不进行水热处理,制得对比载体材料DF-3。经500℃焙烧5小时后,主要物理化学性质见表1。孔分布见图1。
对比例
4
重复实施例4的合成,不进行水热处理,制得对比复合载体材料DF-4。经500℃焙烧5小时后,所得载体材料的主要物理化学性质见表1。
对比例
5
重复实施例5的合成,不添加有机胺类,制得对比复合材料DF-5。经500℃焙烧5小时后,所得载体材料的主要物理化学性质见表1。
对比例
6
重复实施例5的合成,不进行水热处理,制得对比复合材料DF-6。经500℃焙烧5小时后,所得载体材料的主要物理化学性质见表1。
对比例
7
重复实施例5的合成,不添加有机胺类,制得对比复合材料DF-7。经500℃焙烧5小时后,所得载体材料的主要物理化学性质见表1。
表1 复合载体材料主要性质
载体编号 | S-1 | S-2 | S-3 | DF-1 | DF-2 | DF-3 | Y-1 |
比表面积,m2/g | 374 | 506 | 655 | 405 | 350 | 501 | 777 |
孔容,ml/g | 0.74 | 0.60 | 0.41 | 0.51 | 0.81 | 0.60 | 0.36 |
表1续
复合载体材料主要性质
载体编号 | S-4 | S-5 | DF-4 | DF-5 | DF-6 | DF-7 | Z-1 | B-1 |
比表面积,m2/g | 346 | 352 | 342 | 279 | 348 | 281 | 363 | 550 |
孔容,ml/g | 0.31 | 0.75 | 0.31 | 0.27 | 0.74 | 0.63 | 0.24 | 0.40 |
通过表1数据对比看以看出,使用本发明方法在无定形硅铝成胶时加预先饱和吸收有机胺类所制得的分子筛-无定形硅铝复合载体材料,比表面积和孔容得到了大大的提高,可以有效的解决在成胶时造成的无定形硅铝同分子筛之间的团聚甚至堵塞的问题。通过水热处理,是孔分布进一步集中,且均匀形成中孔。
Claims (12)
1.一种催化剂载体材料的制备方法,包括:
(1)将分子筛与有机胺类混合,其中有机胺类的加入量占分子筛重量的1wt%~40wt%;所述的有机胺类为含有10~20个碳原子数的脂肪胺类中的一种或多种;
(2)在无定形硅铝成胶过程中加入步骤(1)得到的混合物,以最终载体材料的重量为基准,分子筛加入量为5wt%~90wt%;
(3)在步骤(2)所述的无定形硅铝成胶结束后进行老化,然后进行水热处理,经过滤、洗涤、干燥,得到催化剂载体材料。
2.按照权利要求1所述的方法,其特征在于所述的有机胺类与分子筛混合方法:将有机胺类直接加入分子筛中,或者将有机胺类溶于溶剂中再加入分子筛中,其中的溶剂为水、低碳醇中的一种或多种;所述的低碳醇为碳原子数为1~5的一元醇中的一种或多种。
3.按照权利要求1所述的方法,其特征在于步骤(1)分子筛与有机胺类混合后,经过滤并干燥后再进行步骤(2)。
4.按照权利要求1所述的方法,其特征在于步骤(2)中所述的无定形硅铝的成胶过程是酸性物料和碱性物料的中和反应过程,成胶过程采用酸碱连续中和滴定的方式,或者采用两种物料并流中和的方式。
5.按照权利要求1所述的方法,其特征在于步骤(2)中,无定形硅铝成胶过程为酸性物料和碱性物料的中和反应过程,成胶过程采用两种物料并流成胶操作方式,或一种物料放置在成胶罐中另一种物料连续加入成胶的操作方式。
6.按照权利要求5所述的方法,其特征在于步骤(2)中,成胶物料包括铝源为Al2(SO4)3、AlCl3、Al(NO3)3和NaAlO2中的一种或几种,硅源为水玻璃、硅溶胶和有机含硅化合物中的一种或几种,沉淀剂为NaOH、NH4OH、CO2中的一种或多种。
7.按照权利要求1所述的方法,其特征在于步骤(1)中,所述的分子筛八面沸石、β沸石、Ω沸石、丝光沸石、L沸石、ZSM系列分子筛、SAPO系列分子筛、MCM系列分子筛中的一种或几种。
8.按照权利要求1或7所述的方法,其特征在于步骤(1)中,所述的分子筛的加入状态是干粉状加入,或者是以浆液形态加入。
9.按照权利要求1所述的方法,其特征在于步骤(2)中,步骤(1)所得的混合物的引入方式采用下述方式的一种或几种组合:(1)在成胶中和反应过程中,将该混合物连续加入成胶罐中;(2)将该混合物先加入到成胶罐中,然后将制备无定形硅铝的酸性物料和碱性物料中和成胶;(3)将该混合物与成胶物料的一种或几种混合,然后成胶物料中和成胶。
10.按照权利要求1所述的方法,其特征在于步骤(3)中,在水热处理前,经过滤或加热浓缩处理,除去过量的水分及有机物,所述的加热浓缩为在90~110℃下加热步骤(2)所得产品,加热至不流动的糊膏状。
11.按照权利要求1所述的方法,其特征在于步骤(3)中,所述的水热处理在密闭容器内进行的,水热处理的温度为90~300℃,所述的水热处理为在物料处理温度时所产生的自身的压力条件下进行,所述的水热处理时间为0.5~48h。
12.按照权利要求1所述的方法,其特征在于步骤(3)中,所述的水热处理在密闭容器内进行的,水热处理的温度为100~250℃,所述的水热处理为在物料处理温度时所产生的自身的压力条件下进行,所述的水热处理时间为1~36h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110355826.6A CN103100438B (zh) | 2011-11-11 | 2011-11-11 | 含分子筛和无定形硅铝的催化剂载体材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110355826.6A CN103100438B (zh) | 2011-11-11 | 2011-11-11 | 含分子筛和无定形硅铝的催化剂载体材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103100438A CN103100438A (zh) | 2013-05-15 |
