WO2019024359A1 - 激光光束匀化装置及方法 - Google Patents

激光光束匀化装置及方法 Download PDF

Info

Publication number
WO2019024359A1
WO2019024359A1 PCT/CN2017/114221 CN2017114221W WO2019024359A1 WO 2019024359 A1 WO2019024359 A1 WO 2019024359A1 CN 2017114221 W CN2017114221 W CN 2017114221W WO 2019024359 A1 WO2019024359 A1 WO 2019024359A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
prism
laser
incident
cylindrical mirror
Prior art date
Application number
PCT/CN2017/114221
Other languages
English (en)
French (fr)
Inventor
程根
Original Assignee
沈阳雷卓激光医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沈阳雷卓激光医疗器械有限公司 filed Critical 沈阳雷卓激光医疗器械有限公司
Publication of WO2019024359A1 publication Critical patent/WO2019024359A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0966Cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms

Definitions

  • the invention relates to the field of laser shaping, in particular to a laser homogenizing device and a method for converting a Gaussian distribution of a laser energy distribution into a flat top type uniform distribution.
  • the optical power distribution of the laser cross section is generally Gaussian, that is, the center power is large, and the power to the edge is smaller.
  • the power distribution of the laser is required to be a flat-topped uniform distribution, so some optical shaping methods must be used to achieve this.
  • the main flat-topping optical shaping schemes include aperture aperture interception method, diffractive optical element method, microlens array shaping method, and aspheric lens method.
  • the shortcomings in the implementation of the above shaping scheme are obvious, as follows:
  • the aperture aperture method can achieve the simplest flat-top light output. However, the homogenization effect obtained by this method is not good, and the light energy loss is serious; the diffractive optical element method can only be designed according to the requirements.
  • the laser damage threshold of the scheme is compared.
  • Low can only be applied to low-power lasers, and the design and manufacturing cost of the diffractive optical element is high, and the assembly precision is more demanding; the microlens array shaping method is costly, the area achieved is too small, and the product interference fringe is easy. Disadvantages; the production cost of aspherical mirrors in the aspherical lens method is also high. Therefore, there is a need for a laser shaping solution that is inexpensive and has a good shaping effect.
  • the present invention proposes a laser beam homogenizing apparatus and method to provide a laser shaping solution with low cost and good shaping effect.
  • a laser beam homogenizing apparatus of the present invention is used for homogenizing a laser having a Gaussian distribution of power, comprising: a diverging optical element group for converting incident laser light into divergent light; and a beam splitting optical element group, It is used to split the divergent light and superimpose the split laser to form a flat top beam.
  • the diverging optical element group includes: a first direction cylindrical mirror for converting incident light into divergent light in a first direction; and a second direction cylindrical mirror for converting incident light into a second direction Divergent light;
  • the beam splitting optical element group includes: a first direction prism for splitting incident light with respect to the first direction; and a second direction prism for splitting incident light thereof with respect to the second direction;
  • the direction is orthogonal to the second direction; the first direction cylindrical mirror, the second direction cylindrical mirror, the first direction prism, and the second direction prism are sequentially arranged along the light propagation direction, and the incident laser light is first
  • the direction cylindrical mirror is injected, and sequentially passes through the second direction cylindrical mirror and the first direction prism, and the second direction prism is emitted to form a flat top beam.
  • the diverging optical element group includes: a first direction cylindrical mirror for converting incident light into divergent light in a first direction; and a second direction cylindrical mirror for converting incident light into a second direction Divergent light;
  • the beam splitting optical element group includes: a first direction prism for splitting incident light with respect to the first direction; and a second direction prism for splitting incident light thereof with respect to the second direction;
  • the direction is orthogonal to the second direction;
  • the first direction cylindrical mirror, the first direction prism, the second direction cylindrical mirror, and the second direction prism are sequentially arranged along the light propagation direction, and the incident laser light is injected by the first direction cylindrical mirror And passing through the first direction prism and the second direction cylindrical mirror in sequence, and the second direction prism is emitted to form a flat top beam.
  • the diverging optical element group includes: a first direction cylindrical mirror for converting incident light into divergent light in a first direction; and a second direction cylindrical mirror for converting incident light into a second direction Divergent light;
  • the beam splitting optical element group includes: a first direction prism for splitting incident light with respect to the first direction; and a second direction prism for splitting incident light thereof with respect to the second direction;
  • the direction is orthogonal to the second direction;
  • the first direction cylindrical mirror, the second direction cylindrical mirror, the second direction prism, and the first direction prism are sequentially arranged along the light propagation direction, and the incident laser light is injected by the first direction cylindrical mirror And sequentially passing through the second direction cylindrical mirror and the second direction prism, and the first direction prism is emitted to form a flat top beam.
  • the diverging optical element group includes: a first direction cylindrical mirror for converting incident light into divergent light in a first direction; and a second direction cylindrical mirror for converting incident light into a second direction Diverging light;
  • the beam splitting optical element group includes: a bidirectional prism for splitting the incident light with respect to the first direction and the second direction; the first direction is orthogonal to the second direction; the first direction cylindrical mirror, the first The two-direction cylindrical mirror and the bidirectional prism are arranged in the order of the light propagation direction, and the incident laser light is incident from the first direction cylindrical mirror, and the second direction cylindrical mirror is emitted by the bidirectional prism to form a flat top beam.
  • the divergent optical element group includes: a circular concave lens for converting its incident light into a circular divergent light;
  • the beam splitting optical element group includes: a bidirectional prism for incident light about the first direction, the second The direction is split; the first direction is orthogonal to the second direction; the circular concave lens and the bidirectional prism are arranged in the order of the light propagation direction, and the incident laser light is incident by the circular concave lens, and is emitted through the bidirectional prism to form a flat top beam.
  • the present invention also provides a laser beam homogenization method for homogenizing a laser having a Gaussian distribution of power, comprising: converting incident laser light into divergent light; splitting the divergent light, and dividing the beam The laser after the beam is superimposed to form a flat-top beam.
  • the incident laser light is diverged in the first direction to obtain divergent light in the first direction; the divergent light in the first direction is diverged in the second direction, and converted into divergent light, and the first direction is orthogonal to the second direction.
  • the splitting of the divergent light comprises: splitting the divergent light with respect to the first direction, the power distribution of the split laser light is symmetric about the first direction; and the splitting of the laser light about the first direction with respect to the second direction
  • the beam, the power distribution of the split laser light is symmetrical about the first and second directions, and the first direction is orthogonal to the second direction.
  • the sum of the powers of the laser beams after the splitting on the set plane is the same value.
  • the beneficial effects of the present invention are that, by the laser beam homogenizing device and method of the present invention, the cost of shaping the laser having a Gaussian distribution of power distribution into flat top light is low, the wavelength is not selective, and the rectangular spot size is flexible and adjustable, and It has a good homogenization effect in a large depth of field.
  • 1A is a schematic view showing the structure and optical path of a laser beam homogenizing apparatus according to an embodiment of the present invention.
