CN103091842A - 将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法 - Google Patents

将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法 Download PDF

Info

Publication number
CN103091842A
CN103091842A CN2013100372851A CN201310037285A CN103091842A CN 103091842 A CN103091842 A CN 103091842A CN 2013100372851 A CN2013100372851 A CN 2013100372851A CN 201310037285 A CN201310037285 A CN 201310037285A CN 103091842 A CN103091842 A CN 103091842A
Authority
CN
China
Prior art keywords
coordinate
elliptical gaussian
gaussian beam
light beam
circular flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100372851A
Other languages
English (en)
Other versions
CN103091842B (zh
Inventor
刘伟奇
孟祥翔
柳华
魏忠伦
张大亮
吕伟振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201310037285.1A priority Critical patent/CN103091842B/zh
Publication of CN103091842A publication Critical patent/CN103091842A/zh
Application granted granted Critical
Publication of CN103091842B publication Critical patent/CN103091842B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法,属于激光整形技术领域,本发明整形镜组设计方法包括:第一步、求解坐标关系:根据椭圆高斯光束的非旋转对称的光束形状,利用能量守恒定律,推导入射椭圆高斯光束和出射圆形平顶光束在x-y平面内的坐标关系;第二步、求解整形镜组的面形表达式:第一反射镜和第二反射镜的面形方程分别为z=G(x,y)和Z=F(X,Y);经过求导、求积分,推导出第一反射镜和第二反射镜的面形方程式,将第一步由输入坐标r0和θ求出的对应输出坐标ρ和
Figure DDA00002796435600011
的数值解,一起代入面形方程式,求出两反射镜面形方程的数值解;第三步、软件模拟:将第二步中计算出的面形数据数值解输入到光学设计软件中模拟,可显示椭圆高斯光束到圆形平顶光束的转换。

