CN103091783B - Tunable array waveguide grating based on liquid crystal waveguides - Google Patents

Tunable array waveguide grating based on liquid crystal waveguides Download PDF

Info

Publication number
CN103091783B
CN103091783B CN201310029847.8A CN201310029847A CN103091783B CN 103091783 B CN103091783 B CN 103091783B CN 201310029847 A CN201310029847 A CN 201310029847A CN 103091783 B CN103091783 B CN 103091783B
Authority
CN
China
Prior art keywords
shaped electrode
waveguide
area
liquid crystal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310029847.8A
Other languages
Chinese (zh)
Other versions
CN103091783A (en
Inventor
张敏明
戴竞
刘德明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201310029847.8A priority Critical patent/CN103091783B/en
Publication of CN103091783A publication Critical patent/CN103091783A/en
Application granted granted Critical
Publication of CN103091783B publication Critical patent/CN103091783B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

The invention relates to a tunable array waveguide grating based on liquid crystal waveguides, and belongs to integrated waveguide optical devices. The problems that an existing tunable array waveguide grating is complex in preparation technology, relatively high in cost and relatively poor in consistency of performance are solved. The tunable array waveguide grating based on the liquid crystal waveguides comprises an input coupled area, an array waveguide area, an output coupled area and an output waveguide area, wherein the input coupled area, the array waveguide area, the output coupled area and the output waveguide area are arrayed in sequence on a light path, the input coupled area is formed by a first right trapezoid prism-shaped electrode, a second right trapezoid prism-shaped electrode, a concave-lens-shaped electrode and a first convex-lens-shaped electrode, the array waveguide area is formed by N parallel vertical-bar-shaped electrodes, the output coupled area is formed by second convex-lens-shaped electrodes, and the output waveguide area is formed by M parallel vertical-bar-shaped electrodes. The electrodes in various shapes are all plated on the upper surface of a liquid crystal layer of a liquid crystal waveguide. The tunable array waveguide grating based on the liquid crystal waveguides is simple in structure, easy to manufacture and low in cost, the electrooptic effect of the liquid crystal layer is used to achieve tunable performance, and the tunable array waveguide grating based on the liquid crystal waveguides is beneficial for demultiplexing wave band frequency tuning.

Description

一种基于液晶波导的可调谐阵列波导光栅A Tunable Arrayed Waveguide Grating Based on Liquid Crystal Waveguide

技术领域technical field

本发明属于集成波导光器件,特别涉及一种基于液晶波导的可调谐阵列波导光栅。The invention belongs to an integrated waveguide optical device, in particular to a tunable arrayed waveguide grating based on a liquid crystal waveguide.

背景技术Background technique

阵列波导光栅(以下简称AWG)作为光纤通信网络中的最重要的光器件之一,自从1988年被Smit提出后,逐步从实验室阶段走入商用阶段。如图1所示,传统结构的AWG一般由五部分构成:输入波导1、输入自由传输区2、阵列波导3、输出自由传输区4、输出波导5。由于阵列波导中相邻波导存在一定的光程差nΔL,从而各个波长的光将产生不同的相位差,进而实现光栅色散的功能。AWG实现功能是:将不同波长的组成的复合光中的各波长的光分离出来,是一种实现波分解复用的器件。As one of the most important optical devices in the optical fiber communication network, the arrayed waveguide grating (AWG) has gradually entered the commercial stage from the laboratory stage since it was proposed by Smit in 1988. As shown in Figure 1, an AWG with a traditional structure generally consists of five parts: input waveguide 1, input free transmission area 2, array waveguide 3, output free transmission area 4, and output waveguide 5. Since there is a certain optical path difference nΔL between adjacent waveguides in the arrayed waveguide, the light of each wavelength will produce different phase differences, thereby realizing the function of grating dispersion. The function of AWG is to separate the light of each wavelength in the composite light composed of different wavelengths, and it is a device that realizes wave division and multiplexing.

作为重要的DWDM(密集波分复用)器件,如何增加现有AWG的可调谐性能是一个重要的研究课题。传统的AWG中,所用的材料是低电光系数的,电光调谐几乎不可行。现有集成可调谐的AWG技术方案,是在阵列波导3中采用电光相移器,实现其连续调谐功能,在设计结构上,输入、输出平板波导依旧都是采用罗兰圆结构的平板波导,构成阵列波导的各条波导则仍是弯曲的矩形波导,以现有的集成波导工艺,制备工艺复杂,成本较高,性能一致性较差;见Heck,M.J.R.,La Porta,A.,Leijtens,X.J.M et al.,MonolithicAWG-based Discretely Tunable Laser Diode With Nanosecond Switching Speed,IEEE Photonics Technology Letters,2009,21(13):905-907。As an important DWDM (Dense Wavelength Division Multiplexing) device, how to increase the tunable performance of the existing AWG is an important research topic. In conventional AWGs, the materials used have low electro-optic coefficients, making electro-optic tuning almost impossible. The existing integrated tunable AWG technical solution uses electro-optical phase shifters in the arrayed waveguide 3 to realize its continuous tuning function. In terms of design structure, the input and output slab waveguides are still slab waveguides with a Rowland circle structure, forming Each waveguide of the arrayed waveguide is still a curved rectangular waveguide. With the existing integrated waveguide technology, the preparation process is complicated, the cost is high, and the performance consistency is poor; see Heck, M.J.R., La Porta, A., Leijtens, X.J.M et al., Monolithic AWG-based Discretely Tunable Laser Diode With Nanosecond Switching Speed, IEEE Photonics Technology Letters, 2009, 21(13): 905-907.