  • FIG. 1B is a schematic diagram of power distribution of incident light according to an embodiment of the present invention.
  • FIG. 1C is a schematic diagram of power distribution of emitted light according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a laser beam homogenizing apparatus according to a second embodiment of the present invention.
  • 3A is a schematic structural view of a laser beam homogenizing apparatus according to a third embodiment of the present invention.
  • 3B is a power distribution diagram of incident light according to a third embodiment of the present invention.
  • 3C is a power distribution diagram of emitted light according to a third embodiment of the present invention.
  • 3D is a power distribution diagram of the exiting light having a second cylindrical mirror having a radius of curvature of 12 mm in the third embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a laser beam homogenizing apparatus according to a fourth embodiment of the present invention.
  • Fig. 5 is a schematic structural view of a laser beam homogenizing apparatus according to a fifth embodiment of the present invention.
  • Fig. 6 is a schematic structural view of a laser beam homogenizing apparatus according to a sixth embodiment of the present invention.
  • FIG. 7 is a flow chart showing the steps of a laser beam homogenization method according to an embodiment of the present invention.
  • a laser beam homogenizing device for homogenizing a laser having a Gaussian distribution of power includes: a diverging optical element group 100 for converting incident laser light into divergent light; and a beam splitting optical element group 200, It is used to split the divergent light and superimpose the split laser to form a flat top beam.
  • FIG. 1B is a schematic diagram of power distribution of incident light according to an embodiment of the present invention
  • FIG. 1C is a schematic diagram of power distribution of emitted light according to an embodiment of the present invention.
  • the incident light is a laser having a Gaussian power distribution, which is diverged after passing through the divergent optical element group 100, and the energy distribution of the output light (diverging light) of the divergent optical element 100 is shown. Center-symmetrical to facilitate subsequent input operations.
  • the beam splitting optical element group 200 has input light as output light (diverging light) of the diverging optical element 100, and the divergent light is split into a plurality of laser beams by the beam splitting optical element group 200, and the energy distribution of the multiple laser beams is symmetrical with each other.
  • the plurality of laser beams after the beam continue to propagate forward, and are collectively irradiated on a set surface, and the plurality of laser beams are superimposed on each other (the two quadrilaterals filled with different twill lines are superimposed on each other in FIG. 1A), and finally a flat top beam is formed.
  • FIG. 1A only shows the power distribution state of the input light and the output light in a single direction, and those skilled in the art should understand that the spatial distribution of the input light and the output light respectively is Gaussian distribution and uniform distribution. .
  • the diverging optical element group includes: a first direction cylindrical mirror 110 for converting its incident light into divergent light in a first direction; and a second direction cylindrical mirror 120.
  • the beam splitting optical element group includes: a first direction prism 210 for splitting the incident light with respect to the first direction; and a second direction prism 220 for Splitting the incident light with respect to the second direction;
  • the first direction is orthogonal to the second direction;
  • the first direction cylindrical mirror 110, the second direction cylindrical mirror 120, the first direction prism 210, and the second direction prism 220 The light propagation directions are sequentially arranged, and the incident laser light is incident from the first direction cylindrical surface 110, sequentially passes through the second direction cylindrical mirror 120 and the first direction prism 210, and is emitted from the second direction prism 220 to form a flat top beam.
  • the incident light is a laser having a Gaussian power distribution, and after passing through the first direction cylindrical mirror 110 in the divergent optical element group, the incident light is converted into divergent light in a first direction, and then the divergent light in the first direction
  • the input to the second direction cylindrical mirror 120 continues to be converted into divergent light in the second direction, and thus the output light of the second direction cylindrical mirror 120 is symmetrical with respect to the second direction with respect to the first direction.
  • the first direction is perpendicular to the second direction, that is, the hair
  • the energy distribution of astigmatism is centrally symmetric.
  • the divergent light continues to pass through the first direction prism 210, and is divided into two beams of laser light symmetric about the first direction, and the two laser beams pass through the second direction prism 220, each of which is divided by the second direction prism 220.
  • Two laser beams symmetric about the second direction.
  • four laser beams symmetrical about the first direction and the second direction are output through the second direction prism. Since the power distribution of the output light is respectively symmetrical with respect to the first direction and the second direction, after a certain distance is propagated, the surfaces are collectively irradiated on a set distance, and the powers are superimposed on each other to form a flat-top beam.
  • the diverging optical element group includes: a first direction cylindrical mirror 110 for converting its incident light into divergent light in a first direction; and a second direction cylindrical mirror 120.
  • the beam splitting optical element group includes: a first direction prism 210 for splitting the incident light with respect to the first direction; and a second direction prism 220 for Dividing the incident light with respect to the second direction; the first direction is orthogonal to the second direction; the first direction cylindrical mirror 110, the first direction prism 210, the second direction cylindrical mirror 120, and the second direction prism 220
  • the light propagation directions are sequentially arranged, and the incident laser light is incident from the first direction cylindrical surface 110, sequentially passes through the first direction prism 210 and the second direction cylindrical mirror 120, and is emitted from the second direction prism 220 to form a flat top beam.
  • the incident light is a laser having a Gaussian distribution of power, and after passing through the first direction cylindrical mirror 110 in the divergent optical element group, the incident light is converted into a divergent light output in a first direction, according to the direction of propagation of the light, the first
  • the divergent light in one direction is input to the first direction prism 210, and the divergent light in the first direction is split into two beams with respect to the first direction.
  • the two laser beams continue to propagate forward through the second direction cylindrical mirror 120, which is converted into divergent light in both the first direction and the second direction.
  • four laser beams that are respectively symmetric about the first direction and the second direction are output through the second direction prism 220.
  • the surfaces are collectively irradiated on a set distance, and the powers are superimposed on each other to form a flat-top beam.
  • the relevant lens parameter combinations of the examples can be selected as follows:
  • the first direction cylindrical mirror flat concave cylindrical mirror, the plane is facing the light source, using K9 glass, the thickness is 1.5mm ⁇ 2.5mm, the radius of curvature at the concave surface is 15mm ⁇ 25mm, and the distance from the origin is 8mm ⁇ 12mm;
  • the first direction prism the plane faces the light source, uses K9 glass, the thickness is 2mm ⁇ 4mm, the angle between the two inclined surfaces is 20° ⁇ 35°, and the distance from the origin is 10mm ⁇ 16mm;
  • the second direction cylindrical mirror double concave cylindrical mirror, using K9 glass, thickness 1.8mm ⁇ 2.2mm, concave curvature half
  • the diameter is 10 mm to 10.8 mm, and the distance from the origin is 16.9 mm to 17.9 mm;
  • the second direction prism the plane faces the light source, uses K9 glass, the thickness is 5mm ⁇ 8mm, the angle between the two slopes is 105° ⁇ 115°, and the distance from the origin is 20mm ⁇ 23mm.
  • the spot energy distribution is as shown in FIG. 3C. It can be seen that the target spot energy distribution is uniform. If the second direction cylindrical mirror with a curvature radius of 12 mm is used, the other lens parameters are unchanged.