Description

将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法
技术领域
本发明属于激光整形技术领域,具体涉及将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法。
背景技术
激光自问世以来得到了广泛的应用。在激光医疗、材料加工、无掩模光刻、全息等技术领域,往往需要光强分布为平顶函数的激光光束。因此,将激光光束整形为平顶光束尤为必要。目前对激光光束平顶化整形主要有采用二元光学元件、液晶空间光调制器、双折射透镜、基于几何光学方法设计的折射(或反射式)透镜等方法。采用几何光学方法设计的激光光束平顶系统因其具有高能量利用率和适用于高功率激光等优势得到了广泛的应用。
采用几何光学方法设计的激光光束平顶系统包括折射式系统和反射式系统。反射式整形系统不受入射光波长影响,且适用于高功率激光,相比折射式整形系统更具优势,本发明即采用反射式结构。反射式整形系统结构首先由P.H.Malyak提出,他设计的反射式整形系统只针对圆形高斯光束整形,不能对椭圆高斯光束整形。椭圆高斯模是波动方程的精确解之一,部分准分子激光光束和使用单片非球面准直的半导体激光光束均可近似为椭圆高斯光束。随着这类激光器在科研和工程领域的应用,对椭圆高斯光束进行平顶化整形的需求越来越多。
现有技术中D.L.Shealy在‘DesignandanalysisofanellipticalGaussianlaserbeamshapingsystem’一文中提出的椭圆高斯光束整形系统。该论文提供了一种将椭圆高斯光束转化为方形平顶光束的反射式整形系统,首先利用能量守恒定律在直角坐标系下推导了入射光束和出射光束之间的坐标关系,然后利用矢量形式的反射定律和等光程思想推导了直角坐标系下反射系统的面形表达式,通过数值解法和光学软件模拟,实现了将椭圆高斯光束整形为方形平顶光束。但是该文给出的整形系统不能将椭圆高斯光束整形为圆形平顶光束,而在准分子激光医疗、激光加工等领域亦需要光斑形状为圆形的平顶光束。
现有技术中VladimirOliker在‘Opticaldesignoffreeformtwo-mirrorbeam-shapingsystems’提出的不受输入光束和输出光束对称性限制具有普遍适用性的自由曲面双反射镜整形系统设计方法,推导出了表示反射镜面形的二次Monge–Ampère型偏微分方程组,运用该方法将椭圆高斯光束看作矩形对称,入射光束以矩形为孔径,使用变分法数值求解偏微分方程组,求解出两反射镜面形数据,可以将入射光束以矩形为孔径的椭圆高斯光束转化为圆形平顶光束。但是该方法使用变分法对二次Monge–Ampère型偏微分方程组数值求解过程非常复杂,当精度要求较高时,运算时间更长。这种方法相比起传统的利用求解常微分方程或积分公式求反射镜面形数据的方法,不能够利用现有数值计算软件中的函数进行高精度的求解,加大了计算难度。
发明内容
本发明为了克服现有技术存在的缺陷,提供一种将椭圆高斯光束转化为圆形平顶光束的反射式整形镜组设计方法。
本发明设计方法包括以下三个步骤:
第一步、求解坐标关系:
根据椭圆高斯光束的非旋转对称的光束形状,利用能量守恒定律,推导入射椭圆高斯光束和出射圆形平顶光束在x-y平面内的坐标关系;假设入射椭圆高斯光束和出射圆形平顶光束都平行于光轴,(r,θ)为入射椭圆高斯光束的极坐标,
Figure BDA00002796435400023
为出射圆形平顶光束的极坐标;
椭圆高斯光束光强分布表达式为:
I in ( r , θ ) = 2 πω x 0 ω y 0 exp { - 2 r 2 [ ( cos θ ω x 0 ) 2 + ( sin θ ω y 0 ) 2 ] } - - - ( 1 )
其中ωx0和ωy0分别为椭圆高斯光束x和y方向上的束腰,定义ωy0x0=m;为便于后面的积分运算选择积分路径,对椭圆高斯光束的光强分布形式进行化简;将椭圆方程的标准方程转化为如下形式:
r ( r 0 , θ ) = n r 0 / ( n 2 - 1 ) cos 2 θ + 1 - - - ( 2 )
其中a、b分别为椭圆的短轴半径和长轴半径,且a=r0,b/a=n;
当n一定时,入射椭圆高斯光束由(r,θ)转化为(r0,θ)表示;令n=m,则入射椭圆高斯光束光强分布可化简为:
I in ( r 0 , θ ) = 2 πn ω x 0 2 exp ( - 2 r 0 2 ω x 0 2 ) - - - ( 3 )
采用匀化洛伦兹函数作为出射光强分布:
I out ( ρ ) = 1 π R FL 2 1 [ 1 + ( ρ R FL ) q ] 1 + 2 q - - - ( 4 )
式中RFL为出射平顶光强分布的半高宽,q为决定着匀化洛伦兹函数的形状,选择合适的q值,可得到目标出射平顶分布;利用能量守恒定律,即坐标(r,θ)所包含的能量等于坐标
Figure BDA00002796435400033
所包含的能量,可以推导出入射椭圆高斯光束和出射圆形平顶光束之间的坐标关系为
Figure BDA00002796435400034
其中ρ与r0的关系中取正号代表系统无实焦点,取负号代表系统有实焦点;在设计中选择代表无实焦点的坐标关系;给定入射光束各点坐标值(r0,θ),根据公式(2)、(5),采用数值解法求出入射光束各点在出射面对应点的坐标值
Figure BDA00002796435400035
的数值解;
第二步、求解整形镜组面形表达式:
椭圆高斯光束准直入射到第一反射镜,光再由第一反射镜反射到第二反射镜,光经过第一反射镜和第二反射镜组成的整形镜组,最终转化为圆形平顶光束出射;第一反射镜和第二反射镜的面形分别在局部坐标系(x,y,z)和(X,Y,Z)中描述,两局部坐标系均以对应反射镜的轴上中心为原点,面形方程分别为z=G(x,y)和Z=F(X,Y);设局部坐标系(X,Y,Z)的原点在局部坐标系(x,y,z)中的坐标为(X0,Y0,Z0);G(x,y)对x和y的偏导方程为
G x ′ = - x - X - X 0 L - Z 0 - - - ( 6 )
G y ′ = - y - Y - Y 0 L - Z 0 - - - ( 7 )
其中
Figure BDA00002796435400043
设两反射镜的中心在同一y-z平面内,则X0=0;对于入射光束为椭圆高斯光束的情况依靠(6)、(7)做进一步推导,根据x=rcosθ,y=rsinθ,
Figure BDA00002796435400044
Figure BDA00002796435400045
可求出G(r,θ)对r和θ的偏导;已将椭圆高斯光束化为r0和θ的函数,再根据式(2)求出G(r0,θ)对r0和θ的偏导为
Figure BDA00002796435400046
Figure BDA00002796435400048
Figure BDA00002796435400049
Figure BDA000027964354000410
Figure BDA000027964354000411
最后通过积分可求出第一反射镜的面形方程为
Figure BDA000027964354000412
Figure BDA000027964354000413
Figure BDA000027964354000415
Figure BDA000027964354000416
要求出射光束准直出射,则有所有光线经过整形系统时的光程长度相等,根据等光程长度条件,代入x=rcosθ,y=rsinθ,
Figure BDA00002796435400051
Figure BDA00002796435400052
以及式(2),可求出第二反射镜的面形方程为
Figure BDA00002796435400053
将第一步由出输入坐标r0和θ求出的对应输出坐标ρ和
Figure BDA00002796435400056
的数值解,一起代入式(10)、(11),采用数值解法求出两反射镜面形方程的数值解;
第三步、软件模拟:
将第二步中计算出的面形数据数值解输入到光学设计软件中模拟,可显示椭圆高斯光束到圆形平顶光束的转换,实现将椭圆高斯光束转化为圆形平顶光束的整形镜组的设计。
本发明的有益效果:本发明提出了一种将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法,该方法将入射光束定义为椭圆形,不仅更接近椭圆高斯光束的实际情况,还简化了计算过程;使用该方法计算整形系统面形数据时,避免了非常复杂的数值求解偏微分方程,仅需计算积分方程,利用现有的数值计算软件中自带的积分函数即可求得数值解,计算方便、精度高。同时,选择适当的参数,使用该设计方法设计的整形镜组,也可以对圆形高斯光束进行平顶化整形。
