CN103094051B - 一种同向双通道飞行时间质谱仪 - Google Patents
一种同向双通道飞行时间质谱仪 Download PDFInfo
- Publication number
- CN103094051B CN103094051B CN201310016591.7A CN201310016591A CN103094051B CN 103094051 B CN103094051 B CN 103094051B CN 201310016591 A CN201310016591 A CN 201310016591A CN 103094051 B CN103094051 B CN 103094051B
- Authority
- CN
- China
- Prior art keywords
- ion
- time
- binary channels
- mass spectrometer
- flight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 150000002500 ions Chemical class 0.000 claims abstract description 101
- 238000001420 photoelectron spectroscopy Methods 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 9
- 238000001941 electron spectroscopy Methods 0.000 claims abstract description 6
- 238000001819 mass spectrum Methods 0.000 claims description 16
- 238000003384 imaging method Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 5
- 238000001228 spectrum Methods 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 241000219739 Lens Species 0.000 claims description 3
- 210000000695 crystalline len Anatomy 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 3
- 150000001450 anions Chemical class 0.000 claims description 2
- 238000004611 spectroscopical analysis Methods 0.000 claims description 2
- 239000007921 spray Substances 0.000 claims description 2
- 238000002474 experimental method Methods 0.000 abstract description 3
- 238000004544 sputter deposition Methods 0.000 abstract 2
- 238000001427 incoherent neutron scattering Methods 0.000 abstract 1
- 238000001269 time-of-flight mass spectrometry Methods 0.000 abstract 1
- 239000010931 gold Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010183 spectrum analysis Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005442 molecular electronic Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/004—Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
- H01J49/009—Spectrometers having multiple channels, parallel analysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/40—Time-of-flight spectrometers
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
一种同向双通道飞行时间质谱仪,该质谱仪包括并行的双通道加速器(1)、小型真空腔体(2)、激光溅射离子源(3)、离子信号探测器(4)、(5)和离子准直器(6);激光溅射离子源(3)产生的离子进入双通道加速器(1)时,前后两段分别被同向加速至离子信号探测器(4)和(5)探测。离子源产生的离子束经过准直器被双通道飞行时间质量分析器分割成上下两部分,并且分别被横向加速,偏转,聚焦到达上下两个探测器,记录离子飞行时间质谱。如果上面探测器被电子能量分析仪取代,那么可以同时进行选择某一个离子的光电子能谱实验。本发明与电子能量分析仪结合可快速地对所有质量峰的离子方便地进行激光辐照实验,测量的某一离子的电子能谱与其质量峰的飞行时间有严格的对应关系,且整套仪器紧凑小巧,结构简单,操作方便,更重要的是获得的离子的电子能谱信噪比高,分辨率高。
Description