  • the light spot energy distribution is shown in Fig. 3D. It can be seen that the target spot energy distribution is centered low and high around, not a flat top beam.
  • the diverging optical element group includes: a first direction cylindrical mirror 110 for converting its incident light into divergent light in a first direction; and a second direction cylindrical mirror 120.
  • the beam splitting optical element group includes: a first direction prism 210 for splitting the incident light with respect to the first direction; and a second direction prism 220 for Dividing the incident light with respect to the second direction; the first direction is orthogonal to the second direction; the first direction cylindrical mirror 110, the second direction cylindrical mirror 120, the second direction prism 220, and the first direction prism 210
  • the light propagation directions are sequentially arranged, and the incident laser light is incident from the first direction cylindrical surface 110, and sequentially passes through the second direction cylindrical mirror 120 and the second direction prism 220, and is emitted from the first direction prism 210 to form a flat top beam.
  • the incident light is a laser having a Gaussian power distribution, and after passing through the first direction cylindrical mirror 110 in the divergent optical element group, the incident light is converted into divergent light in a first direction, and then the divergent light in the first direction
  • the input to the second direction cylindrical mirror 120 continues to be converted into divergent light in the second direction, and thus the output light of the second direction cylindrical mirror 120 is symmetrical with respect to the second direction with respect to the first direction. Also because the first direction is perpendicular to the second direction, that is, the energy distribution of the divergent light is centrally symmetric.
  • the divergent light continues to pass through the second direction prism 220, and is divided into two beams of laser light symmetric about the second direction, and the two laser beams pass through the first direction prism 210, each of which is divided by the first direction prism 210.
  • the two laser beams symmetrical about the second direction
  • four laser beams respectively symmetrical with respect to the first direction and the second direction are output through the first direction prism 210. Since the power distribution of the output light is respectively symmetrical with respect to the first direction and the second direction, after a certain distance is propagated, the surfaces are collectively irradiated on a set distance, and the powers are superimposed on each other to form a flat-top beam.
  • Figure 5 is a schematic view showing the structure of a laser beam homogenizing apparatus according to a fifth embodiment of the present invention.
  • the diverging optical element group includes: a first direction cylindrical mirror 110 for converting incident light into divergent light in a first direction; and a second direction cylindrical mirror 120.
  • the beam splitting optical element group includes: a bidirectional prism 230 for splitting the incident light with respect to the first direction and the second direction; the first direction and the The two directions are orthogonal; the first direction cylindrical mirror 110, the second direction cylindrical mirror 120, and the bidirectional prism 230 The light propagation directions are sequentially arranged, and the incident laser light is incident from the first direction cylindrical surface 110 through the second direction cylindrical mirror 120, and is emitted from the bidirectional prism 230 to form a flat top beam.
  • the beam splitting optical element is a bidirectional prism 230, which can split the incident light, and the split laser light is related to the first direction and the second direction. The direction is symmetrical.
  • the surfaces are collectively irradiated on a set distance, and the powers are superimposed on each other to form a flat-top beam.
  • FIG. 6 is a schematic view showing the structure of a laser beam homogenizing apparatus according to a sixth embodiment of the present invention.
  • the diverging optical element group includes: a circular concave lens 130 for converting its incident light into a circular divergent light; and a beam splitting optical element group including: a bidirectional prism 230, The incident light is split in a first direction and a second direction; the first direction is orthogonal to the second direction; and the concave lens 130 and the bidirectional prism 230 are sequentially arranged along the light propagation direction.
  • the divergent optical element group is a circular concave lens 130 which converts incident light into a circular center-symmetric divergent light.
  • the surfaces are collectively irradiated on a set distance, and the powers are superimposed on each other to form a flat-top beam.
  • the diverging optical element group and the beam splitting optical element group can be adjusted according to the shape of the target spot.
  • the divergent optical component group includes: a first-direction cylindrical mirror for converting its incident light into divergent light in a first direction; and a second-direction cylindrical mirror for The incident light is converted into divergent light in a second direction; the third direction cylindrical mirror is used to convert its incident light into divergent light in a third direction;
  • the beam splitting optical element group includes: a first direction prism for The incident light is split about the first direction; the second direction prism is used for splitting the incident light with respect to the second direction; and the third direction prism is for splitting the incident light with respect to the third direction; the first direction, The angle between any two of the second direction and the third direction is 120°; the first direction cylindrical mirror, the second direction cylindrical mirror, the third direction cylindrical mirror first direction prism, the second direction prism, the first The three-direction pris
  • the advantages of the laser beam homogenizing apparatus of the present invention are as follows:
  • the laser beam homogenizing device of the present invention is not selective for wavelength. Both cylindrical mirrors and prisms can be optically glassed Made of glass, the device is suitable for use in wavelengths where optical glass can pass.
  • the laser damage threshold is high and the light energy loss is low. Since the internal optical element of the laser beam homogenizing device of the present invention can be fabricated using optical glass, the laser damage threshold is high and the light energy loss is low. Optical glass has a very high energy damage threshold and optical transmittance, and a very high laser transmittance can be achieved by plating an optical film on its surface.
  • the rectangular spot size is large and adjustable. Since the generated beam is divergent light, by reasonably changing the prism angle and the radius of curvature of the lens, we can obtain a uniform rectangular beam of a predetermined size at a prescribed distance.
  • the diffractive optical element method, the microlens array shaping method, and the aspherical lens method generally have a better laser homogenization effect on the designed imaging surface, and the homogenization effect rapidly decreases once the image is moved in front of the image.
  • the laser beam homogenizing apparatus of the embodiment of the present invention After the laser beam homogenizing apparatus of the embodiment of the present invention is introduced, next, the laser beam homogenizing method of the embodiment of the present invention will be described.
  • the implementation of the method reference may be made to the implementation of the above device, and the repeated description is omitted.
  • FIG. 7 is a flow chart showing the steps of a laser beam homogenization method according to an embodiment of the present invention.
  • a laser beam homogenization method is used for homogenizing a laser having a Gaussian distribution of power, including: S100, converting incident laser light into divergent light; S200, splitting divergent light, and splitting the beam The lasers are superimposed to form a flat-top beam.
  • the incident laser light is converted into divergent light, including:
  • the divergent light splitting includes:
  • splitting the laser beam after splitting in the first direction with respect to the second direction, the power distribution of the split laser light is symmetric about the first and second directions, and the first direction is orthogonal to the second direction.
  • the sum of the powers of the laser beams after splitting on the set plane is the same value.
  • the beneficial effects of the present invention are that, by the laser beam homogenizing device and method of the present invention, the cost of shaping the laser having a Gaussian distribution of power distribution into flat top light is low, the wavelength is not selective, and the rectangular spot size is flexible and adjustable, and It has a good homogenization effect in a large depth of field.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