液晶的高电光系数(5V电压折射率变化典型值为0.2)为实现可调谐的集成光电子器件提供了可能性,已经有部分相关研究的报道,例如可调谐开关,可调谐SOI微环谐振器。由于集成光波导技术的发展,液晶波导良好的电光效应为新型光电器件的研制提供了新的发展途径和方向。The high electro-optic coefficient of liquid crystals (the typical value of the refractive index change at 5V voltage is 0.2) provides the possibility to realize tunable integrated optoelectronic devices, and some related researches have been reported, such as tunable switches and tunable SOI microring resonators. Due to the development of integrated optical waveguide technology, the good electro-optic effect of liquid crystal waveguide provides a new development path and direction for the development of new optoelectronic devices.

发明内容Contents of the invention

本发明提供一种基于液晶波导的可调谐阵列波导光栅,解决现有可调谐阵列波导光栅制备工艺复杂,成本较高,性能一致性较差的问题。The invention provides a liquid crystal waveguide-based tunable arrayed waveguide grating, which solves the problems of complex preparation process, high cost and poor performance consistency of the existing tunable arrayed waveguide grating.

本发明所提供的一种基于液晶波导的可调谐阵列波导光栅,包括在光路上依次排列的输入耦合区、阵列波导区、输出耦合区和输出波导区,其特征在于:A tunable arrayed waveguide grating based on a liquid crystal waveguide provided by the present invention includes an input coupling region, an arrayed waveguide region, an output coupling region and an output waveguide region arranged sequentially on the optical path, and is characterized in that:

所述输入耦合区由光路上依次排列的第一直角梯形棱镜形状电极、第二直角梯形棱镜形状电极、凹透镜形状电极和第一凸透镜形状电极构成,形成光束准直扩束系统;其中,第一直角梯形棱镜形状电极和第二直角梯形棱镜形状电极的形状相同,两者倒置拼接为矩形;The input coupling area is composed of the first rectangular trapezoidal prism-shaped electrode, the second rectangular trapezoidal prism-shaped electrode, the concave lens-shaped electrode and the first convex lens-shaped electrode arranged in sequence on the optical path, forming a beam collimation beam expansion system; wherein, the first The right-angled trapezoidal prism-shaped electrode and the second right-angled trapezoidal prism-shaped electrode have the same shape, and the two are inverted and spliced into a rectangle;

所述阵列波导区由N条平行的直条形状电极构成,形成一个平行直阵列波导区,N≥3;The arrayed waveguide area is composed of N parallel straight strip-shaped electrodes, forming a parallel straight arrayed waveguide area, N≥3;

所述输出耦合区由第二凸透镜形状电极构成,形成光束的汇聚干涉区;The output coupling area is composed of a second convex lens-shaped electrode, forming a beam convergence interference area;

所述输出波导区由M条平行的直条形状电极构成,形成输出波导,M为输出通道数,M≥1;The output waveguide area is composed of M parallel straight strip-shaped electrodes to form an output waveguide, M is the number of output channels, M≥1;

上述各种形状电极均镀在液晶波导的液晶层上表面;所述液晶波导的侧剖面自上而下依次为液晶层、波导层、下包层、基底。The above-mentioned electrodes of various shapes are all plated on the upper surface of the liquid crystal layer of the liquid crystal waveguide; the side section of the liquid crystal waveguide is a liquid crystal layer, a waveguide layer, a lower cladding layer, and a substrate in sequence from top to bottom.

入射光从液晶波导的端面进入。The incident light enters from the end face of the liquid crystal waveguide.

所述的可调谐阵列波导光栅,其进一步特征在于:The tunable arrayed waveguide grating is further characterized by:

所述输入耦合区、阵列波导区、输出耦合区和输出波导区各部分之间的间隙为10μm~1000μm;The gap between each part of the input coupling area, the arrayed waveguide area, the output coupling area and the output waveguide area is 10 μm to 1000 μm;

所述第一直角梯形棱镜形状电极和第二直角梯形棱镜形状电极的上边长为10μm~100μm,上下边长比为1∶2~1∶4,高为50μm~2000μm;The length of the upper side of the first rectangular trapezoidal prism-shaped electrode and the second rectangular trapezoidal prism-shaped electrode is 10 μm to 100 μm, the ratio of the upper and lower sides is 1:2 to 1:4, and the height is 50 μm to 2000 μm;

所述凹透镜形状电极,上下边长为20μm~400μm,高为50μm~2000μm,焦距10μm~1000μm;The electrode in the shape of a concave lens has an upper and lower side length of 20 μm to 400 μm, a height of 50 μm to 2000 μm, and a focal length of 10 μm to 1000 μm;

所述第一凸透镜形状电极,高为50μm~2000μm,焦距10μm~1000μm;The first convex lens-shaped electrode has a height of 50 μm to 2000 μm and a focal length of 10 μm to 1000 μm;

所述第一直角梯形棱镜形状电极、第二直角梯形棱镜形状电极、凹透镜形状电极和第一凸透镜形状电极之间间隙为5μm~20μm;The gap between the first rectangular trapezoidal prism-shaped electrode, the second rectangular trapezoidal prism-shaped electrode, the concave lens-shaped electrode and the first convex lens-shaped electrode is 5 μm to 20 μm;

所述阵列波导区中,各直条形状电极形状和尺寸相同,宽度2μm~5μm,长度500μm~3000μm,间隔10μm~20μm;In the arrayed waveguide region, the shape and size of each straight electrode are the same, with a width of 2 μm to 5 μm, a length of 500 μm to 3000 μm, and an interval of 10 μm to 20 μm;

所述第二凸透镜形状电极,高为50μm~2000μm,焦距10μm~1000μm;The second convex lens-shaped electrode has a height of 50 μm to 2000 μm and a focal length of 10 μm to 1000 μm;

所述输出波导区中,各直条形状电极形状和尺寸相同,宽度2μm~5μm,长度100μm~1000μm,间隔10μm~50μm。In the output waveguide area, the shape and size of each straight electrode are the same, with a width of 2 μm-5 μm, a length of 100 μm-1000 μm, and an interval of 10 μm-50 μm.

所述的可调谐阵列波导光栅,所述液晶波导的波导层材料为硅(Si)或者氮化硅(Si3N4),厚度为0.3μm~2.0μm;In the tunable arrayed waveguide grating, the material of the waveguide layer of the liquid crystal waveguide is silicon (Si) or silicon nitride (Si 3 N 4 ), with a thickness of 0.3 μm to 2.0 μm;

所述输入耦合区、阵列波导区、输出耦合区和输出波导区的各电极材料为氧化铟锡(ITO)。Each electrode material of the input coupling area, the array waveguide area, the output coupling area and the output waveguide area is indium tin oxide (ITO).

本发明基于平板液晶波导,在传输光时,在构成输入耦合区的各电极上设定合适的电压,使得各电极下方液晶波导构成等效第一直角梯形棱镜、第二直角梯形棱镜、凹透镜和第一凸透镜光学元件;光经过输入耦合区,形成准直扩束平行光,均匀地耦合进入阵列波导区,再由阵列波导区传送至输出耦合区,在构成输出耦合区的第二凸透镜形状电极设定合适的电压,使得该电极下方液晶波导构成等效第二凸透镜光学元件,光在输出耦合区中实现多光束汇聚干涉,不同波长的光将在输出波导区中不同位置处的波导进行汇聚输出,实现波分解复用的功能。The present invention is based on a flat liquid crystal waveguide. When transmitting light, an appropriate voltage is set on each electrode constituting the input coupling region, so that the liquid crystal waveguide below each electrode constitutes an equivalent first right-angled trapezoidal prism, a second right-angled trapezoidal prism, a concave lens and The first convex lens optical element; the light passes through the input coupling area to form collimated and expanded beam parallel light, which is uniformly coupled into the arrayed waveguide area, and then transmitted to the output coupling area by the arrayed waveguide area, where the second convex lens shape electrode constituting the output coupling area Set the appropriate voltage so that the liquid crystal waveguide under the electrode constitutes an equivalent second convex lens optical element, and the light realizes multi-beam convergence and interference in the output coupling area, and the light of different wavelengths will converge on the waveguides at different positions in the output waveguide area output to realize the function of wave division multiplexing.

本发明可调谐的性能原理是:阵列波导区平行的直条形状电极的电压为:其中为施加于每条直条形状电极上,使得直条形状电极下方液晶波导构成等效条形波导的电压;为附加在每条直条形状电极上,使得各等效条形波导产生光程差的电压;设定每条直条形状电极上的电压可以控制阵列波导区中等效条形波导的光程差,达到输出光波长连续可调谐的效果。The tunable performance principle of the present invention is: the voltage of the straight strip-shaped electrodes parallel to the arrayed waveguide region for: in To be applied to each straight strip-shaped electrode, so that the liquid crystal waveguide under the straight strip-shaped electrode constitutes the voltage of an equivalent strip waveguide; In order to be added to each straight-shaped electrode, the voltage that causes each equivalent strip-shaped waveguide to generate an optical path difference; set the voltage on each straight-shaped electrode The optical path difference of the equivalent strip waveguide in the arrayed waveguide area can be controlled, and the effect of continuously tunable output light wavelength can be achieved.

本发明结构简单、易于制作、成本低廉,阵列波导区由平行的直条形状电极构成,相比传统AWG同等结构的弯曲型阵列波导,性能一致性好;利用液晶层的电光效应,实现可调谐性能,有利于其解复用的波段频率调谐。The invention is simple in structure, easy to manufacture, and low in cost. The arrayed waveguide area is composed of parallel straight strip-shaped electrodes. Compared with the curved arrayed waveguide of the same structure as the traditional AWG, the performance consistency is good; the electro-optical effect of the liquid crystal layer is used to realize tunable performance, which facilitates its demultiplexed band frequency tuning.

附图说明Description of drawings

图1为传统阵列波导光栅结构示意图;Fig. 1 is a schematic diagram of the structure of a traditional arrayed waveguide grating;

图2为本发明结构示意图;Fig. 2 is a structural representation of the present invention;

图3为液晶波导的侧剖面结构示意图;FIG. 3 is a schematic diagram of a side sectional structure of a liquid crystal waveguide;

图4为输入耦合区电极形状示意图;Fig. 4 is a schematic diagram of the electrode shape of the input coupling region;

图5为阵列波导区电极形状示意图。Fig. 5 is a schematic diagram of the shape of electrodes in the arrayed waveguide region.

具体实施方式Detailed ways

以下结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.

如图2所示,本发明包括在光路上依次排列的输入耦合区7、阵列波导区8、输出耦合区9和输出波导区10;上述各部分均镀在液晶波导6的液晶层上表面;入射光从液晶波导6的端面进入。As shown in Fig. 2, the present invention includes an input coupling region 7, an array waveguide region 8, an output coupling region 9 and an output waveguide region 10 arranged sequentially on the optical path; the above-mentioned parts are all plated on the upper surface of the liquid crystal layer of the liquid crystal waveguide 6; Incident light enters from the end face of the liquid crystal waveguide 6 .

如图3所示,所述液晶波导6自上而下依次为液晶层6-1、波导层6-2、下包层6-3、基底6-4。As shown in FIG. 3 , the liquid crystal waveguide 6 includes a liquid crystal layer 6-1, a waveguide layer 6-2, a lower cladding layer 6-3, and a substrate 6-4 from top to bottom.

如图4所示,所述输入耦合区7由光路上依次排列的第一直角梯形棱镜形状电极7-1、第二直角梯形棱镜形状电极7-2、凹透镜形状电极7-3和第一凸透镜形状电极7-4构成,形成光束准直扩束系统;其中,第一直角梯形棱镜形状电极7-1和第二直角梯形棱镜形状电极7-2的形状相同,两者倒置拼接为矩形;As shown in Figure 4, the input coupling region 7 consists of a first rectangular trapezoidal prism-shaped electrode 7-1, a second rectangular trapezoidal prism-shaped electrode 7-2, a concave lens-shaped electrode 7-3 and a first convex lens arranged in sequence on the optical path A shape electrode 7-4 is formed to form a beam collimation and beam expansion system; wherein, the first rectangular trapezoidal prism-shaped electrode 7-1 and the second rectangular trapezoidal prism-shaped electrode 7-2 have the same shape, and the two are inverted and spliced into a rectangle;

如图5所示,所述阵列波导区8由N条平行的直条形状电极构成,形成一个平行直阵列波导区;As shown in FIG. 5 , the arrayed waveguide region 8 is composed of N parallel straight strip-shaped electrodes, forming a parallel straight arrayed waveguide region;

所述输出耦合区9由第二凸透镜形状电极构成,形成光束的汇聚干涉区;The output coupling area 9 is composed of a second convex lens-shaped electrode, forming a convergent interference area for light beams;

所述输出波导区10由M条平行的直条形状电极构成,形成输出波导,M为输出通道数。The output waveguide area 10 is composed of M parallel straight strip-shaped electrodes to form an output waveguide, where M is the number of output channels.

本发明的实施例1:Embodiment 1 of the present invention:

所述输入耦合区7、阵列波导区8、输出耦合区9和输出波导区10各部分之间的间隙为300μm;The gap between the input coupling region 7, the arrayed waveguide region 8, the output coupling region 9 and the output waveguide region 10 is 300 μm;

所述第一直角梯形棱镜形状电极7-1和第二直角梯形棱镜形状电极7-2,上边长100μm,上下边长比1∶4,高2000μm,The first right-angled trapezoidal prism-shaped electrode 7-1 and the second right-angled trapezoidal prism-shaped electrode 7-2 have an upper side length of 100 μm, a ratio of upper and lower side lengths of 1:4, and a height of 2000 μm,

所述凹透镜形状电极7-3,上下边长400μm,高2000μm,焦距500μm,The concave lens-shaped electrode 7-3 has an upper and lower side length of 400 μm, a height of 2000 μm, and a focal length of 500 μm.