附图说明
图1:是本发明所述整形镜组示意图。
图2:是本发明所举示例入射椭圆高斯光束的光束剖面图。
图3:是本发明所举示例入射椭圆高斯光束的光强剖面图。
图4:是本发明所述输入输出光束在x-y平面的坐标关系图。
图5:是本发明所举示例入射光束发散角为零时出射圆形平顶光束的光束剖面图。
图6:是本发明所举示例入射光束发散角为零时出射圆形平顶光束的光强剖面图。
图7:是本发明所举示例入射光束具有实际发散角时出射圆形平顶光束的光束剖面图。
图8:是本发明所举示例入射光束具有实际发散角时出射圆形平顶光束的光强剖面图。
具体实施方式
下面结合附图对本发明做进一步详细说明。
如图1所示,为本发明整形镜组的示意图,椭圆高斯光束准直入射到第一反射镜,光再由第一反射镜反射到第二反射镜,光经过第一反射镜和第二反射镜组成的整形镜组整形后,最终转化为圆形平顶光束出射。
选取美国GAMLASER公司的EX5/250ArF准分子激光器作为输入椭圆高斯光束光源,在水平方向上的光束尺寸为3mm,束腰半径ωx0近似为0.75mm,FWHMx=1mrad;在竖直方向上的光束尺寸为6mm,束腰半径ωy0近似为1.5mm,FWHMy=2mrad;假设入射光束总功率为1W;按照以上数据,在光学软件中模拟EX5/250ArF准分子激光器的光束剖面如图2所示,两正交方向上光强剖面如图3所示。
本发明将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法,具体包括下面步骤:
第一步、求解坐标关系;
根据椭圆高斯光束这种非旋转对称的光束形状,利用能量守恒定律,如图4所示,推导入射椭圆高斯光束和出射圆形平顶光束在x-y平面内的坐标关系;假设入射光椭圆高斯束和出射圆形平顶光束都平行于光轴,(r,θ)为入射椭圆高斯光束的极坐标,
Figure BDA00002796435400061
为出射圆形平顶光束的极坐标;
椭圆高斯光束光强分布传统表达式为
I in ( r , θ ) = 2 πω x 0 ω y 0 exp { - 2 r 2 [ ( cos θ ω x 0 ) 2 + ( sin θ ω y 0 ) 2 ] } - - - ( 1 )
其中ωx0和ωy0分别为EX5/250ArF准分子激光光束x和y方向上的束腰,ωx0=1.5mm,ωy0=3mm,定义ωy0x0=m,此处m=2;为便于以后的积分运算选择积分路径,对椭圆高斯光束的光强分布形式进行化简;首先将椭圆方程的标准方程转化为如下形式
r ( r 0 , θ ) = n r 0 / ( n 2 - 1 ) cos 2 θ + 1 - - - ( 2 )
其中a、b别为椭圆的短轴半径和长轴半径,且a=r0,b/a=n。当n一定时,入射光束由(r,θ)转化为(r0,θ)表示。令n=m,此处n=m=2;则入射椭圆光束光强分布可化简为
I in ( r 0 , θ ) = 2 πn ω x 0 2 exp ( - 2 r 0 2 ω x 0 2 ) - - - ( 3 )
其中ωx0=1.5mm,ωy0=3mm,n=2;出射平顶光强分布函数的表示方法有很多种,为避免采用阶跃函数作为出射平顶光强分布产生的衍射效应,同时又有利于积分计算,采用匀化洛伦兹函数作为出射光强分布:
I out ( ρ ) = 1 π R FL 2 1 [ 1 + ( ρ R FL ) q ] 1 + 2 q - - - ( 4 )
式中RFL为出射平顶光强分布的半高宽,q为决定着匀化洛伦兹函数的形状,选择合适的q值,即可得到目标出射平顶分布;选取RFL=3mm,q=50;利用能量守恒定律,即坐标(r,θ)所包含的能量等于坐标
Figure BDA00002796435400074
所包含的能量,可以推导出入射光束1和出射光束2之间的坐标关系为
Figure BDA00002796435400075
其中ωx0=1.5mm,ωy0=3mm,n=2,RFL=3mm,q=50,r0max=3mm,ρmax根据r0max的值利用ρ与r0的关系式求出;ρ与r0的关系式中取正号代表系统无实焦点,取负号代表系统有实焦点;由于具有实焦点的整形系统有在焦点处空气击穿的危险,在设计中选择代表无实焦点的坐标关系;给定入射光束各点坐标值(r0,θ),根据公式(2)、(5),利用MATLAB或其他可数值计算的软件采用数值解法求出入射光束各点在出射面对应点的坐标值