技术领域
本发明涉及串级飞行时间质谱技术领域,具体涉及一种同向双通道飞行时间质谱仪。
背景技术
飞行时间质谱仪是记录分子荷质比的仪器,根据质谱图提供的信息可以进行多种有机物及无机物的定性和定量分析、复杂化合物的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等。光电子能谱(或光电子成像技术)是一束紫外激光去辐照分子或离子,产生的光电子速度被记录下来,反映分子轨道的电子,振动或者转动能级、结构类型等信息。飞行时间质谱自1955年W.C.Wiley and I.H.McLaren(Rev.Sci.Instrum.26,1150(1955))采用双场加速技术以来发展快速,在许多领域有重要应用。飞行时间质谱与光电子能谱(或者光电子成像)结合可以研究复杂化合物的结构和性质,对于分子电子能级水平甚至振动,转动能级水平研究有着重要的意义。飞行时间质谱-光电子能谱(或者光电子成像)复合谱技术在研究有机分子,自由基,团簇领域里起着关键作用。
这种传统的飞行时间质谱-光电子能谱(或者光电子成像)技术中,加速器的电极板采用单孔贴金属栅网来传输离子,离子信号探测器坐落于加速器的一定距离处,我们称为“聚焦点(Space focus spot)”。这样不同离子的飞行时间就能分开。我们通过探测同一时间到达的离子信号为同一质量的离子信号。但是它有一个致命的弱点就是,耦合光电子能谱(或者光电子成像)时在理论上需要把它放置在那个“聚焦点”处,那么实际上就会与,离子信号探测器冲突。通常世界上许多研究组(Rev.Sci.Instrum.77,123901(2006);Rev.Sci.Instrum.70,1957(1999);J.Phys.Chem.A2003,107,8215-8224;Chin.J.Chem.Phys.23,373(2010);Chin.J.Chem.Phys.22,655(2009).)的做法是把光电子能谱(或者光电子成像)放置在离“聚焦点”一定距离的地方(一般5-20厘米),称之为“探测区”。根据双场加速原理,在这个探测区,离子的时间分布和空间分布相对于“聚焦点”很散。这样导致以下几方面的弱点:在脉冲工作方式研究中,特别是利用纳秒激光去辐照“探测区”的离子进行研究时,需要很好的时间聚焦和空间聚焦特性。然而在“探测区”,由于时间上相对于“聚焦点”加宽了2倍以上,空间离子分布体积增大了至少8倍,那么“探测区”的单位体积离子相比于“聚焦点”,其强度要弱至少一个量级,从而降低了采集效率,电子信号的信噪比,和电子能量的分辨率。
发明内容
为了克服现有技术存在的缺陷,本发明的目的是提供一种同向双通道飞行时间质谱仪。
本发明提供了一种同向双通道飞行时间质谱仪,该质谱仪紧凑小巧,包括并行的双通道加速器(1)、小型真空腔体(2)、激光溅射离子源(3)、离子信号探测器(4)、(5)和离子准直器(6);离子准直器(6)将小型真空腔体(2)分割成两部分,距离子准直器(6)正上方5cm处安装激光溅射离子源(3),距准直器正下方10cm处垂直安装一组并行的双通道加速器(1),其中激光溅射离子源(3)出口、离子准直器(6)孔中心和双通道加速器(1)两加速片中点处于同一中线轴线上。距这一中心轴线右方43.5cm处分别放置上下两个离子信号探测器(4)、(5),分别用于探测上下两通道的离子飞行时间质谱。
本发明提供的同向双通道飞行时间质谱仪,激光溅射离子源(3)由激光照射金属靶面产生的激光等离子体,再与超声分子束作用产生的离子复合物经喷口喷出,该离子束经过离子准直器(6)后飞行一段时间进入双通道加速器(1)中心,由于离子束在飞行路径上具有一定的长度,离子束被加速器的上下两个孔道(孔道直径1.6cm,间距4.5cm)分割成两段,并且分别被横向加速,偏转,聚焦至离子信号探测器(4)和(5)探测,最后记录的是上下两通道的离子飞行时间质谱。
本发明提供的同向双通道飞行时间质谱仪,所述激光溅射离子源(3)采用脉冲激光超声分子束负离子源。所述双通道加速器(1)的电极板采用双孔并贴栅网,上下两组并行的偏转板,上下两组并行的离子透镜。
本发明提供的同向双通道飞行时间质谱仪,当并行的双通道加速器(1)上下两段都采用同一脉冲加速电压,离子信号探测器(4)和(5)探测得到的都是同一极性离子信号。当并行的双通道加速器(1)上下两孔分别采用正负脉冲加速电压,离子信号探测器(4)和(5)探测得到的是相反极性的离子信号。
本发明提供的同向双通道飞行时间质谱仪,该质谱仪设备小巧,结构简单。
本发明提供的同向双通道飞行时间质谱仪,该质谱仪能被用来耦合其它光谱学仪器来进行多任务并行操作。例如:所述质谱仪和光电子能谱耦合;耦合方式为上方的离子信号探测器(4)被电子能谱仪或者光电子成像仪(7)(如图3所示)代替,可以进行单一质量离子的电子能谱测量,而下方的离子信号探测器(5)可以同时进行离子信号的探测,这种耦合方式使得我们进行离子信号探测的同时进行某一质量离子的能谱采集。
本发明提供的同向双通道飞行时间质谱仪,由上通道电子能谱仪(7)进行某一离子的电子能谱测量时,其激光出光时间等于下通道探测器(4)测得某一离子飞行时间质谱加上一个时间常数(为辐照激光内部的电路延时,一般为几百纳秒)。
本发明中,光电子能谱仪在上通道飞行时间质谱的“聚焦点”处,“探测区”也是“聚焦点”。当对“聚焦点”的离子进行脉冲激光辐照时,其离子强度要比传统的飞行时间质谱“探测区”要高至少一个量级,提高了信号的采集效率,提高了电子信号的信噪比和电子能量的分辨率。
附图说明
图1中(a)为传统飞行时间质谱技术采用的单孔加速器结构示意图;(b)为本发明同向双通道飞行时间质谱仪所采用的双孔加速器结构示意图;
图2为本发明同向双通道飞行时间质谱仪的结构总图;
图3为本发明同向双通道飞行时间质谱仪耦合光电子能谱仪(或者光电子成像仪)的结构总图;