CN103100438B true CN103100438B (zh) | 2014-12-10 |
Family
ID=48308828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110355826.6A Active CN103100438B (zh) | 2011-11-11 | 2011-11-11 | 含分子筛和无定形硅铝的催化剂载体材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103100438B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104667985B (zh) * | 2013-11-29 | 2017-03-01 | 中国石油化工股份有限公司 | 一种催化湿式氧化催化剂及其制备方法 |
CN104667935B (zh) * | 2013-11-29 | 2017-02-08 | 中国石油化工股份有限公司 | 催化湿式氧化催化剂及其制备方法 |
CN115364894B (zh) * | 2022-08-25 | 2023-06-06 | 太原理工大学 | 一种高选择性的甲醇制烯烃催化剂的制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101172260A (zh) * | 2006-11-01 | 2008-05-07 | 中国石油化工股份有限公司 | 一种加氢催化剂的制备方法 |
US20110224067A1 (en) * | 2008-12-18 | 2011-09-15 | Richard Franklin Wormsbecher | Novel ultra stable zeolite y and method for manufacturing the same |
-
2011
- 2011-11-11 CN CN201110355826.6A patent/CN103100438B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101172260A (zh) * | 2006-11-01 | 2008-05-07 | 中国石油化工股份有限公司 | 一种加氢催化剂的制备方法 |
US20110224067A1 (en) * | 2008-12-18 | 2011-09-15 | Richard Franklin Wormsbecher | Novel ultra stable zeolite y and method for manufacturing the same |
Non-Patent Citations (2)
Title |
---|
"MCM-22分子筛的合成与引用研究";牛雄雷;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20070815;第46页 * |
牛雄雷."MCM-22分子筛的合成与引用研究".《中国博士学位论文全文数据库 工程科技Ⅰ辑》.2007,第46页. * |
Also Published As
Publication number | Publication date |
---|---|
CN103100438A (zh) | 2013-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103100438B (zh) | 含分子筛和无定形硅铝的催化剂载体材料的制备方法 | |
CN103801385B (zh) | 一种加氢催化剂组合物 | |
CN103100410B (zh) | 含分子筛的加氢催化剂的制备方法 | |
CN106669770B (zh) | 一种含分子筛的硅铝载体及其制备方法 | |
CN103100434B (zh) | 含分子筛和氧化铝的催化剂载体材料的制备方法 | |
CN103100437B (zh) | 催化剂载体材料的制备方法 | |
CN103100407B (zh) | 含分子筛和无定形硅铝的加氢催化剂的制备方法 | |
CN103100411B (zh) | 一种含分子筛和无定形硅铝的加氢催化剂的制备方法 | |
CN103100439B (zh) | 一种含分子筛和氧化铝的催化剂载体材料的制备方法 | |
CN103100406B (zh) | 一种制备加氢催化剂的方法 | |
CN104588122B (zh) | 一种加氢裂化催化剂载体及其制备方法 | |
CN103801378A (zh) | 含分子筛和氧化铝的加氢催化剂 | |
CN103801365B (zh) | 加氢催化剂的制法 | |
CN104826667B (zh) | 制备加氢裂化催化剂载体的方法 | |
CN103100436B (zh) | 催化剂载体干胶粉的制备方法 | |
CN103100443B (zh) | 一种含分子筛和无定形硅铝的催化剂载体材料的制备方法 | |
CN103100405B (zh) | 一种含分子筛的加氢催化剂的制备方法 | |
CN103801379A (zh) | 含分子筛和无定形硅铝的加氢催化剂 | |
CN103100409B (zh) | 制备加氢催化剂的方法 | |
CN103801373B (zh) | 制备加氢催化剂的方法 | |
CN103801370B (zh) | 一种含分子筛和无定形硅铝的加氢催化剂的制备方法 | |
CN103100435B (zh) | 一种催化剂载体干胶粉的制备方法 | |
CN103100440B (zh) | 一种催化剂载体材料的制备方法 | |
CN103801381B (zh) | 含分子筛和无定形硅铝的加氢催化剂的制备方法 | |
CN103801377A (zh) | 一种加氢催化剂的制法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |