CN103090587A - Cold and hot external balance system for combined use of lithium bromide unit and refrigeration storage - Google Patents

Cold and hot external balance system for combined use of lithium bromide unit and refrigeration storage Download PDF

Info

Publication number
CN103090587A
CN103090587A CN2013100254431A CN201310025443A CN103090587A CN 103090587 A CN103090587 A CN 103090587A CN 2013100254431 A CN2013100254431 A CN 2013100254431A CN 201310025443 A CN201310025443 A CN 201310025443A CN 103090587 A CN103090587 A CN 103090587A
Authority
CN
China
Prior art keywords
cold
heat exchanger
water
heat
lithium bromide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013100254431A
Other languages
Chinese (zh)
Inventor
巢民强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen J&h Intelligent Energy Technology Co ltd
Original Assignee
Shenzhen J&h Intelligent Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen J&h Intelligent Energy Technology Co ltd filed Critical Shenzhen J&h Intelligent Energy Technology Co ltd
Priority to CN2013100254431A priority Critical patent/CN103090587A/en
Publication of CN103090587A publication Critical patent/CN103090587A/en
Priority to PCT/CN2014/070656 priority patent/WO2014111014A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

The invention provides a cold and hot external balance system for a combined use of a lithium bromide unit and a refrigeration storage, and belongs to the field of new energy, energy conservation and environment protection. The cooling capacity and the quantity of heat in the system separate and balance the circulation evenly, the cooling capacity of the quantity of heat are balanced by a balancer outside the system without exchanging heat with an outside world (an external system), and the circulation-balanced cooling capacity and the quantity of heat are output synchronously. No energy is wasted while the cold and heat balance system is in service. The cold and hot external balance system comprises a compressor, a heat source side heat exchanger, a heating power expansion valve, a cold source side heat exchanger and a vapor liquid separator. While heating, the cold capacity of the side cold source can be transmitted to cold terminal or the refrigeration storage and other external cold balancer in the air, water or refrigerant through a fin radiator, a water way circulation heat dissipation and other heat exchanging devices. While cooling, the heat of the side heat source can be transmitted to a hot terminal or lithium bromide unit and other external hot balancer in the air, water or refrigerant through the fin radiator, the water way circulation heat dissipation and other heat exchanging devices. The service efficiency of the unit cold and hot capacity is improved, the zero emission and the cyclic utilization of the energy are achieved, and the investment cost is greatly saved.

Description

The cold and hot outer balance sysmte that a kind of lithium bromide unit is combined with freezer
Technical field
The invention belongs to new forms of energy and energy-conserving and environment-protective fields, the cold and hot outer balance sysmte that provides a kind of lithium bromide unit to be combined with freezer, the cold in system to be separated with heat and balanced recycle a kind of relating to, without with the state of extraneous external system heat exchange under, by balancer balance outside system, cold and the heat of synchronous output cyclic balance, the cold and hot balance sysmte of noenergy waste in service.
Background technology
Point out in " " 12 " national strategy new industry development plan ", accelerate development the industrialization of the renewable energy technologies such as technology maturation, nuclear power, wind-powered electricity generation, photovoltaic and heat utilization, page rock, biomass power generation, underground heat that the market competitiveness is strong and the new forms of energy such as ground temperature energy, biogas, the technology of actively pushing forward are mature on the whole, potentiality to be exploited is large solar energy photovoltaic and hot generating, gasification of biomass, bio-fuel, ocean energy, implement new forms of energy integrated utilization demonstration Important Project.By 2015, new forms of energy accounted for the ratio of total energy consumption and bring up to 4.5%, reduced the carbon dioxide annual emissions more than 400,000,000 tons.By 2015, China's energy-saving potential surpassed 400,000,000 tons of standard coals, can drive the trillion yuan investment, and the energy conservation service industry gross output value can break through 3,000 hundred million yuan.But new forms of energy are used and are also faced the problem of saving cost and protection of the environment.Therefore, the essence of seeing clearly the energy is to solve how to supply cool and thermal power three kinds of base substances with the mode of physics or chemistry most effectively, has become the key of new forms of energy and energy-conserving and environment-protective technology and industry development.
Tradition heating power and air-conditioning system all only unidirectionally heat or freeze when heat supply or refrigeration.When heating, the cold that displaces not only is not utilized effectively and also needs to configure multiple device and control environment discharges; In when refrigeration, the cold that displaces not only is not utilized effectively and also needs to configure multiple device and control environment discharges.Universal phenomenon in industry, business, national defence, plantation aquaculture and resident living has so just appearred: dispose heating a large amount of useless cold cost that needs that runs off when hot on the one hand, also need simultaneously on the other hand to expend energy refrigeration hot.If effectively utilize the cold and hot energy that runs off, amount is applied to industrial production and daily life, can significantly improve energy use efficiency, greatly reduces energy use cost and eco-environmental damage.
Summary of the invention
The cold and hot outer balance sysmte that the object of the present invention is to provide a kind of lithium bromide unit to be combined with freezer, when heating, the cold of low-temperature receiver side may be delivered to cold-smoothing weighing apparatus outside cold terminal or freezer etc. in air or water or in refrigerant by heat-exchanger rigs such as fin radiator, waterway circulating heat radiations and be utilized effectively; When refrigeration, the heat of heat source side may be delivered in air or water or in refrigerant by heat-exchanger rigs such as fin radiator, waterway circulating heat radiations with heat compensator outside the terminal of heat or lithium bromide unit etc. and be utilized effectively.Be intended to solve: 1, need heat also to need simultaneously system's hot-cool demand of cold; 2, the system that only needs hot cold, but adjacent other system needs the demand of cold and hot amount; 3, arbitrarily with the cold and hot amount of hot cold junction recovery to this unit, realize that cold cycling back and forth utilizes.The present invention can significantly improve the cold and hot amount service efficiency of unit, realizes zero-emission, and the cost of reducing investment outlay can be widely used in all trades and professions, has far-reaching extensive social value and economic worth.
The present invention realizes like this
the cold and hot outer balance sysmte that a kind of lithium bromide unit is combined with freezer, it is characterized in that: compressor 1 use pipeline successively with heat source side heat exchanger 2, heating power expansion valve 3, low-temperature receiver side heat exchanger 4, gas-liquid separator 5 is connected in series, described heat source side heat exchanger 2 water side-entrances and the first water circulating pump 10, the second magnetic valve 8, lithium bromide unit 6, the first check valve 9 is connected in series, described lithium bromide unit 6 and the first magnetic valve 7 are connected in parallel, described low-temperature receiver side heat exchanger 4 water side-entrances and the second water circulating pump 15, the 4th magnetic valve 12, freezer 11, the second check valve 13 is connected in series, described low-temperature receiver side heat exchanger 4 be connected in series with the 5th magnetic valve 14.
Above-mentioned heat source side heat exchanger 2 adopts plate type heat exchanger, double pipe heat exchanger, the shell and tube exchanger of cold water heat exchange.
Above-mentioned low-temperature receiver side heat exchanger 4 adopts plate type heat exchanger, double pipe heat exchanger, the shell and tube exchanger of cold water heat exchange.
Above-mentioned freezer 11 adopts described freezers to adopt finned air-coolers, copper pipe heat exchanger, Steel Pipe Heat Exchanger, titanium tube heat exchanger endlessly.
Above-mentioned heat source side heat exchanger 2 connects heat source side feed pipe, heat source side the first water circulating pump, heat source side backwater main and corresponding heat source side and uses heat balancing equipment.
Above-mentioned low-temperature receiver side heat exchanger 4 connects low-temperature receiver side feed pipe, low-temperature receiver side the second water circulating pump, low-temperature receiver side backwater main and corresponding low-temperature receiver side and uses heat balancing equipment.
The source of recycled water that above-mentioned heat source side heat exchanger 4 uses comprises the water that circulates in the water in common pall, the water that extracts or ground lower coil pipe from well, lake or river, can be also other suitable refrigeration working mediums that heat.
The source of recycled water that above-mentioned lithium bromide unit 6 uses comprises the water that circulates in the water in common pall, the water that extracts or ground lower coil pipe from well, lake or river, can be also other suitable refrigeration working mediums that heat.
adopt technique scheme, the present invention is placed in same system with low-temperature receiver side and heat source side heat exchanger, heat source side heat exchanger and lithium bromide unit are connected in series by water route or cooling and warming working medium, low-temperature receiver side heat exchanger and freezer end are connected in series by water route or cooling and warming working medium, the low-temperature receiver side is connected with heat source side heat exchanger and the end-equipment that is connected corresponding use heat or cold, when system moves, low-temperature receiver side cold is used for refrigeration end refrigeration to be used, when unnecessary cold is arranged, cold is inputted be used for freezing and refrigeration in freezer, the heat of heat source side utilizes in heating and refrigeration or secondary utilization by heat source side heat exchanger and lithium bromide unit simultaneously, during the said system running, inadequate or unnecessary or heat load is insufficient when remaining when refrigeration cold load, by opening or close water route side freezer or heat source side heat compensator to reach the cold and hot balance of whole system, cold and heat all are fully used, without cold and hot amount waste, can reach the optimum state that system utilizes, farthest improve Energy Efficiency Ratio, reduce the initial investment cost, high-efficiency environment friendly.
Description of drawings
Fig. 1 is the systematic schematic diagram that the embodiment of the present invention provides.
The specific embodiment
In order to make purpose of the present invention, technical scheme and advantage clearer, below in conjunction with drawings and Examples, the present invention is further elaborated.Should be appreciated that specific embodiment described herein only in order to explain the present invention, is not intended to limit the present invention.
please refer to Fig. 1, its compressor 1 use pipeline successively with heat source side heat exchanger 2, heating power expansion valve 3, low-temperature receiver side heat exchanger 4, gas-liquid separator 5 is connected in series, described heat source side heat exchanger 2 water side-entrances and the first water circulating pump 10, the second magnetic valve 8, lithium bromide unit 6, the first check valve 9 is connected in series, described lithium bromide unit 6 and the first magnetic valve 7 are connected in parallel, described low-temperature receiver side heat exchanger 4 water side-entrances and the second water circulating pump 15, the 4th magnetic valve 12, freezer 11, the second check valve 13 is connected in series, described low-temperature receiver side heat exchanger 4 be connected in series with the 5th magnetic valve 14, described system can complete cooling and warming and cold and hot amount all can be by the system of end-equipment balance use.
See also Fig. 1, described heat source side heat exchanger 2 adopts plate type heat exchanger, double pipe heat exchanger, the shell and tube exchanger of cold water heat exchange.Described heat source side heat exchanger 2, itself and heat source side feed pipe, heat source side the first water circulating pump 10, heat source side backwater main and corresponding heat source side are used heat balancing equipment and are connected to and form water circuit system in air-conditioning system and carry out exchange heat.
See also Fig. 1, described low-temperature receiver side heat exchanger 4 adopts plate type heat exchanger, double pipe heat exchanger, the shell and tube exchanger of cold water heat exchange.Described low-temperature receiver side heat exchanger 4, itself and low-temperature receiver side feed pipe, low-temperature receiver side the second water circulating pump 15, low-temperature receiver side backwater main and corresponding low-temperature receiver side are used heat balancing equipment and are connected to and form water circuit system in air-conditioning system and carry out exchange heat.
See also Fig. 1, described cold storehouse 11 adopts described freezers to adopt finned air-coolers, copper pipe heat exchanger, Steel Pipe Heat Exchanger, titanium tube heat exchanger endlessly.Described freezer 11, itself and low-temperature receiver side heat exchanger 4 are connected in series.
See also Fig. 1, the source of recycled water that described heat source side heat exchanger 2 uses comprises the water that circulates in the water in common pall, the water that extracts or ground lower coil pipe from well, lake or river, can be also other suitable refrigeration working mediums that heat.
See also Fig. 1, the source of recycled water that described lithium bromide unit 6 uses comprises the water that circulates in the water in common pall, the water that extracts or ground lower coil pipe from well, lake or river, can be also other suitable refrigeration working mediums that heat.
The present embodiment has following four kinds of operating modes, and in these four kinds of duties, described heat source side heat exchanger 2 is plate type heat exchanger, and described heat source side heat compensator is lithium bromide unit 6, and described low-temperature receiver side heat exchanger 4 is plate type heat exchanger.Described low-temperature receiver side cold-smoothing weighing apparatus is freezer 11.
1 outer heat compensator is not opened operating mode:
see also Fig. 1, compressor 1 compression refrigerant enters into heat source side heat exchanger 2, the first water circulating pump 10, the first magnetic valve 7 is opened, cooling water and refrigerant carry out heat exchange, water temperature rises, institute's calorific requirement is provided, the refrigerant condensation temperature reduces, enter in heating power expansion valve 3 after 2 condensations of refrigerant process heat source side heat exchanger, by heating power expansion valve 3 throttlings, after throttling, refrigerant enters evaporation in low-temperature receiver side heat exchanger 4, the second water circulating pump 15, the 5th magnetic valve 14 is opened, chilled water and refrigerant carry out heat exchange, water temperature reduces, institute's chilling requirement is provided, the refrigerant evaporation endothermic temperature rises, refrigerant enters in gas-liquid separator 5 by low-temperature receiver side heat exchanger 4 and 5 tube connectors of gas-liquid separator, refrigerant is got back in compressor 1 after by gas-liquid separator 5, system enters into next circulation.
In described operating mode, the first magnetic valve 7, the 4th magnetic valve 14 are opened, and the second magnetic valve 8, the 3rd magnetic valve 9, the 4th magnetic valve 12 are closed.
In described operating mode, the first water circulating pump 10, the second water circulating pump 15 are opened.
2 heat source side lithium bromide units are opened operating mode:
see also Fig. 1, compressor 1 compression refrigerant enters into heat source side heat exchanger 2, the first water circulating pump 10, the second magnetic valve 8 is opened, the first magnetic valve 7 cuts out, cooling water and refrigerant carry out heat exchange, water temperature rises, institute's calorific requirement is provided, the refrigerant condensation temperature reduces, enter in heating power expansion valve 3 after 2 condensations of refrigerant process heat source side heat exchanger, in heat source side heat exchanger 2, cooling water enters provides heat medium water to freeze in lithium bromide unit 6 or the secondary utilization, refrigerant is by heating power expansion valve 3 throttlings, after throttling, refrigerant enters evaporation in low-temperature receiver side heat exchanger 4, the second water circulating pump 15, the 4th magnetic valve 14 is opened, chilled water and refrigerant carry out heat exchange, water temperature reduces, institute's chilling requirement is provided, the refrigerant evaporation endothermic temperature rises, refrigerant enters in gas-liquid separator 5 by low-temperature receiver side heat exchanger 4 and 5 tube connectors of gas-liquid separator, refrigerant is got back in compressor 1 after by gas-liquid separator 5, system enters into next circulation.
In described operating mode,, the second magnetic valve 8, the 5th magnetic valve 14 open, the first magnetic valve 7, the 3rd magnetic valve 9, the 4th magnetic valve 12 are closed.
In described operating mode, the first water circulating pump 10, the second water circulating pump 15.
In described operating mode, if needed, the 3rd magnetic valve 9 can be opened.
3 low-temperature receiver side freezers are opened operating mode:
see also Fig. 1, compressor 1 compression refrigerant enters into heat source side heat exchanger 2, the first water circulating pump 10, the first magnetic valve 7 is opened, cooling water and refrigerant carry out heat exchange, water temperature rises, institute's calorific requirement is provided, the refrigerant condensation temperature reduces, enter in heating power expansion valve 3 after 2 condensations of refrigerant process heat source side heat exchanger, by heating power expansion valve 3 throttlings, after throttling, refrigerant enters evaporation in low-temperature receiver side heat exchanger 4, the second water circulating pump 15 the 4th magnetic valve 12 is opened, chilled water and refrigerant carry out heat exchange, water temperature reduces, institute's chilling requirement is provided, chilled water enters in freezer 11 after by low-temperature receiver side heat exchanger 4, freezer freezing and refrigeration institute chilling requirement is provided, the refrigerant evaporation endothermic temperature rises, enter in gas-liquid separator 5 by low-temperature receiver side heat exchanger 4 and 5 tube connectors of gas-liquid separator, refrigerant is got back in compressor 1 after by gas-liquid separator 5, system enters into next circulation.
In described operating mode, the first magnetic valve 7, the 4th magnetic valve 12 are opened, and the second magnetic valve 8, the 3rd magnetic valve 9, the 5th magnetic valve 14 are closed.
In described operating mode, the first water circulating pump 10, the second water circulating pump 15 are opened.
4 heat source side lithium bromide units and low-temperature receiver side freezer are opened operating mode:
see also Fig. 1, compressor 1 compression refrigerant enters into heat source side heat exchanger 2, the first water circulating pump 10, the second magnetic valve 8 is opened, the first magnetic valve 7 cuts out, cooling water and refrigerant carry out heat exchange, water temperature rises, institute's calorific requirement is provided, the refrigerant condensation temperature reduces, enter in heating power expansion valve 3 after 2 condensations of refrigerant process heat source side heat exchanger, in heat source side heat exchanger 2, cooling water enters provides heat medium water to freeze in lithium bromide unit 6 or the secondary utilization, refrigerant is by heating power expansion valve 3 throttlings, after throttling, refrigerant enters evaporation in low-temperature receiver side heat exchanger 4, the second water circulating pump 15 the 4th magnetic valve 12 is opened, chilled water and refrigerant carry out heat exchange, water temperature reduces, institute's chilling requirement is provided, chilled water enters in freezer 11 after by low-temperature receiver side heat exchanger 4, freezer freezing and refrigeration institute chilling requirement is provided, the refrigerant evaporation endothermic temperature rises, enter in gas-liquid separator 5 by low-temperature receiver side heat exchanger 4 and 5 tube connectors of gas-liquid separator, refrigerant is got back in compressor 1 after by gas-liquid separator 5, system enters into next circulation.
In described operating mode, the second magnetic valve 8, the 4th magnetic valve 12 are opened, and the first magnetic valve 7, the 3rd magnetic valve 9, the 5th magnetic valve 14 are closed.
In described operating mode, the first water circulating pump 10, the second water circulating pump 15 are opened.
In described operating mode, if needed, the 3rd magnetic valve 9 can be opened.
The above is only preferred embodiment of the present invention, not in order to limiting the present invention, all any modifications of doing within the spirit and principles in the present invention, is equal to and replaces and improvement etc., within all should being included in protection scope of the present invention.

Claims (8)

1. cold and hot outer balance sysmte that the lithium bromide unit is combined with freezer, it is characterized in that: compressor (1) with pipeline successively with heat source side heat exchanger (2), heating power expansion valve (3), low-temperature receiver side heat exchanger (4), gas-liquid separator (5) is connected in series, described heat source side heat exchanger (2) water side-entrance and the first water circulating pump (10), the second magnetic valve (8), lithium bromide unit (6), the first check valve (9) is connected in series, described lithium bromide unit (6) is connected in parallel with the first magnetic valve (7), described low-temperature receiver side heat exchanger (4) water side-entrance and the second water circulating pump (15), the 4th magnetic valve (12), freezer (11), the second check valve (13) is connected in series, described low-temperature receiver side heat exchanger (4) is connected in series with the 5th magnetic valve (14).
2. the cold and hot outer balance sysmte that is combined with freezer of a kind of lithium bromide unit as claimed in claim 1, it is characterized in that: described heat source side heat exchanger adopts plate type heat exchanger, double pipe heat exchanger, the shell and tube exchanger of cold water heat exchange.
3. the cold and hot outer balance sysmte that is combined with freezer of a kind of lithium bromide unit as claimed in claim 1, it is characterized in that: described low-temperature receiver side heat exchanger adopts plate type heat exchanger, double pipe heat exchanger, the shell and tube exchanger of cold water heat exchange.
4. the cold and hot outer balance sysmte that is combined with freezer of a kind of lithium bromide unit as claimed in claim 1 is characterized in that: described freezer adopts described freezer to adopt finned air-cooler, copper pipe heat exchanger, Steel Pipe Heat Exchanger, titanium tube heat exchanger endlessly.
5. the cold and hot outer balance sysmte that is combined with freezer of a kind of lithium bromide unit as claimed in claim 2, it is characterized in that: described heat source side heat exchanger connects heat source side feed pipe, heat source side the first water circulating pump, heat source side backwater main and corresponding heat source side and uses heat balancing equipment.
6. the cold and hot outer balance sysmte that is combined with freezer of a kind of lithium bromide unit as claimed in claim 4, it is characterized in that: described low-temperature receiver side heat exchanger connects low-temperature receiver side feed pipe, low-temperature receiver side the second water circulating pump, low-temperature receiver side backwater main and corresponding low-temperature receiver side and uses heat balancing equipment.
7. the cold and hot outer balance sysmte that is combined with freezer of a kind of lithium bromide unit as claimed in claim 2, it is characterized in that: the source of recycled water that described heat source side heat exchanger uses comprises the water that circulates in the water in common pall, the water that extracts or ground lower coil pipe from well, lake or river; Can be also other cooling and warming working medium.
8. the cold and hot outer balance sysmte that is combined with freezer of a kind of lithium bromide unit as claimed in claim 3, it is characterized in that: the source of recycled water that described lithium bromide unit uses comprises the water that circulates in the water in common pall, the water that extracts or ground lower coil pipe from well, lake or river; Can be also other cooling and warming working medium.
CN2013100254431A 2013-01-21 2013-01-21 Cold and hot external balance system for combined use of lithium bromide unit and refrigeration storage Pending CN103090587A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2013100254431A CN103090587A (en) 2013-01-21 2013-01-21 Cold and hot external balance system for combined use of lithium bromide unit and refrigeration storage
PCT/CN2014/070656 WO2014111014A1 (en) 2013-01-21 2014-01-15 External cold and heat balance system combining lithium bromide unit and cold storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013100254431A CN103090587A (en) 2013-01-21 2013-01-21 Cold and hot external balance system for combined use of lithium bromide unit and refrigeration storage

Publications (1)

Publication Number Publication Date
CN103090587A true CN103090587A (en) 2013-05-08

Family

ID=48203479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013100254431A Pending CN103090587A (en) 2013-01-21 2013-01-21 Cold and hot external balance system for combined use of lithium bromide unit and refrigeration storage

Country Status (2)

Country Link
CN (1) CN103090587A (en)
WO (1) WO2014111014A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014111020A1 (en) * 2013-01-21 2014-07-24 深圳市庄合智能产业科技有限公司 Hot and cold balancer set
WO2014111011A1 (en) * 2013-01-21 2014-07-24 深圳市庄合智能产业科技有限公司 Cold and heat balance system combining lithium bromide unit and cold storage
WO2014111014A1 (en) * 2013-01-21 2014-07-24 深圳市庄合智能产业科技有限公司 External cold and heat balance system combining lithium bromide unit and cold storage
WO2014111017A1 (en) * 2013-01-21 2014-07-24 深圳市庄合智能产业科技有限公司 External cold and heat balance unit
CN106091474A (en) * 2016-06-17 2016-11-09 珠海格力电器股份有限公司 Ammonia absorption compression-type refrigeration/heat pump and heat-exchange method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106855326A (en) * 2017-02-23 2017-06-16 黄安东 The integrated machine of multisystem cool-heat-exchanger efficient water-heating and its method of work

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745768A (en) * 1987-08-27 1988-05-24 The Brooklyn Union Gas Company Combustion-powered refrigeration with decreased fuel consumption
JP2004325048A (en) * 2003-04-30 2004-11-18 Tokyo Gas Co Ltd Low temperature water manufacturing device
CN101963412A (en) * 2010-10-18 2011-02-02 河南科技大学 Solar energy and electric energy combined heat pump system and cooling and heating method
US20110173998A1 (en) * 2008-10-03 2011-07-21 Tony Coleman Process and apparatus for cooling
JP2012145309A (en) * 2011-01-14 2012-08-02 Mitsubishi Heavy Ind Ltd Heat source system
CN102679476A (en) * 2011-03-14 2012-09-19 杨贻方 High-efficient refrigerating air-conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090592A (en) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 Cold and hot external balancer set
CN103075848A (en) * 2013-01-21 2013-05-01 深圳市庄合地能产业科技有限公司 Cold and heat balancing system combining lithium bromide set and refrigeration house
CN103090591A (en) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 Cold and hot internal balance system for combined use of lithium bromide unit and refrigeration storage
CN103090587A (en) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 Cold and hot external balance system for combined use of lithium bromide unit and refrigeration storage

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745768A (en) * 1987-08-27 1988-05-24 The Brooklyn Union Gas Company Combustion-powered refrigeration with decreased fuel consumption
JP2004325048A (en) * 2003-04-30 2004-11-18 Tokyo Gas Co Ltd Low temperature water manufacturing device
US20110173998A1 (en) * 2008-10-03 2011-07-21 Tony Coleman Process and apparatus for cooling
CN101963412A (en) * 2010-10-18 2011-02-02 河南科技大学 Solar energy and electric energy combined heat pump system and cooling and heating method
JP2012145309A (en) * 2011-01-14 2012-08-02 Mitsubishi Heavy Ind Ltd Heat source system
CN102679476A (en) * 2011-03-14 2012-09-19 杨贻方 High-efficient refrigerating air-conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014111020A1 (en) * 2013-01-21 2014-07-24 深圳市庄合智能产业科技有限公司 Hot and cold balancer set
WO2014111011A1 (en) * 2013-01-21 2014-07-24 深圳市庄合智能产业科技有限公司 Cold and heat balance system combining lithium bromide unit and cold storage
WO2014111014A1 (en) * 2013-01-21 2014-07-24 深圳市庄合智能产业科技有限公司 External cold and heat balance system combining lithium bromide unit and cold storage
WO2014111017A1 (en) * 2013-01-21 2014-07-24 深圳市庄合智能产业科技有限公司 External cold and heat balance unit
CN106091474A (en) * 2016-06-17 2016-11-09 珠海格力电器股份有限公司 Ammonia absorption compression-type refrigeration/heat pump and heat-exchange method
CN106091474B (en) * 2016-06-17 2018-09-18 珠海格力电器股份有限公司 Ammonium hydroxide Absorption-Compression refrigeration/heat pump system and heat-exchange method

Also Published As

Publication number Publication date
WO2014111014A1 (en) 2014-07-24

Similar Documents

Publication Publication Date Title
CN103090591A (en) Cold and hot internal balance system for combined use of lithium bromide unit and refrigeration storage
CN103090592A (en) Cold and hot external balancer set
CN103075843A (en) Hot and cold inner balance set
CN110345549B (en) Liquid cooling data center waste heat recovery system
CN103090587A (en) Cold and hot external balance system for combined use of lithium bromide unit and refrigeration storage
CN106839481B (en) Cooling unit with auxiliary cold source
CN103075848A (en) Cold and heat balancing system combining lithium bromide set and refrigeration house
CN102155299A (en) Combination system of stirling engine and combustion gas turbine utilizing liquefied natural gas
CN105187009A (en) Thermal power generation cooling/power generation heating system of solar photovoltaic power generation system
CN103471287A (en) Renewable energy source complementary combined cooling heating and power system
CN204923571U (en) Thermoelectric cold trigeminy supplies system based on heat pump technique and compressed air electric power storage technique
CN103075842A (en) Heat and cold balance set
CN203454466U (en) Combined cooling-heating power cogeneration system capable of realizing complementation of renewable energy sources
CN211116438U (en) Power generation and refrigeration combined cycle system based on ocean temperature difference energy
CN103090486A (en) Heat balance all-in-on machine
CN203837330U (en) CO2 heat pump heat exchange enthalpy increase device
CN207539872U (en) Energy supply system
CN203584579U (en) Device for improving output of gas-steam combined circulating unit under high-temperature environment
CN103822322A (en) Wind and solar combined driven heat pump CCHP (Combined Cooling Heating and Power) system and work method
CN104047730A (en) Gas turbine air inlet cooling system by using cascaded lithium bromide refrigerators
CN210292423U (en) Nuclear energy cold and heat combined supply system based on absorption technology
CN201021857Y (en) A dual effect ground source thermal pump three-purpose device
CN203939581U (en) Adopt the Inlet Air Cooling System of Gas Turbine of superposition type lithium bromide refrigerator
CN204830275U (en) Multi -functional central air -conditioning system
CN103175321A (en) River water heat source utilizing device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130508