第一凸透镜形状电极7-4,高2000μm,焦距500μm,The first convex lens-shaped electrode 7-4 has a height of 2000 μm and a focal length of 500 μm,

所述第一直角梯形棱镜形状电极7-1、第二直角梯形棱镜形状电极7-2、凹透镜形状电极7-3和第一凸透镜形状电极7-4之间间隙为20μm;The gap between the first rectangular trapezoidal prism-shaped electrode 7-1, the second rectangular trapezoidal prism-shaped electrode 7-2, the concave lens-shaped electrode 7-3 and the first convex lens-shaped electrode 7-4 is 20 μm;

所述阵列波导区8由80条平行的直条形状电极构成,各直条形状电极形状和尺寸相同,宽度5μm,长度3000μm,间隔20μm;The arrayed waveguide region 8 is composed of 80 parallel straight strip-shaped electrodes, each of which has the same shape and size, a width of 5 μm, a length of 3000 μm, and an interval of 20 μm;

所述第二凸透镜形状电极,高2000μm,焦距500μm,The second convex lens-shaped electrode has a height of 2000 μm and a focal length of 500 μm,

所述输出波导区10由8条平行的直条形状电极构成,各直条形状电极形状和尺寸相同,宽度5μm,长度1000μm,间隔50μm。The output waveguide region 10 is composed of 8 parallel straight strip-shaped electrodes, each of which has the same shape and size, with a width of 5 μm, a length of 1000 μm, and an interval of 50 μm.

所述的可调谐阵列波导光栅,所述液晶波导6的波导层6-2材料为氮化硅(Si3N4),厚度为0.3μm;For the tunable arrayed waveguide grating, the material of the waveguide layer 6-2 of the liquid crystal waveguide 6 is silicon nitride (Si 3 N 4 ), with a thickness of 0.3 μm;

所述输入耦合区7、阵列波导区8、输出耦合区9和输出波导区10的各电极材料为氧化铟锡(ITO)。The electrode materials of the input coupling region 7 , the arrayed waveguide region 8 , the output coupling region 9 and the output waveguide region 10 are indium tin oxide (ITO).

本发明的实施例2:Embodiment 2 of the present invention:

所述输入耦合区7、阵列波导区8、输出耦合区9和输出波导区10各部分之间的间隙为50μm;The gap between each part of the input coupling region 7, the arrayed waveguide region 8, the output coupling region 9 and the output waveguide region 10 is 50 μm;

所述第一直角梯形棱镜形状电极7-1和第二直角梯形棱镜形状电极7-2,上边长10μm,上下边长比1∶2,高50μm,The first rectangular trapezoidal prism-shaped electrode 7-1 and the second rectangular trapezoidal prism-shaped electrode 7-2 have an upper side length of 10 μm, a ratio of upper and lower side lengths of 1:2, and a height of 50 μm,

所述凹透镜形状电极7-3,上下边长20μm,高50μm,焦距100μm,The concave lens-shaped electrode 7-3 has an upper and lower side length of 20 μm, a height of 50 μm, and a focal length of 100 μm.

第一凸透镜形状电极7-4,高50μm,焦距100μm,The first convex lens-shaped electrode 7-4 has a height of 50 μm and a focal length of 100 μm,

所述第一直角梯形棱镜形状电极7-1、第二直角梯形棱镜形状电极7-2、凹透镜形状电极7-3和第一凸透镜形状电极7-4之间间隙为5μm;The gap between the first rectangular trapezoidal prism shaped electrode 7-1, the second rectangular trapezoidal prism shaped electrode 7-2, the concave lens shaped electrode 7-3 and the first convex lens shaped electrode 7-4 is 5 μm;

所述阵列波导区8由10条平行的直条形状电极构成,各直条形状电极形状和尺寸相同,宽度2μm,长度1000μm,间隔5μm;The arrayed waveguide region 8 is composed of 10 parallel straight-strip electrodes, each of which has the same shape and size, with a width of 2 μm, a length of 1000 μm, and an interval of 5 μm;

所述第二凸透镜形状电极,高50μm,焦距100μm,The second convex lens-shaped electrode has a height of 50 μm and a focal length of 100 μm,

所述输出波导区10由2条平行的直条形状电极构成,各直条形状电极形状和尺寸相同,宽度2μm,长度100μm,间隔10μm。The output waveguide region 10 is composed of two parallel straight electrodes, each of which has the same shape and size, with a width of 2 μm, a length of 100 μm, and an interval of 10 μm.

所述的可调谐阵列波导光栅,所述液晶波导6的波导层6-2材料为硅(Si),厚度为0.6μm;For the tunable arrayed waveguide grating, the material of the waveguide layer 6-2 of the liquid crystal waveguide 6 is silicon (Si), and the thickness is 0.6 μm;

所述输入耦合区7、阵列波导区8、输出耦合区9和输出波导区10的各电极材料为氧化铟锡(ITO)。The electrode materials of the input coupling region 7 , the arrayed waveguide region 8 , the output coupling region 9 and the output waveguide region 10 are indium tin oxide (ITO).

本发明的实施例3:Embodiment 3 of the present invention:

所述输入耦合区7、阵列波导区8、输出耦合区9和输出波导区10各部分之间的间隙为100μm;The gap between the input coupling region 7, the arrayed waveguide region 8, the output coupling region 9 and the output waveguide region 10 is 100 μm;

所述第一直角梯形棱镜形状电极7-1和第二直角梯形棱镜形状电极7-2,上边长50μm,上下边长比1∶3,高1000μm,The first right-angled trapezoidal prism-shaped electrode 7-1 and the second right-angled trapezoidal prism-shaped electrode 7-2 have an upper side length of 50 μm, a ratio of upper and lower side lengths of 1:3, and a height of 1000 μm,

所述凹透镜形状电极7-3,上下边长150μm,高1000μm,焦距100,The electrode 7-3 in the shape of a concave lens has an upper and lower side length of 150 μm, a height of 1000 μm, and a focal length of 100.

第一凸透镜形状电极7-4,高1000μm,焦距100μm,The first convex lens-shaped electrode 7-4 has a height of 1000 μm and a focal length of 100 μm,

所述第一直角梯形棱镜形状电极7-1、第二直角梯形棱镜形状电极7-2、凹透镜形状电极7-3和第一凸透镜形状电极7-4之间间隙为10μm;The gap between the first rectangular trapezoidal prism-shaped electrode 7-1, the second rectangular trapezoidal prism-shaped electrode 7-2, the concave lens-shaped electrode 7-3 and the first convex lens-shaped electrode 7-4 is 10 μm;

所述阵列波导区8由50条平行的直条形状电极构成,各直条形状电极形状和尺寸相同,宽度4μm,长度2000μm,间隔15μm;The arrayed waveguide region 8 is composed of 50 parallel straight strip-shaped electrodes, each of which has the same shape and size, a width of 4 μm, a length of 2000 μm, and an interval of 15 μm;

所述第二凸透镜形状电极,高1000μm,焦距100m,The second convex lens-shaped electrode has a height of 1000 μm and a focal length of 100 m,

所述输出波导区10由4条平行的直条形状电极构成,各直条形状电极形状和尺寸相同,宽度4μm,长度500μm,间隔25μm。The output waveguide region 10 is composed of 4 parallel straight strip-shaped electrodes, each of which has the same shape and size, with a width of 4 μm, a length of 500 μm, and an interval of 25 μm.

所述的可调谐阵列波导光栅,所述液晶波导6的波导层6-2材料为氮化硅(Si3N4),厚度为2.0μm;For the tunable arrayed waveguide grating, the material of the waveguide layer 6-2 of the liquid crystal waveguide 6 is silicon nitride (Si 3 N 4 ), with a thickness of 2.0 μm;

所述输入耦合区7、阵列波导区8、输出耦合区9和输出波导区10的各电极材料为氧化铟锡(ITO)。The electrode materials of the input coupling region 7 , the arrayed waveguide region 8 , the output coupling region 9 and the output waveguide region 10 are indium tin oxide (ITO).

Claims (3)