图4为在下通道飞行时间质谱采集的金和碘负离子与水反应的质谱图;
图5为根据金和碘负离子与水反应的飞行时间质谱图,在上通道采集得到相应每个质谱峰的光电子能谱。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明,不能认定本发明的实施方式仅限于以下说明。对本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出简单的推演及替换,都应当视为本发明的保护范围。
本实施例中,加速器电极板如图(1b)中所示,采用双孔加工并贴金属栅网。图(2)中加速器(1)采用图(1b)中的电极板结构,并且采用上下2组偏转板,上下2组离子透镜。末端上下“聚焦点”分别放置离子信号探测器(4)和(5),可以进行质谱分析。当并行的双通道加速器(1)上下两段都采用同一脉冲加速电压,离子信号探测器(4)和(5)探测得到的都是同一极性离子信号;当并行的双通道加速器(1)上下两孔分别采用正负脉冲加速电压,离子信号探测器(4)和(5)探测得到的是相反极性的离子信号。
本实施例中,如图(3)中所示当离子信号探测器(4)被光电子能谱仪(或者光电子成像仪)(7)代替时可以进行离子的电子能谱测量。整个工作流程是:离子源产生的负离子束经过准直器被双通道飞行时间质量分析器分割成上下两部分,并且分别被横向加速,偏转,聚焦到达上下两个“聚焦点”,下通道放置探测器(5)记录离子飞行时间质谱。根据质谱图选择出需要探测光电子能谱的离子M的飞行时间Tf,脉冲激光辐照的出光时间由公式T光=Tf-T延时(T延时为激光器内部电路延时,为一个固定值,事先由光电探测器测定:0.22微秒)决定,这样我们就很方便快速地定位脉冲激光出光时间精确地辐照质谱中的所有离子,无偏差地来探测所有离子的光电子能谱信号。如图(4)所示是图(3)中下通道记录的金和碘负离子与水反应的质谱图。从谱图中既可以看到单一的质量峰(金和碘负离子),也可以看到复杂的多质量峰的离子,如AuO-,Au(OH)-,Au-(H2O)。图(5)是在相同信号累加次数,相同的离子源实验条件下得到的光电子能谱。图(5a)是用传统的光电子成像仪器(Chin.J.Chem.Phys.23,373(2010))采集得到的Au-(H2O)的光电子能谱,图(5b)和图(5c)是利用本发明的仪器所采集到Au-(H2O),AuO-的光电子能谱,反应了相应每个质谱峰的电子能级信息和振动峰特点。对比图(5a)和图(5b),和图(5c)本发明在信号强度上提高了5倍左右,性噪比提高了(Au-(H2O),AuO-主峰右边的小的振动峰也可以清晰地探测到)。
本发明可以应用于质谱分析领域,利用双通道飞行时间质量分析器将离子源产生的离子束分割成上下两部分,并且分别被横向加速,偏转,聚焦到达上下两个探测器,记录离子飞行时间。整套仪器紧凑小巧,结构简单,操作方便,获得的离子的电子能谱信噪比高,分辨率高。
Claims (9)
1.一种同向双通道飞行时间质谱仪,其特征在于:该质谱仪紧凑小巧,包括并行的双通道加速器(1)、小型真空腔体(2)、激光溅射离子源(3)、离子信号探测器(4、5)和离子准直器(6);
离子准直器(6)将小型真空腔体(2)分割成两部分,激光溅射离子源(3)位于离子准直器(6)的上方,并行的双通道加速器(1)位于离子准直器(6)的下方;激光溅射离子源(3)出口、离子准直器(6)孔中心和双通道加速器(1)两加速片中点处于同一中线轴线上;两个离子信号探测器(4、5)位于这一中心轴线的右处;
激光溅射离子源(3)由激光照射金属靶面产生的激光等离子体,再与超声分子束作用产生的离子复合物经喷口喷出,离子束经过离子准直器(6)后飞行一段时间进入双通道加速器(1)中心,由于该离子束在飞行路径上具有一定的长度,该离子束被加速器的上下两个孔道分割成两段,并且分别被横向加速,偏转,聚焦至离子信号探测器(4、5)探测,最后记录的是上下两通道的离子飞行时间质谱。
2.按照权利要求1所述同向双通道飞行时间质谱仪,其特征在于:所述激光溅射离子源(3)采用脉冲激光超声分子束负离子源。
3.按照权利要求1所述同向双通道飞行时间质谱仪,其特征在于:所述双通道加速器(1)的电极板采用双孔并贴栅网,上下两组并行的偏转板,上下两组并行的离子透镜。
4.按照权利要求1所述同向双通道飞行时间质谱仪,其特征在于:当并行的双通道加速器(1)上下两段都采用同一脉冲加速电压,离子信号探测器(4、5)探测得到的都是同一极性离子信号。
5.按照权利要求1所述同向双通道飞行时间质谱仪,其特征在于:当并行的双通道加速器(1)上下两孔分别采用正负脉冲加速电压,离子信号探测器(4、5)探测得到的是相反极性的离子信号。
6.按照权利要求1所述同向双通道飞行时间质谱仪,其特征在于:所述质谱仪能被用来耦合其它光谱学仪器来进行多任务并行操作。
7.按照权利要求6所述同向双通道飞行时间质谱仪,其特征在于:所述质谱仪和光电子能谱耦合;耦合方式为上方的离子信号探测器(4)被电子能谱仪或者光电子成像仪(7)代替,进行单一质量离子的电子能谱测量,而下方的离子信号探测器(5)同时进行离子信号的探测,这种耦合方式使得进行离子信号探测的同时进行某一质量离子的能谱采集。
8.按照权利要求7所述同向双通道飞行时间质谱仪,其特征在于:由上方的电子能谱仪(7)进行某一离子的电子能谱测量时,其激光出光时间等于下方的探测器(5)测得某一离子飞行时间质谱加上一个时间常数。
9.按照权利要求8所述同向双通道飞行时间质谱仪,其特征在于:所述的时间常数为辐照激光内部的电路延时,为几百纳秒。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310016591.7A CN103094051B (zh) | 2013-01-16 | 2013-01-16 | 一种同向双通道飞行时间质谱仪 |