Figure BDA00002796435400081
的数值解;
第二步、求解整形镜组面形表达式:
第一反射镜和第二反射镜的面形分别在局部坐标系(x,y,z)和(X,Y,Z)中描述,两局部坐标系均以对应反射镜的轴上中心为原点,面形方程分别为z=G(x,y)和Z=F(X,Y);设局部坐标系(X,Y,Z)的原点在局部坐标系(x,y,z)中的坐标为(X0,Y0,Z0),此例中取(X0,Y0,Z0)=(0,10,-20),长度单位为mm。P.H.Malyak在针对圆形高斯光束整形时推导的G(x,y)对x和y的偏导方程为
G x ′ = - x - X - X 0 L - Z 0 - - - ( 6 )
G y ′ = - y - Y - Y 0 L - Z 0 - - - ( 7 )
其中
Figure BDA00002796435400084
X0=0代表两个反射镜的中心在同一y-z平面内。对于入射光束为椭圆高斯光束的情况依靠(6)、(7)做进一步推导,根据x=rcosθ,y=rsinθ,
Figure BDA00002796435400085
Figure BDA00002796435400086
可求出G(r,θ)对r和θ的偏导。因为已将椭圆高斯光束化为r0和θ的函数,再根据式(2)求出G(r0,θ)对r0和θ的偏导为
Figure BDA00002796435400087
Figure BDA00002796435400089
Figure BDA000027964354000810
Figure BDA000027964354000811
Figure BDA000027964354000812
最后通过积分可求出反射镜3的面形方程为
Figure BDA00002796435400092
Figure BDA00002796435400093
Figure BDA00002796435400094
要求出射光束准直出射,则有所有光线经过整形系统时的光程长度相等,根据等光程长度条件,代入x=rcosθ,y=rsinθ,
Figure BDA00002796435400095
以及式(2),可求出第二反射镜的面形方程为
Figure BDA00002796435400097
Figure BDA00002796435400098
Figure BDA00002796435400099
其中
Figure BDA000027964354000910
n=2,X0=0mm,Y0=10mm,Z0=-20mm,负号代表第二反射镜的中心在第一反射镜中心的左侧;将第一步由出输入坐标r0和θ求出的对应输出坐标ρ和
Figure BDA000027964354000911
的数值解,一起代入式(10)、(11),利用MATLAB或其他可数值计算的软件采用数值解法求出两反射镜面形方程的数值解,无需复杂的二次偏微分方程组的求解,计算方便、精度高;应注意的是坐标关系(5)中的角度坐标关系随着积分象限的改变而改变,因此数值计算过程中在式(10)、(11)对角度的积分应随着角度坐标关系的改变而改变;
第三步、软件模拟:
将计算出的面形数据数值解输入到光学设计软件中模拟,或者先将计算出的面形数据数值解通过机械绘图软件或者其他能实现面形拟合的软件将离散的面形数据拟合成连续的面,在面形拟合误差足够小的情况下再输入到光学设计软件中模拟;此例选择直接将计算出的面形数据数值解输入到ZEMAX中;由于面形方程的数值解都是在入射光束为发散角为零的前提下计算出,入射光束发散角为零时,模拟得到的出射圆形平顶准直光束的光束剖面图,如图5所示,出射圆形平顶光束两正交方向上光强剖面图,如图6所示;为了增加模拟的精确性,给入射光束加入发散角,美国GAMLASER公司的EX5/250ArF准分子激光光束在水平和竖直方向上的发散角分别为FWHMx=1mrad和FWHMy=2mrad;模拟得到的出射圆形平顶准直光束的光束剖面图,如图7所示,出射圆形平顶光束两正交方向上光强剖面图,如图8所示,本发明很好的将椭圆高斯光束转换为圆形平顶光束,而且较小的入射光束发散角对本发明的整形效果基本没有影响。