一种激光光束匀化装置及方法,用于匀化功率分布为高斯分布的激光,该激光光束匀化装置包括:发散光学元件组(100),用于将入射的激光转换为发散光;分束光学元件组(200),用于对发散光分束,并将分束后的激光叠加形成平顶光束。该激光光束匀化装置及方法将功率分布为高斯分布的激光整形为平顶光的成本低,对波长没有选择性,矩形光斑尺寸灵活可调,并且在较大景深范围内均具有较好匀化效果。

Description

激光光束匀化装置及方法 技术领域
本发明涉及激光整形领域,尤其涉及一种激光匀化装置及方法,将激光能量分布的高斯分布转化为平顶式的均匀分布。
背景技术
激光横截面的光功率分布一般为高斯分布,即中心功率大,越到边缘功率越小。但是在某些应用领域如激光焊接、激光表面处理和激光医学中,要求激光的功率分布为平顶式的均匀分布,所以必须使用某些光学整形方法以实现该目的。目前主要的平顶光整形方案有:孔径光阑拦截法、衍射光学元件法、微透镜阵列整形法、非球面透镜法等。以上整形方案实施过程中缺点明显,具体如下:孔径光阑法可实现最简单的平顶光输出。但是该方法得到的匀化效果不佳,且光能损失严重;衍射光学元件法只能根据需求进行针对性的设计,一旦改变激光波长等参数就必须重新设计,且该方案的激光损伤阈值较低,只能应用于小功率激光,并且衍射光学元件的设计与制造成本较高,且装配精度要求较为严苛;微透镜阵列整形法成本较高、实现的区域过小、容易产品干涉条纹的缺点;非球面透镜法中非球面镜的制作成本同样较高。因此,目前需要一种成本低廉并且整形效果好的激光整形方案。
发明内容
为了解决上述问题,本发明提出了一种激光光束匀化装置及方法,以提供一种成本低廉并且整形效果好的激光整形方案。
为了达到上述目的,本发明的激光光束匀化装置,用于匀化功率分布为高斯分布的激光,包括:发散光学元件组,用于将入射的激光转换为发散光;分束光学元件组,用于对发散光分束,并将分束后的激光叠加形成平顶光束。
进一步的,发散光学元件组包括:第一方向柱面镜,用于将其入射光转换为第一方向上的发散光;第二方向柱面镜,用于将其入射光转换为第二方向上的发散光;分束光学元件组包括:第一方向棱镜,用于对其入射光关于第一方向分束;第二方向棱镜,用于对其入射光关于第二方向分束;第一方向与第二方向正交;第一方向柱面镜、第二方向柱面镜、第一方向棱镜、第二方向棱镜沿光线传播方向依次排列,入射的激光由第一 方向柱面镜射入,依次通过第二方向柱面镜以及第一方向棱镜,由第二方向棱镜射出形成平顶光束。
进一步的,发散光学元件组包括:第一方向柱面镜,用于将其入射光转换为第一方向上的发散光;第二方向柱面镜,用于将其入射光转换为第二方向上的发散光;分束光学元件组包括:第一方向棱镜,用于对其入射光关于第一方向分束;第二方向棱镜,用于对其入射光关于第二方向分束;第一方向与第二方向正交;第一方向柱面镜、第一方向棱镜、第二方向柱面镜、第二方向棱镜沿光线传播方向依次排列,入射的激光由第一方向柱面镜射入,依次通过第一方向棱镜以及第二方向柱面镜,由第二方向棱镜射出形成平顶光束。
进一步的,发散光学元件组包括:第一方向柱面镜,用于将其入射光转换为第一方向上的发散光;第二方向柱面镜,用于将其入射光转换为第二方向上的发散光;分束光学元件组包括:第一方向棱镜,用于对其入射光关于第一方向分束;第二方向棱镜,用于对其入射光关于第二方向分束;第一方向与第二方向正交;第一方向柱面镜、第二方向柱面镜、第二方向棱镜、第一方向棱镜沿光线传播方向依次排列,入射的激光由第一方向柱面镜射入,依次通过第二方向柱面镜以及第二方向棱镜,由第一方向棱镜射出形成平顶光束。
进一步的,发散光学元件组包括:第一方向柱面镜,用于将其入射光转换为第一方向上的发散光;第二方向柱面镜,用于将其入射光转换为第二方向上的发散光;分束光学元件组包括:双向棱镜,用于对其入射光关于第一方向、第二方向分束;第一方向与第二方向正交;第一方向柱面镜、第二方向柱面镜、双向棱镜沿光线传播方向依次排列,入射的激光由第一方向柱面镜射入,通过第二方向柱面镜,由双向棱镜射出形成平顶光束。
进一步的,发散光学元件组包括:圆形凹透镜,用于将其入射光转换为圆形的发散光;分束光学元件组包括:双向棱镜,用于对其入射光关于第一方向、第二方向分束;第一方向与第二方向正交;圆形凹透镜、双向棱镜沿光线传播方向依次排列,入射的激光由圆形凹透镜射入,通过双向棱镜射出形成平顶光束。
为了实现上述目的,本发明还提出了一种激光光束匀化方法,用于匀化功率分布为高斯分布的激光,包括:将入射的激光转换为发散光;对发散光分束,并将分束后的激光叠加形成平顶光束。
进一步的,将入射的激光在第一方向发散,获得第一方向发散光;将第一方向发散光在第二方向发散,将其转换为发散光,第一方向与第二方向正交。
进一步的,对发散光分束,包括:对发散光关于第一方向分束,分束后的激光的功率分布关于第一方向对称;对关于第一方向分束后的激光关于第二方向分束,分束后的激光的功率分布关于第一与第二方向对称,第一方向与第二方向正交。
进一步的,分束后的激光在设定的平面上的各点的功率的之和为同一值。
本发明的有益效果在于,通过本发明的激光光束匀化装置及方法,将功率分布为高斯分布的激光整形为平顶光的成本低,对波长没有选择性,矩形光斑尺寸灵活可调,并且,在较大景深范围内均具有较好匀化效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1A为本发明实施例的激光光束匀化装置的结构及光路示意图。
图1B为本发明实施例的入射光的功率分布示意图。
图1C为本发明实施例的出射光的功率分布示意图。
图2为本发明第二实施例的激光光束匀化装置的结构示意图。
图3A为本发明第三实施例的激光光束匀化装置的结构示意图。
图3B为本发明第三实施例的入射光的功率分布图。
图3C为本发明第三实施例的出射光的功率分布图。