PCT/CN2013/000639 WO2014110699A1 (zh) | 2013-01-16 | 2013-05-30 | 一种同向双通道飞行时间质谱仪 |
RU2014146381A RU2646860C2 (ru) | 2013-01-16 | 2013-05-30 | Двухканальный масс-спектрометр по времени пролета с однонаправленными каналами |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310016591.7A CN103094051B (zh) | 2013-01-16 | 2013-01-16 | 一种同向双通道飞行时间质谱仪 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103094051A CN103094051A (zh) | 2013-05-08 |
CN103094051B true CN103094051B (zh) | 2014-12-24 |
Family
ID=48206488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310016591.7A Expired - Fee Related CN103094051B (zh) | 2013-01-16 | 2013-01-16 | 一种同向双通道飞行时间质谱仪 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN103094051B (zh) |
RU (1) | RU2646860C2 (zh) |
WO (1) | WO2014110699A1 (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103094051B (zh) * | 2013-01-16 | 2014-12-24 | 中国科学院大连化学物理研究所 | 一种同向双通道飞行时间质谱仪 |
CN104597477B (zh) * | 2013-10-31 | 2017-06-30 | 中国科学院大连化学物理研究所 | 一种用于研究负离子体系的光电子成像装置 |
CN103852779B (zh) * | 2014-02-19 | 2016-03-09 | 中国科学院等离子体物理研究所 | 一种同时测算束流质谱与能谱的方法 |
JP6546690B2 (ja) * | 2015-04-01 | 2019-07-17 | 中国原子能科学研究院China Institute Of Atomic Energy | 同位体同時測定機能を有する加速器質量分析装置 |
CN105513936B (zh) * | 2015-12-28 | 2017-06-09 | 广州智纯科学仪器有限公司 | 离子选择方法及装置 |
CN106935478B (zh) * | 2015-12-31 | 2018-08-17 | 合肥美亚光电技术股份有限公司 | 一种离子加速偏转装置 |
CN105789019B (zh) * | 2016-05-23 | 2017-08-01 | 安图实验仪器(郑州)有限公司 | 适于飞行时间质谱仪的离子延时引出模块 |
CN107481915B (zh) * | 2017-08-02 | 2019-01-11 | 金华职业技术学院 | 一种低温下研究光致分离的方法 |
CN110706999A (zh) * | 2018-07-24 | 2020-01-17 | 宁波海歌电器有限公司 | 一种双通道飞行时间质量分析器 |
CN110600360B (zh) * | 2019-08-01 | 2020-10-30 | 复旦大学 | 激光溅射超声分子束源-离子阱质谱装置及其操作方法 |
CN112799120B (zh) * | 2019-11-13 | 2024-03-22 | 中国科学院国家空间科学中心 | 一种离子和电子同步测量的双通道静电分析器 |
CN112114026A (zh) * | 2020-09-14 | 2020-12-22 | 中国科学院化学研究所 | 一种等离子体辅助的金属团簇催化氮气活化解离的方法 |
CN114280005A (zh) * | 2021-12-28 | 2022-04-05 | 中国工程物理研究院材料研究所 | 一种氢及氢同位素的快速分析检测装置及方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2405047C (en) * | 2000-06-28 | 2007-03-27 | The Johns Hopkins University | Time-of-flight mass spectrometer array instrument |
US7115859B2 (en) * | 2002-07-17 | 2006-10-03 | The Johns Hopkins University | Time- of flight mass spectrometers for improving resolution and mass employing an impulse extraction ion source |
US7649170B2 (en) * | 2006-10-03 | 2010-01-19 | Academia Sinica | Dual-polarity mass spectrometer |
CN201152867Y (zh) * | 2007-12-28 | 2008-11-19 | 中国科学技术大学 | 新型红外激光解吸/真空紫外单光子电离质谱分析装置 |
CN103094051B (zh) * | 2013-01-16 | 2014-12-24 | 中国科学院大连化学物理研究所 | 一种同向双通道飞行时间质谱仪 |
-
2013
- 2013-01-16 CN CN201310016591.7A patent/CN103094051B/zh not_active Expired - Fee Related
- 2013-05-30 WO PCT/CN2013/000639 patent/WO2014110699A1/zh active Application Filing
- 2013-05-30 RU RU2014146381A patent/RU2646860C2/ru active
Non-Patent Citations (2)
Title |
---|
Collinear Velocity-Map Photoelectron Imaging Spectrometer for Cluster Anions;WU, X.等;《Chinese Journal of Chemical Physics》;20100827;第23卷(第4期);第373-380页 * |
Continuous Two-Channel Time-of-Flight Mass Spectrometric Detection of Electrosprayed Ions;TRAPP, O.等;《Angewandte Chemmie International Edition》;20041203;第43卷(第47期);第6541-6544页 * |
Also Published As
Publication number | Publication date |
---|---|
WO2014110699A1 (zh) | 2014-07-24 |
RU2646860C2 (ru) | 2018-03-12 |
CN103094051A (zh) | 2013-05-08 |
RU2014146381A (ru) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103094051B (zh) | 一种同向双通道飞行时间质谱仪 | |
US10930480B2 (en) | Ion detectors and methods of using them | |
US20170018415A1 (en) | Divided-aperture laser differential confocal libs and raman spectrum-mass spectrum microscopic imaging method and device | |
CN204086141U (zh) | 原位激光质谱光谱同步测量分析仪 | |
US8373119B2 (en) | Methods of analyzing composition of aerosol particles | |
CN104237175A (zh) | 原位激光质谱光谱同步测量分析仪 | |
RU2010101923A (ru) | Ионно-оптическое устройство с многократным отражением | |
CA2931706A1 (en) | Detectors and methods of using them | |
US20130126727A1 (en) | Time-of-Flight Electron Energy Analyzer | |
CN108169092B (zh) | 大气颗粒物重金属及其同位素在线探测装置及其方法 | |
CN106169411A (zh) | 新型串并联质谱装置系统及其参数调节方法和使用方法 | |
CN207571035U (zh) | 一种激光烧蚀辅助共振激光诱导击穿光谱检测装置 | |
CN103426712A (zh) | 粒径选择气溶胶质谱仪 | |
CN102854240A (zh) | 真空紫外光电离有机气溶胶离子阱质谱仪 | |
CN101149326A (zh) | 真空紫外光电离气溶胶质谱仪 | |
CN102841076A (zh) | 利用连续波激光以及光电倍增管的光谱分析装置 | |
CN109427535A (zh) | 气溶胶质谱仪 | |
CN102543647B (zh) | 气溶胶飞行时间质谱仪信号采集装置 | |
CN203881709U (zh) | 一种光学薄膜激光毁伤的识别装置 | |
JP5553308B2 (ja) | 軽元素分析装置及び分析方法 | |
CN103954680A (zh) | 一种光学薄膜激光毁伤的识别装置及识别方法 | |
JP7019166B2 (ja) | 試料分析装置 | |
JP2640935B2 (ja) | 表面の検査方法および装置 | |
CN220323045U (zh) | 一种单颗粒生物气溶胶多谱联用在线检测系统 | |
Du et al. | The design and characterization of a High-Performance Single-Particle Aerosol Mass Spectrometer (HP-SPAMS) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141224 Termination date: 20200116 |