1. 一种基于液晶波导的可调谐阵列波导光栅,包括在光路上依次排列的输入耦合区(7)、阵列波导区(8)、输出耦合区(9)和输出波导区(10),其特征在于: 1. A tunable arrayed waveguide grating based on a liquid crystal waveguide, including an input coupling region (7), an arrayed waveguide region (8), an output coupling region (9) and an output waveguide region (10) arranged in sequence on the optical path. Features: 所述输入耦合区(7)由光路上依次排列的第一直角梯形棱镜形状电极(7-1)、第二直角梯形棱镜形状电极(7-2)、凹透镜形状电极(7-3)和第一凸透镜形状电极(7-4)构成,形成光束准直扩束系统;其中,第一直角梯形棱镜形状电极(7-1)和第二直角梯形棱镜形状电极(7-2)的形状相同,两者倒置拼接为矩形; The input coupling area (7) consists of the first rectangular trapezoidal prism-shaped electrode (7-1), the second rectangular trapezoidal prism-shaped electrode (7-2), the concave lens-shaped electrode (7-3) and the second rectangular trapezoidal prism-shaped electrode (7-3) arranged in sequence on the optical path. A convex lens-shaped electrode (7-4) forms a beam collimation and beam expansion system; wherein, the first right-angled trapezoidal prism-shaped electrode (7-1) and the second right-angled trapezoidal prism-shaped electrode (7-2) have the same shape, The two are inverted and spliced into a rectangle; 所述阵列波导区(8)由N条平行的直条形状电极构成,形成一个平行直阵列波导区,N≥3; The arrayed waveguide area (8) is composed of N parallel straight electrodes, forming a parallel straight arrayed waveguide area, N≥3; 所述输出耦合区(9)由第二凸透镜形状电极构成,形成光束的汇聚干涉区; The output coupling area (9) is composed of a second convex lens-shaped electrode, forming a beam convergence interference area; 所述输出波导区 (10)由M条平行的直条形状电极构成,形成输出波导, M为输出通道数,M≥1; The output waveguide area (10) is composed of M parallel straight strip-shaped electrodes to form an output waveguide, M is the number of output channels, M≥1; 所述液晶波导(6)的侧剖面自上而下依次为液晶层(6-1)、波导层(6-2)、下包层(6-3)、基底(6-4);上述各种形状电极均镀在液晶波导(6)的液晶层上表面。 The side section of the liquid crystal waveguide (6) is sequentially from top to bottom the liquid crystal layer (6-1), the waveguide layer (6-2), the lower cladding layer (6-3), and the substrate (6-4); Electrodes of various shapes are plated on the upper surface of the liquid crystal layer of the liquid crystal waveguide (6). 2.如权利要求1所述的可调谐阵列波导光栅,其特征在于: 2. The tunable arrayed waveguide grating as claimed in claim 1, characterized in that: 所述输入耦合区(7)、阵列波导区(8)、输出耦合区(9)和输出波导区(10)各部分之间的间隙为10μm~1000μm; The gap between each part of the input coupling area (7), the arrayed waveguide area (8), the output coupling area (9) and the output waveguide area (10) is 10 μm to 1000 μm; 所述第一直角梯形棱镜形状电极(7-1)和第二直角梯形棱镜形状电极(7-2)的上边长为10μm~100μm,上下边长比为1:2~1:4,高为50μm~2000μm; The first rectangular trapezoidal prism-shaped electrode (7-1) and the second rectangular trapezoidal prism-shaped electrode (7-2) have an upper side length of 10 μm to 100 μm, a ratio of upper and lower side lengths of 1:2 to 1:4, and a height of 50μm~2000μm; 所述凹透镜形状电极(7-3),上下边长为20μm~400μm,高为50μm~2000μm ,焦距10μm~1000μm; The concave lens-shaped electrode (7-3) has an upper and lower side length of 20 μm to 400 μm, a height of 50 μm to 2000 μm, and a focal length of 10 μm to 1000 μm; 所述第一凸透镜形状电极(7-4),高为50μm~2000μm,焦距10μm~1000μm;  The first convex lens-shaped electrode (7-4) has a height of 50 μm to 2000 μm and a focal length of 10 μm to 1000 μm; 所述第一直角梯形棱镜形状电极(7-1)、第二直角梯形棱镜形状电极(7-2)、凹透镜形状电极(7-3)和第一凸透镜形状电极(7-4)之间间隙为5μm~20μm; The gap between the first rectangular trapezoidal prism-shaped electrode (7-1), the second rectangular trapezoidal prism-shaped electrode (7-2), the concave lens-shaped electrode (7-3) and the first convex lens-shaped electrode (7-4) 5 μm ~ 20 μm; 所述阵列波导区(8)中,各直条形状电极形状和尺寸相同,宽度2μm~5μm,长度500μm~3000μm,间隔10μm~20μm; In the arrayed waveguide region (8), the shape and size of each straight-shaped electrode are the same, with a width of 2 μm to 5 μm, a length of 500 μm to 3000 μm, and an interval of 10 μm to 20 μm; 所述第二凸透镜形状电极,高为50μm~2000μm,焦距10μm~1000μm;  The second convex lens-shaped electrode has a height of 50 μm to 2000 μm and a focal length of 10 μm to 1000 μm; 所述输出波导区 (10)中,各直条形状电极形状和尺寸相同,宽度2μm~5μm,长度100μm~1000μm,间隔10μm~50μm。 In the output waveguide area (10), the shape and size of each straight-shaped electrode are the same, with a width of 2 μm to 5 μm, a length of 100 μm to 1000 μm, and an interval of 10 μm to 50 μm. 3.如权利要求1或2所述的可调谐阵列波导光栅,其特征在于: 3. The tunable arrayed waveguide grating as claimed in claim 1 or 2, characterized in that: 所述液晶波导(6)的波导层(6-2)材料为硅或者氮化硅,厚度为0.3μm~2.0μm; The material of the waveguide layer (6-2) of the liquid crystal waveguide (6) is silicon or silicon nitride, with a thickness of 0.3 μm to 2.0 μm; 所述输入耦合区(7)、阵列波导区(8)、输出耦合区(9)和输出波导区(10)的各电极材料为氧化铟锡。 The electrode materials of the input coupling area (7), the array waveguide area (8), the output coupling area (9) and the output waveguide area (10) are indium tin oxide.
CN201310029847.8A 2013-01-25 2013-01-25 Tunable array waveguide grating based on liquid crystal waveguides Expired - Fee Related CN103091783B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310029847.8A CN103091783B (en) 2013-01-25 2013-01-25 Tunable array waveguide grating based on liquid crystal waveguides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310029847.8A CN103091783B (en) 2013-01-25 2013-01-25 Tunable array waveguide grating based on liquid crystal waveguides

Publications (2)

Publication Number Publication Date
CN103091783A CN103091783A (en) 2013-05-08
CN103091783B true CN103091783B (en) 2014-08-27

Family

ID=48204575

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310029847.8A Expired - Fee Related CN103091783B (en) 2013-01-25 2013-01-25 Tunable array waveguide grating based on liquid crystal waveguides

Country Status (1)

Country Link
CN (1) CN103091783B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760699B (en) * 2014-02-19 2016-08-17 华中科技大学 Micro annular resonant cavity type adjustable light wave-filter based on liquid crystal narrow slit wave-guide
CN106461874B (en) * 2014-09-26 2019-09-27 华为技术有限公司 Array waveguide grating and tunable laser with the array waveguide grating
US10359627B2 (en) 2015-11-10 2019-07-23 Microsoft Technology Licensing, Llc Waveguide coatings or substrates to improve intensity distributions having adjacent planar optical component separate from an input, output, or intermediate coupler
US9791696B2 (en) 2015-11-10 2017-10-17 Microsoft Technology Licensing, Llc Waveguide gratings to improve intensity distributions
US9915825B2 (en) 2015-11-10 2018-03-13 Microsoft Technology Licensing, Llc Waveguides with embedded components to improve intensity distributions
CN106773376B (en) * 2017-01-18 2020-11-24 西华师范大学 A liquid crystal waveguide adjustable optical delay line and method for continuously adjusting the delay amount
CN110658585B (en) * 2018-06-29 2022-01-11 华为技术有限公司 Optical waveguide device
CN111323865A (en) * 2018-12-17 2020-06-23 施轩杰 Sectional waveguide display scheme
CN113740970A (en) * 2020-05-30 2021-12-03 华为技术有限公司 Grating and characteristic adjusting method and device thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1391116A (en) * 2002-07-12 2003-01-15 武汉飞鸿光网络有限公司 Array waveguide raster
CN101001001A (en) * 2006-12-20 2007-07-18 武汉光迅科技股份有限公司 Manufacturing method of low cost DFB laser
CN102841407A (en) * 2012-09-20 2012-12-26 电子科技大学 Waveguide type polarizing beam splitter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853758B2 (en) * 2002-07-12 2005-02-08 Optimer Photonics, Inc. Scheme for controlling polarization in waveguides
US7209212B2 (en) * 2004-09-15 2007-04-24 China Institute Of Technology Tunable optical integrated element using liquid crystal as active layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1391116A (en) * 2002-07-12 2003-01-15 武汉飞鸿光网络有限公司 Array waveguide raster
CN101001001A (en) * 2006-12-20 2007-07-18 武汉光迅科技股份有限公司 Manufacturing method of low cost DFB laser
CN102841407A (en) * 2012-09-20 2012-12-26 电子科技大学 Waveguide type polarizing beam splitter

Also Published As

Publication number Publication date
CN103091783A (en) 2013-05-08

Similar Documents

Publication Publication Date Title
CN103091783B (en) Tunable array waveguide grating based on liquid crystal waveguides
CN110161625A (en) The integrated method of silicon substrate LiNbO_3 film electrooptic modulator array
JP4932029B2 (en) Waveguide-type variable optical attenuator
CN106959485B (en) Directional coupling TM polarizer and beam splitter based on subwavelength grating
CN110780380B (en) Optical waveguide element
US20020159684A1 (en) Novel optical waveguide switch using cascaded mach-zehnder interferometers
CN102073103B (en) Subwavelength binary diffraction grating-based wavelength separator
CN101308235A (en) Silicon based thermally independent arrayed waveguide grating based on slit waveguide
CN104678492B (en) Mode division multiplexing and de-multiplexing device based on photonic crystal
US20140185982A1 (en) Wave vector matched resonator and bus waveguide system
JP5467414B2 (en) Optical functional waveguide
JP2012042849A (en) Optical waveguide device
US6968105B2 (en) Waveguide-type optical device and optical switch
JP4267888B2 (en) OPTICAL CIRCUIT, OPTICAL CIRCUIT DEVICE, AND OPTICAL CIRCUIT MANUFACTURING METHOD
CN110941048B (en) Coarse wavelength division multiplexer/demultiplexer with high extinction ratio based on the principle of multimode interference
CN106094119A (en) Three pattern mode division multiplexing and demultiplexers based on photonic crystal
WO2020105412A1 (en) Optical interconnect structure and method for manufacturing same
CN101852891A (en) A fiber-to-the-home single-fiber three-way multiplexer chip
JP2014228640A (en) Optical filter
JP5030095B2 (en) Planar waveguide element
CN105204112A (en) Wave-length and polarization hybrid multiplexer/demultiplexer on silicon chip
JP4345490B2 (en) Optical branching element
Fujita et al. The integration of silica and polymer waveguide devices for ROADM applications
Duy et al. Design and demonstration of compact, high bandwidth optical mode selective devices by realizing ITO-based controllable phase shifters integrated on silicon-on-insulator waveguides
Dai et al. Electro-optical tunable arrayed waveguide grating based on liquid crystal clad waveguide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140827