Claims (2)

1.将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法,其特征是,包括以下步骤:
第一步、求解坐标关系:
根据椭圆高斯光束的非旋转对称的光束形状,利用能量守恒定律,推导入射椭圆高斯光束和出射圆形平顶光束在x-y平面内的坐标关系;假设入射椭圆高斯光束和出射圆形平顶光束都平行于光轴,(r,θ)为入射椭圆高斯光束的极坐标,
Figure FDA00002796435300016
为出射圆形平顶光束的极坐标;
椭圆高斯光束光强分布表达式为:
I in ( r , θ ) = 2 πω x 0 ω y 0 exp { - 2 r 2 [ ( cos θ ω x 0 ) 2 + ( sin θ ω y 0 ) 2 ] } - - - ( 1 ) 其中ωx0和ωy0分别为椭圆高斯光束x和y方向上的束腰,定义ωy0x0=m;为便于以后的积分运算选择积分路径,对椭圆高斯光束的光强分布形式进行化简;将椭圆方程的标准方程转化为如下形式:
r ( r 0 , θ ) = n r 0 / ( n 2 - 1 ) cos 2 θ + 1 - - - ( 2 ) 其中a、b分别为椭圆的短轴半径和长轴半径,且a=r0,b/a=n;
当n一定时,入射椭圆高斯光束由(r,θ)转化为(r0,θ)表示;令n=m,则入射椭圆光束光强分布可化简为:
I in ( r 0 , θ ) = 2 πn ω x 0 2 exp ( - 2 r 0 2 ω x 0 2 ) - - - ( 3 )
采用匀化洛伦兹函数作为出射光强分布:
I out ( ρ ) = 1 π R FL 2 1 [ 1 + ( ρ R FL ) q ] 1 + 2 q - - - ( 4 )
式中RFL为出射平顶光强分布的半高宽,q为决定着匀化洛伦兹函数的形状,选择合适的q值,可得到目标出射平顶分布;利用能量守恒定律,坐标(r,θ)所包含的能量等于坐标
Figure FDA00002796435300015
所包含的能量,可以推导出入射椭圆高斯光束和出射圆形平顶光束之间的坐标关系为
Figure FDA00002796435300021
其中ρ与r0的关系中取正号代表系统无实焦点,取负号代表系统有实焦点,在设计中选择代表无实焦点的坐标关系;给定入射光束各点坐标值(r0,θ),根据公式(2)、(5),采用数值解法求出入射光束各点在出射面对应点的坐标值
Figure FDA00002796435300022
的数值解;
第二步、求解整形镜组的面形表达式:
第一反射镜和第二反射镜的面形分别在局部坐标系(x,y,z)和(X,Y,Z)中描述,两局部坐标系均以对应反射镜的轴上中心为原点,面形方程分别为z=G(x,y)和Z=F(X,Y);设局部坐标系(X,Y,Z)的原点在局部坐标系(x,y,z)中的坐标为(X0,Y0,Z0);G(x,y)对x和y的偏导方程为
G x ′ = - x - X - X 0 L - Z 0 - - - ( 6 )
G y ′ = - y - Y - Y 0 L - Z 0 - - - ( 7 ) 其中
Figure FDA000027964353000210
设两反射镜的中心在同一y-z平面内,则X0=0;对于入射光束为椭圆高斯光束的情况,根据式(6)、(7)做进一步推导,根据x=rcosθ,y=rsinθ,
Figure FDA00002796435300025
Figure FDA00002796435300026
可求出G(r,θ)对r和θ的偏导;根据已将椭圆高斯光束化为r0和θ的函数,再根据式(2)求出G(r0,θ)对r0和θ的偏导为
Figure FDA00002796435300027
Figure FDA00002796435300028
Figure FDA00002796435300031
Figure FDA00002796435300032
Figure FDA00002796435300033
最后通过积分可求出第一反射镜的面形方程为
Figure FDA00002796435300034
Figure FDA00002796435300035
Figure FDA00002796435300036
Figure FDA00002796435300037
要求出射光束准直出射,则有所有光线经过整形系统时的光程长度相等,根据等光程长度条件,代入x=rcosθ,y=rsinθ,
Figure FDA00002796435300038
Figure FDA00002796435300039
以及式(2),可求出第二反射镜的面形方程为
Figure FDA000027964353000311
Figure FDA000027964353000312
将第一步由输入坐标r0和θ求出的对应输出坐标ρ和的数值解,一起代入式(10)、(11),采用数值解法求出两反射镜面形方程的数值解;
第三步、软件模拟:
将第二步中计算出的面形数据数值解输入到光学设计软件中模拟,可显示椭圆高斯光束到圆形平顶光束的转换,实现将椭圆高斯光束转化为圆形平顶光束的整形镜组的设计。
2.根据权利要求1所述的将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法,其特征在于,坐标关系式(5)和反射镜面形方程(10)、(11),在m=n=1时,适用于对圆形高斯光束平顶整形。
CN201310037285.1A 2013-01-30 2013-01-30 将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法 Active CN103091842B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310037285.1A CN103091842B (zh) 2013-01-30 2013-01-30 将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310037285.1A CN103091842B (zh) 2013-01-30 2013-01-30 将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法