图3D为本发明第三实施例中第二柱面镜曲率半径为12mm的出射光的功率分布图。
图4为本发明第四实施例的激光光束匀化装置的结构示意图。
图5为本发明第五实施例的激光光束匀化装置的结构示意图。
图6为本发明第六实施例的激光光束匀化装置的结构示意图。
图7为本发明实施例的激光光束匀化方法的步骤流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域相关技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护的范围。
图1A为本发明实施例的激光光束匀化装置的结构及光路示意图。如图1A所示,激光光束匀化装置,用于匀化功率分布为高斯分布的激光,包括:发散光学元件组100,用于将入射的激光转换为发散光;分束光学元件组200,用于对发散光分束,并将分束后的激光叠加形成平顶光束。
图1B为本发明实施例的入射光的功率分布示意图,图1C为本发明实施例的出射光的功率分布示意图。结合图1A、图1B及图1C所示,入射光为功率分布为高斯分布的激光,其经过发散光学元件组100后呈发散状态,该发散光学元件100的输出光(发散光)的能量分布呈中心对称,以方便于后续输入操作。分束光学元件组200,其输入光为发散光学元件100的输出光(发散光),该发散光被分束光学元件组200分为多束激光,该多束激光的能量分布相互对称,分束后的多束激光继续向前传播,共同照射于一设定面上,该多束激光能量相互叠加(图1A中以两束不同斜纹填充的四边形相互叠加表示),最后形成平顶光束。在此说明的是,图1A仅示意的展示在单方向上的输入光与输出光的功率分布状态,本领域技术人员应当了解输入光与输出光相应在空间上的分布分别为高斯分布与均匀分布。
图2为本发明第二实施例的激光光束匀化装置的结构示意图。如图2所示,激光光束匀化装置中,发散光学元件组包括:第一方向柱面镜110,用于将其入射光转换为第一方向上的发散光;第二方向柱面镜120,用于将其入射光转换为第二方向上的发散光;分束光学元件组包括:第一方向棱镜210,用于对其入射光关于第一方向分束;第二方向棱镜220,用于对其入射光关于第二方向分束;第一方向与第二方向正交;第一方向柱面镜110、第二方向柱面镜120、第一方向棱镜210、第二方向棱镜220沿光线传播方向依次排列,入射的激光由第一方向柱面110镜射入,依次通过第二方向柱面镜120以及第一方向棱镜210,由第二方向棱镜220射出形成平顶光束。
入射光为功率分布为高斯分布的激光,其经过发散光学元件组中的第一方向柱面镜110后,该入射光转换为第一方向上的发散光,然后该第一方向上的发散光输入到第二方向柱面镜120,其继续转换为第二方向上的发散光,至此,第二方向柱面镜120的输出光关于第一方向与第二方向对称。又因为第一方向垂直于第二方向,也就是说,该发 散光的能量分布呈中心对称。然后,该发散光继续通过第一方向棱镜210,被分为两束关于第一方向对称的激光,该两束激光再通过第二方向棱镜220,其每一束都被第二方向棱镜220分为两束关于第二方向对称的激光。最后通过第二方向棱镜输出关于第一方向和第二方向分别对称的四束激光。由于该输出光的功率分布关于第一方向和第二方向分别对称,所以在传播一段距离后,共同照射于一设定距离的面上,其功率相互叠加形成平顶光束。
图3A为本发明第三实施例的激光光束匀化装置的结构示意图。如图3A所示,激光光束匀化装置中,发散光学元件组包括:第一方向柱面镜110,用于将其入射光转换为第一方向上的发散光;第二方向柱面镜120,用于将其入射光转换为第二方向上的发散光;分束光学元件组包括:第一方向棱镜210,用于对其入射光关于第一方向分束;第二方向棱镜220,用于对其入射光关于第二方向分束;第一方向与第二方向正交;第一方向柱面镜110、第一方向棱镜210、第二方向柱面镜120、第二方向棱镜220沿光线传播方向依次排列,入射的激光由第一方向柱面110镜射入,依次通过第一方向棱镜210以及第二方向柱面镜120,由第二方向棱镜220射出形成平顶光束。
入射光为功率分布为高斯分布的激光,其经过发散光学元件组中的第一方向柱面镜110后,该入射光转换为第一方向上的发散光输出,按照光的传播方向,该第一方向上的发散光输入到第一方向棱镜210,第一方向上的发散光被关于第一方向分成了两束。该两束激光继续向前传播,通过第二方向柱面镜120,该两束激光被转换为同时在第一方向与第二方向上的发散光。最后,通过第二方向棱镜220输出关于第一方向和第二方向分别对称的四束激光。由于该输出光的功率分布关于第一方向和第二方向分别对称,所以在传播一段距离后,共同照射于一设定距离的面上,其功率相互叠加形成平顶光束。
假设,激光光源位置为原点,入射光光斑能量分布如图3B所示,在距离原点70mm~90mm处得到尺寸为50X20mm的矩形平顶光斑,发散角为18°~22°(全角),本实施例的相关透镜参数组合可作如下选择:
第一方向柱面镜:平凹柱面镜,平面朝向光源,使用K9玻璃,厚1.5mm~2.5mm,凹面处曲率半径为15mm~25mm,与原点距离8mm~12mm;
第一方向棱镜:平面朝向光源,使用K9玻璃,厚2mm~4mm,两个斜面之间的夹角为20°~35°,与原点距离10mm~16mm;
第二方向柱面镜:双凹柱面镜,使用K9玻璃,厚1.8mm~2.2mm,凹面的曲率半 径为10mm~10.8mm,与原点距离为16.9mm~17.9mm;
第二方向棱镜:平面朝向光源,使用K9玻璃,厚5mm~8mm,两个斜面之间的夹角为105°~115°,与原点距离20mm~23mm。
根据上述透镜参数组合取一组具体透镜参数,光斑能量分布如图3C所示,可以看出目标光斑能量分布均匀,若采用曲率半径为12mm的第二方向柱面镜,其他透镜参数不变,其光斑能量分布如图3D所示,可以看出目标光斑能量分布呈中心低周围高,并非平顶光束。
图4为本发明第四实施例的激光光束匀化装置的结构示意图。如图4所示,激光光束匀化装置中,发散光学元件组包括:第一方向柱面镜110,用于将其入射光转换为第一方向上的发散光;第二方向柱面镜120,用于将其入射光转换为第二方向上的发散光;分束光学元件组包括:第一方向棱镜210,用于对其入射光关于第一方向分束;第二方向棱镜220,用于对其入射光关于第二方向分束;第一方向与第二方向正交;第一方向柱面镜110、第二方向柱面镜120、第二方向棱镜220、第一方向棱镜210沿光线传播方向依次排列,入射的激光由第一方向柱面110镜射入,依次通过第二方向柱面镜120以及第二方向棱镜220,由第一方向棱镜210射出形成平顶光束。
入射光为功率分布为高斯分布的激光,其经过发散光学元件组中的第一方向柱面镜110后,该入射光转换为第一方向上的发散光,然后该第一方向上的发散光输入到第二方向柱面镜120,其继续转换为第二方向上的发散光,至此,第二方向柱面镜120的输出光关于第一方向与第二方向对称。又因为第一方向垂直于第二方向,也就是说,该发散光的能量分布呈中心对称。然后,该发散光继续通过第二方向棱镜220,被分为两束关于第二方向对称的激光,该两束激光再通过第一方向棱镜210,其每一束都被第一方向棱镜210分为两束关于第二方向对称的激光,最后通过第一方向棱镜210输出关于第一方向和第二方向分别对称的四束激光。由于该输出光的功率分布关于第一方向和第二方向分别对称,所以在传播一段距离后,共同照射于一设定距离的面上,其功率相互叠加形成平顶光束。
图5本发明第五实施例的激光光束匀化装置的结构示意图。如图5所示,激光光束匀化装置中,发散光学元件组包括:第一方向柱面镜110,用于将其入射光转换为第一方向上的发散光;第二方向柱面镜120,用于将其入射光转换为第二方向上的发散光;分束光学元件组包括:双向棱镜230,用于对其入射光关于第一方向、第二方向分束;第一方向与第二方向正交;第一方向柱面镜110、第二方向柱面镜120、双向棱镜230沿 光线传播方向依次排列,入射的激光由第一方向柱面110镜射入,通过第二方向柱面镜120,由双向棱镜230射出形成平顶光束。在第五实施例中,与第一实施例不同的是,该分束光学元件为双向棱镜230,该双向棱镜230可以将入射光进行分束,分束后的激光关于第一方向与第二方向对称。由于该输出光的功率分布关于第一方向和第二方向分别对称,所以在传播一段距离后,共同照射于一设定距离的面上,其功率相互叠加形成平顶光束。
图6本发明第六实施例的激光光束匀化装置的结构示意图。如图6所示,激光光束匀化装置中,发散光学元件组包括:圆形凹透镜130,用于将其入射光转换为圆形的发散光;分束光学元件组包括:双向棱镜230,用于对其入射光关于第一方向、第二方向分束;第一方向与第二方向正交;凹透镜130、双向棱镜230沿光线传播方向依次排列。在第六实施例中,与第五实施例不同的是,该发散光学元件组为圆形凹透镜130,该圆形凹透镜,该透镜可以入射光转换为圆形的中心对称的发散光。由于该输出光的功率分布关于第一方向和第二方向分别对称,所以在传播一段距离后,共同照射于一设定距离的面上,其功率相互叠加形成平顶光束。
本发明的激光光束匀化装置在具体实施过程中,可以根据目标光斑形状调整发散光学元件组与分束光学元件组。若目标为正六边形的平顶光束,发散光学元件组包括:第一方向柱面镜,用于将其入射光转换为第一方向上的发散光;第二方向柱面镜,用于将其入射光转换为第二方向上的发散光;第三方向柱面镜,用于将其入射光转换为第三方向上的发散光;分束光学元件组包括:第一方向棱镜,用于对其入射光关于第一方向分束;第二方向棱镜,用于对其入射光关于第二方向分束;第三方向棱镜,用于对其入射光关于第三方向分束;第一方向、第二方向、第三方向任意两者之间的夹角为120°;第一方向柱面镜、第二方向柱面镜、第三方向柱面镜第一方向棱镜、第二方向棱镜、第三方向棱镜沿光线传播方向依次排列,或者其他各种,某方向上的棱镜排列在在同方向柱面镜之后的排列方式,都可以满足要求。本领域技术人员可以根据本发明实施例,通过调整发散光学元件组与分束光学元件组的光学元件组合,获得不同形状的目标光斑,在此不再一一列举。
结合以上实施例所示,本发明的激光光束匀化装置的优点如下所示:
1.可以实现平顶光整形的低成本化。因为无论是柱面镜、圆形凹透镜还是棱镜,都是目前可以通过批量生产得到的通用光学元件,价格低廉且易得。
2.本发明的激光光束匀化装置对波长没有选择性。柱面镜和棱镜都可以通过光学玻 璃制得,在光学玻璃可以透过的波长范围内,该装置均适用。
3.激光损伤阈值高、光能损失低。由于本发明的激光光束匀化装置的内部光学元件可以使用光学玻璃制作,所以激光损伤阈值高、光能损失低。光学玻璃具有非常高的能量损伤阈值和光学透过率,通过在其表面镀光学膜,就可以实现非常高的激光透过率。
4.矩形光斑尺寸大且可调。由于产生的光束为发散光,只要通过合理的改变棱镜角度和透镜曲率半径,我们就可以得到在规定距离上规定尺寸的均匀矩形光束。
5.在较大景深范围内均具有较好匀化效果。而衍射光学元件法、微透镜阵列整形法、非球面透镜法一般只能在设计成像面具有较好的激光匀化效果,一旦成像面前后移动,则匀化效果迅速下降。
在介绍了本发明实施例的激光光束匀化装置之后,接下来,对本发明实施例的激光光束匀化方法进行介绍。该方法的实施可以参见上述装置的实施,重复之处不再赘述。
图7为本发明实施例的激光光束匀化方法的步骤流程图。如图7所示,激光光束匀化方法,用于匀化功率分布为高斯分布的激光,包括:S100,将入射的激光转换为发散光;S200,对发散光分束,并将分束后的激光叠加形成平顶光束。
在具体实施步骤S100过程中,将入射的激光转换为发散光,包括:
S110,将入射的激光在第一方向发散,获得第一方向发散光;
S120,将第一方向发散光在第二方向发散,将其转换为发散光,第一方向与第二方向正交。
在具体实施步骤S200过程中,对发散光分束,包括:
S210,对发散光关于第一方向分束,分束后的激光的功率分布关于第一方向对称;
S220,对关于第一方向分束后的激光关于第二方向分束,分束后的激光的功率分布关于第一与第二方向对称,第一方向与第二方向正交。
分束后的激光在设定的平面上的各点的功率的之和为同一值。
本发明的有益效果在于,通过本发明的激光光束匀化装置及方法,将功率分布为高斯分布的激光整形为平顶光的成本低,对波长没有选择性,矩形光斑尺寸灵活可调,并且在较大景深范围内均具有较好匀化效果。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种激光光束匀化装置,用于匀化功率分布为高斯分布的激光,其特征在于,包括:
    发散光学元件组,用于将入射的激光转换为发散光;
    分束光学元件组,用于对所述发散光分束,并将分束后的激光叠加形成平顶光束。
  2. 根据权利要求1所述的激光光束匀化装置,其特征在于,
    所述发散光学元件组包括:
    第一方向柱面镜,用于将其入射光转换为第一方向上的发散光;
    第二方向柱面镜,用于将其入射光转换为第二方向上的发散光;
    所述分束光学元件组包括:
    第一方向棱镜,用于对其入射光关于所述第一方向分束;
    第二方向棱镜,用于对其入射光关于所述第二方向分束;
    所述第一方向与第二方向正交;
    所述第一方向柱面镜、第二方向柱面镜、第一方向棱镜、第二方向棱镜沿光线传播方向依次排列,所述入射的激光由所述第一方向柱面镜射入,依次通过所述第二方向柱面镜以及第一方向棱镜,由所述第二方向棱镜射出形成平顶光束。
  3. 根据权利要求1所述的激光光束匀化装置,其特征在于,
    所述发散光学元件组包括:
    第一方向柱面镜,用于将其入射光转换为第一方向上的发散光;
    第二方向柱面镜,用于将其入射光转换为第二方向上的发散光;
    所述分束光学元件组包括:
    第一方向棱镜,用于对其入射光关于所述第一方向分束;
    第二方向棱镜,用于对其入射光关于所述第二方向分束;
    所述第一方向与第二方向正交;
    所述第一方向柱面镜、第一方向棱镜、第二方向柱面镜、第二方向棱镜沿光线传播方向依次排列,所述入射的激光由所述第一方向柱面镜射入,依次通过所述第一方向棱镜以及第二方向柱面镜,由所述第二方向棱镜射出形成平顶光束。
  4. 根据权利要求1所述的激光光束匀化装置,其特征在于,
    所述发散光学元件组包括:
    第一方向柱面镜,用于将其入射光转换为第一方向上的发散光;
    第二方向柱面镜,用于将其入射光转换为第二方向上的发散光;
    所述分束光学元件组包括:
    第一方向棱镜,用于对其入射光关于所述第一方向分束;
    第二方向棱镜,用于对其入射光关于所述第二方向分束;
    所述第一方向与第二方向正交;
    所述第一方向柱面镜、第二方向柱面镜、第二方向棱镜、第一方向棱镜沿光线传播方向依次排列,所述入射的激光由所述第一方向柱面镜射入,依次通过所述第二方向柱面镜以及第二方向棱镜,由所述第一方向棱镜射出形成平顶光束。
  5. 根据权利要求1所述的激光光束匀化装置,其特征在于,
    所述发散光学元件组包括:
    第一方向柱面镜,用于将其入射光转换为第一方向上的发散光;
    第二方向柱面镜,用于将其入射光转换为第二方向上的发散光;
    所述分束光学元件组包括:
    双向棱镜,用于对其入射光关于所述第一方向、第二方向分束;
    所述第一方向与第二方向正交;
    所述第一方向柱面镜、第二方向柱面镜、双向棱镜沿光线传播方向依次排列,所述入射的激光由所述第一方向柱面镜射入,通过所述第二方向柱面镜,由所述双向棱镜射出形成平顶光束。
  6. 根据权利要求1所述的激光光束匀化装置,其特征在于,
    所述发散光学元件组包括:
    圆形凹透镜,用于将其入射光转换为圆形的发散光;
    所述分束光学元件组包括:
    双向棱镜,用于对其入射光关于第一方向、第二方向分束;
    所述第一方向与第二方向正交;
    所述圆形凹透镜、双向棱镜沿光线传播方向依次排列,所述入射的激光由所述圆形凹透镜射入,通过所述双向棱镜射出形成平顶光束。
  7. 一种激光光束匀化方法,用于匀化功率分布为高斯分布的激光,其特征在于,包括:
    将入射的所述激光转换为发散光;
    对所述发散光分束,并将分束后的激光叠加形成平顶光束。
  8. 根据权利要求7所述的激光光束匀化方法,其特征在于,所述将入射的所述激光转换为发散光,包括:
    将入射的所述激光在第一方向发散,获得第一方向发散光;
    将所述第一方向发散光在第二方向发散,将其转换为所述发散光,所述第一方向与第二方向正交。
  9. 根据权利要求7所述的激光光束匀化方法,其特征在于,所述对所述发散光分束,包括:
    对所述发散光关于第一方向分束,分束后的激光的功率分布关于第一方向对称;
    对所述关于第一方向分束后的激光关于第二方向分束,分束后的激光的功率分布关于所述第一方向与第二方向对称,所述第一方向与第二方向正交。
  10. 根据权利要求7所述的激光光束匀化方法,其特征在于,所述分束后的激光在设定的平面上的各点的功率的之和为同一值。
PCT/CN2017/114221 2017-08-01 2017-12-01 激光光束匀化装置及方法 WO2019024359A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710645090.3 2017-08-01
CN201710645090.3A CN107290861A (zh) 2017-08-01 2017-08-01 激光光束匀化装置及方法

Publications (1)

Publication Number Publication Date
WO2019024359A1 true WO2019024359A1 (zh) 2019-02-07

Family

ID=60104541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114221 WO2019024359A1 (zh) 2017-08-01 2017-12-01 激光光束匀化装置及方法

Country Status (2)

Country Link
CN (1) CN107290861A (zh)
WO (1) WO2019024359A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967001A (zh) * 2022-05-20 2022-08-30 武汉镭健科技有限责任公司 一种矩形光斑耦合器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290861A (zh) * 2017-08-01 2017-10-24 沈阳雷卓激光医疗器械有限公司 激光光束匀化装置及方法
CN111258076A (zh) * 2018-11-30 2020-06-09 福州高意光学有限公司 一种可实现激光光束匀化功能的光学系统
CN110993741A (zh) * 2019-12-20 2020-04-10 武汉帝尔激光科技股份有限公司 一种多脉冲匀化激光太阳能电池加工方法及设备
CN112987476B (zh) * 2021-03-08 2022-07-29 中国科学院重庆绿色智能技术研究院 一种用于投影显示系统的全息散斑屏
CN115113409B (zh) * 2022-08-26 2022-12-30 成都莱普科技股份有限公司 基于达曼光栅的线性平顶光斑的发生系统、方法及设备
CN116931286B (zh) * 2023-09-15 2023-11-24 成都莱普科技股份有限公司 一种光束整形模组、方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149773A (en) * 1975-12-23 1979-04-17 Plessey Handel Und Investments A.G. Optical system for the production of a beam of light having a uniform intensity distribution
US4370026A (en) * 1979-09-10 1983-01-25 Thomson-Csf Illuminating device for providing an illumination beam with adjustable distribution of intensity and a pattern-transfer system comprising such a device
US4523809A (en) * 1983-08-04 1985-06-18 The United States Of America As Represented By The Secretary Of The Air Force Method and apparatus for generating a structured light beam array
GB2220502A (en) * 1988-07-09 1990-01-10 Exitech Ltd Excimer laser beam homogenizer system
US5548444A (en) * 1994-07-06 1996-08-20 Hughes Danbury Optical Systems, Inc. Optical beam homogenizing apparatus and method
US6380966B1 (en) * 1999-01-29 2002-04-30 Fuji Photo Film Co., Ltd. Exposure recording device for scanning a recording medium with a light beam
US20030173503A1 (en) * 2002-03-14 2003-09-18 Science & Engineering Associates, Inc. Multiple imaging system and method for designing same
CN102937746A (zh) * 2012-10-30 2013-02-20 泉州师范学院 长距离近似无衍射栅型线结构光的产生系统
CN107290861A (zh) * 2017-08-01 2017-10-24 沈阳雷卓激光医疗器械有限公司 激光光束匀化装置及方法
CN207181837U (zh) * 2017-08-01 2018-04-03 沈阳雷卓激光医疗器械有限公司 激光光束匀化装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4149773A (en) * 1975-12-23 1979-04-17 Plessey Handel Und Investments A.G. Optical system for the production of a beam of light having a uniform intensity distribution
US4370026A (en) * 1979-09-10 1983-01-25 Thomson-Csf Illuminating device for providing an illumination beam with adjustable distribution of intensity and a pattern-transfer system comprising such a device
US4523809A (en) * 1983-08-04 1985-06-18 The United States Of America As Represented By The Secretary Of The Air Force Method and apparatus for generating a structured light beam array
GB2220502A (en) * 1988-07-09 1990-01-10 Exitech Ltd Excimer laser beam homogenizer system
US5548444A (en) * 1994-07-06 1996-08-20 Hughes Danbury Optical Systems, Inc. Optical beam homogenizing apparatus and method
US6380966B1 (en) * 1999-01-29 2002-04-30 Fuji Photo Film Co., Ltd. Exposure recording device for scanning a recording medium with a light beam
US20030173503A1 (en) * 2002-03-14 2003-09-18 Science & Engineering Associates, Inc. Multiple imaging system and method for designing same
CN102937746A (zh) * 2012-10-30 2013-02-20 泉州师范学院 长距离近似无衍射栅型线结构光的产生系统
CN107290861A (zh) * 2017-08-01 2017-10-24 沈阳雷卓激光医疗器械有限公司 激光光束匀化装置及方法
CN207181837U (zh) * 2017-08-01 2018-04-03 沈阳雷卓激光医疗器械有限公司 激光光束匀化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967001A (zh) * 2022-05-20 2022-08-30 武汉镭健科技有限责任公司 一种矩形光斑耦合器

Also Published As

Publication number Publication date
CN107290861A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2019024359A1 (zh) 激光光束匀化装置及方法
KR101842421B1 (ko) 레이저 광선 제공 장치 및 선형 배광 재생 장치
US8270084B2 (en) Device for beam shaping
US7782535B2 (en) Device for beam shaping
CN104181691B (zh) 基于mems微镜折叠式的扫描光学系统
KR101696055B1 (ko) 레이저 처리 장치를 위한 다중 빔 결합기 및 방사 소스
US20140003456A1 (en) Device For Converting The Profile of a Laser Beam Into a Laser Beam With a Rotationally Symmetrical Intensity Distribution
JP6467353B2 (ja) レーザビームを均質化するための装置
CN104991347A (zh) 基于微透镜阵列的激光整形照明器
US10437072B2 (en) Line beam forming device
CN102053371A (zh) 钛宝石可调谐激光器光束准直、整形系统
US20130194673A1 (en) Apparatus for shaping the light rays of a laser beam
WO2020107518A1 (zh) 一种可实现激光光束匀化功能的光学系统
CN103885186B (zh) 一种基于棱镜对和柱面镜的消像散光束整形系统
CN206696535U (zh) 一种双波长激光连续变倍扩束镜
US10838193B2 (en) Optical article and illumination system for endoscope
CN207181837U (zh) 激光光束匀化装置
CN114077066B (zh) 扩束准直器
CN104953465A (zh) 基于空间频谱分割处理的激光二极管阵列光束的匀化装置
CN113325593B (zh) 一种基于自由曲面透镜的激光分束系统
TW201518771A (zh) 光學照明系統
US11249317B2 (en) Device for collimating a light beam, high-power laser, and focusing optical unit and method for collimating a light beam
US9429742B1 (en) High power laser imaging systems
CN104199131B (zh) 一种用于扩束或者缩束的单个非球面透镜
CN113341581B (zh) 一种基于自由曲面透镜的激光分束器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17919691

Country of ref document: EP

Kind code of ref document: A1