Publications (2)

Publication Number Publication Date
CN103091842A true CN103091842A (zh) 2013-05-08
CN103091842B CN103091842B (zh) 2015-04-22

Family

ID=48204617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310037285.1A Active CN103091842B (zh) 2013-01-30 2013-01-30 将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法

Country Status (1)

Country Link
CN (1) CN103091842B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279005A (zh) * 2013-05-13 2013-09-04 深圳市绎立锐光科技开发有限公司 激光光源、波长转换光源、合光光源及投影系统
CN103309044A (zh) * 2013-06-28 2013-09-18 哈尔滨工业大学 一种用于实现圆形光束整形为环形光束的方法
CN105739101A (zh) * 2014-12-12 2016-07-06 深圳市绎立锐光科技开发有限公司 匀光结构及匀光系统
CN108581242A (zh) * 2018-01-26 2018-09-28 广州新可激光设备有限公司 一种激光设备打标边缘的能量增强优化方法
CN110441913A (zh) * 2019-08-13 2019-11-12 中国科学院半导体研究所 用于激光充电且无损能量的光斑转化装置及其应用
CN111897127A (zh) * 2020-08-26 2020-11-06 之江实验室 一种用于抽运激光系统光束整形的自由曲面透镜的优化设计方法
CN112964203A (zh) * 2021-02-08 2021-06-15 杭州晶耐科光电技术有限公司 一种检测粗糙平面面型的掠入射共路自干涉装置
CN114859565A (zh) * 2022-06-07 2022-08-05 中国科学院光电技术研究所 一种同轴反射式激光光束整形方法及装置
CN115032804A (zh) * 2022-06-23 2022-09-09 清华大学 基于轴对称自由曲面反射镜组的光束整形方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295168B1 (en) * 1999-12-15 2001-09-25 International Business Machines Corporation Refractive optical system that converts a laser beam to a collimated flat-top beam
CN101916044A (zh) * 2010-07-27 2010-12-15 浙江大学 一种用于双四极均匀照明的自由曲面透镜
US8031414B1 (en) * 2009-04-24 2011-10-04 Jefferson Science Associates, Llc Single lens laser beam shaper
CN102540474A (zh) * 2012-01-11 2012-07-04 哈尔滨工业大学 一种实现边缘陡峭且光强波动低的平顶光束整形控制方法及其整形装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6295168B1 (en) * 1999-12-15 2001-09-25 International Business Machines Corporation Refractive optical system that converts a laser beam to a collimated flat-top beam
US8031414B1 (en) * 2009-04-24 2011-10-04 Jefferson Science Associates, Llc Single lens laser beam shaper
CN101916044A (zh) * 2010-07-27 2010-12-15 浙江大学 一种用于双四极均匀照明的自由曲面透镜
CN102540474A (zh) * 2012-01-11 2012-07-04 哈尔滨工业大学 一种实现边缘陡峭且光强波动低的平顶光束整形控制方法及其整形装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵阳等: "深紫外光刻照明系统光束整形单元的设计", 《光学精密工程》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279005A (zh) * 2013-05-13 2013-09-04 深圳市绎立锐光科技开发有限公司 激光光源、波长转换光源、合光光源及投影系统
CN103279005B (zh) * 2013-05-13 2015-08-19 深圳市绎立锐光科技开发有限公司 激光光源、波长转换光源、合光光源及投影系统
CN103309044A (zh) * 2013-06-28 2013-09-18 哈尔滨工业大学 一种用于实现圆形光束整形为环形光束的方法
CN103309044B (zh) * 2013-06-28 2015-02-04 哈尔滨工业大学 一种用于实现圆形光束整形为环形光束的方法
CN105739101A (zh) * 2014-12-12 2016-07-06 深圳市绎立锐光科技开发有限公司 匀光结构及匀光系统
CN108581242A (zh) * 2018-01-26 2018-09-28 广州新可激光设备有限公司 一种激光设备打标边缘的能量增强优化方法
CN110441913A (zh) * 2019-08-13 2019-11-12 中国科学院半导体研究所 用于激光充电且无损能量的光斑转化装置及其应用
CN111897127A (zh) * 2020-08-26 2020-11-06 之江实验室 一种用于抽运激光系统光束整形的自由曲面透镜的优化设计方法
CN112964203A (zh) * 2021-02-08 2021-06-15 杭州晶耐科光电技术有限公司 一种检测粗糙平面面型的掠入射共路自干涉装置
CN114859565A (zh) * 2022-06-07 2022-08-05 中国科学院光电技术研究所 一种同轴反射式激光光束整形方法及装置
CN115032804A (zh) * 2022-06-23 2022-09-09 清华大学 基于轴对称自由曲面反射镜组的光束整形方法及系统

Also Published As

Publication number Publication date
CN103091842B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
CN103091842B (zh) 将椭圆高斯光束转化为圆形平顶光束的整形镜组设计方法
Wu et al. Design of freeform illumination optics
CN104516108B (zh) 自由曲面成像系统的设计方法
CN102621694A (zh) 一种条形像散光束整形与准直装置
CN108445641A (zh) 一种可调谐的半导体激光光镊系统
CN105278011B (zh) 一种光纤激光准直整形装置及其设计方法
WO2019024359A1 (zh) 激光光束匀化装置及方法
CN103399408A (zh) 一种用于实现高斯光束整形为平顶光束的方法
CN103336367A (zh) 三维光场调控装置
CN114296245B (zh) 一种拉曼光束整形装置
Yuan et al. Integrated double-sided random microlens array used for laser beam homogenization
CN106291949B (zh) 一种激光束的整形装置
CN103542803B (zh) 基于达曼光栅的同步相移干涉装置
Bortz et al. Generalized functional method of nonimaging optical design
CN107084690A (zh) 一种利用飞秒激光进行角锥棱镜有效面积的测量方法
CN103777263A (zh) 亚波长矩形单周期光栅结构的制作方法及偶数分束器
CN101895051A (zh) 正、反高斯振荡输出平顶激光束的激光谐振腔
Madrid-Sánchez et al. Freeform optics design method for illumination and laser beam shaping enabled by least squares and surface optimization
Duerr et al. Analytic free-form lens design for imaging applications with high aspect ratio
CN107544140B (zh) 基于基因算法的自由曲面透镜设计方法
CN207181837U (zh) 激光光束匀化装置
CN206348536U (zh) 产生阶数可调的焦散光束的光学系统
Kovalev et al. The Calculation of the Diffraction Integral Using Chebyshev Polynomials
CN105607276A (zh) 一种半导体激光器的新型理想非球面准直系统
Hu et al. Design of off-axis double reflection freeform miniaturized antenna

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant