CN103089352B - Mixed type steam Rankine combined cycle power generation device - Google Patents

Mixed type steam Rankine combined cycle power generation device Download PDF

Info

Publication number
CN103089352B
CN103089352B CN201310029385.XA CN201310029385A CN103089352B CN 103089352 B CN103089352 B CN 103089352B CN 201310029385 A CN201310029385 A CN 201310029385A CN 103089352 B CN103089352 B CN 103089352B
Authority
CN
China
Prior art keywords
steam
pressure
low
rankine cycle
voltage terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310029385.XA
Other languages
Chinese (zh)
Other versions
CN103089352A (en
Inventor
王海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Reclaimer Environmental Technology Co Ltd
Original Assignee
Nanjing Reclaimer Environmental Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Reclaimer Environmental Technology Co Ltd filed Critical Nanjing Reclaimer Environmental Technology Co Ltd
Priority to CN201310029385.XA priority Critical patent/CN103089352B/en
Publication of CN103089352A publication Critical patent/CN103089352A/en
Application granted granted Critical
Publication of CN103089352B publication Critical patent/CN103089352B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The invention relates to a mixed type steam Rankine combined cycle power generation device. A high pressure end steam Rankine cycle and a lower pressure end steam Rankine cycle are directly compounded through a low pressure steam generator 5. Latent heat of vaporization released when a high temperature steam Rankine cycle steam turbine discharges exhaust gas for condensing is completely utilized for power generation of a low temperature end steam Rankine cycle, and therefore load of a traditional steam Rankine cycle system condenser is effectively reduced by more than 20%. System optimization technology is adopted, and cycling absolute thermal efficiency of the whole system is improved by more than 5%. The mixed type steam Rankine combined cycle power generation device not only can be used for energy conservation improvement on an existing machine unit, but also can be used for designing and building a newly built machine unit, and has remarkable economic, social and environmental protection benefits.

Description

Hybrid steam Rankine combined cycle generating unit
Technical field
The present invention relates to a kind of hybrid steam Rankine combined cycle generating unit, concrete genus thermal power plant field of power equipment technology.
Background technique
Taking water vapor as the thermal power plant of working medium, is to carry out thermal energy to become mechanical energy on a large scale, and the factory transformed mechanical energy into electricity again.The circulation of power station application is very complicated, but in essence, the Rankine cycle be mainly made up of equipment such as boiler, steam turbine, vapour condenser, water pumps has come, its working principle is: feedwater first sends into boiler after feed water pump pressurization, water is by superheated vapor that is heat vaporized, that form High Temperature High Pressure in the boiler, superheated vapor is expansion work in steam turbine, become the exhaust steam of low-temp low-pressure, finally enter vapour condenser and be condensed into condensed water, again through water pump, condensed water is sent into boiler and carry out new circulation.As for the complex loops that thermal power plant uses, only on Rankine cycle basis, in order to improve the thermal efficiency, improved and the new circulation that formed and extraction cycle, reheat vapor cycle etc., Rankine cycle has become the basic circulation of modern vapor power plant.
Modern big-and-middle-sized steam power plant all adopts heated feed water extraction cycle, the steam reheat vapor cycle technology of drawing gas without any exception, thus improve heating mean temperature, except considerably improving thermal efficiency of cycle, though specific steam consumption increases to some extent, but make steam discharge rate reduce owing to drawing gas step by step, this is conducive to the ratio i.e. internal efficiency ratio η of this circulation of actual acting amount and theoretical acting amount oiraising, solve simultaneously large steam turbine exhaust stage blade negotiability restriction difficulty, vapour condenser volume also can correspondingly reduce.But still discharge a large amount of latent heats of vaporization when steam condenses in vapour condenser, need a large amount of water or air to cool, namely waste heat, cause thermo-pollution, waste again electric energy, water resources.Therefore how effectively to utilize a large amount of latent heat of vaporization discharged during steam condensation in vapour condenser, be worth further investigation.
Give off a large amount of flue gases in station boiler production process, wherein the heat of recoverable is a lot.Although the waste of this part residual heat resources is huge, recycle and have larger difficulty, its main cause is: the quality of (1) waste heat is lower, does not find effective Application way; (2) reclaim the waste heat of this part, often larger change is made to the original thermodynamic system of boiler, there is certain risk; (3) thermal balance question is difficult to tissue, is difficult to all directly utilize in inside plants, often needs outwards to find suitable heat user, and heat user often have fluctuation by heat load, thus limit the versatility of recovery method.
Therefore the thermomechanics basic law in steam Rankine cycle thermal power plant how is utilized, retain the advantage based on the power plant technology of Rankine cycle principle, inquire into new combined cycle theoretical, really find the new way increasing substantially the steam Rankine-cycle power system thermal efficiency, become the difficult point of this area research.
Summary of the invention
Object of the present invention is for solving above-mentioned steam Rankine cycle Problems existing, a kind of new thermal power plant's combined cycle flow process is proposed, i.e. cascade type steam Rankine combined cycle generating unit, can while the advantage retaining traditional steam Rankine cycle technology, significantly reclaim the latent heat of vaporization of conventional vapor Rankine cycle vapour condenser, the load of traditional Rankine cycle vapour condenser is significantly alleviated, the absolute amplitude value alleviated can reach 20%, thus realize the thermal efficiency effectively improving whole Combined Cycle Unit, finally reach energy-saving and cost-reducing, improve the object of system thermal efficiency.
The object of the invention is to be realized by following measures:
A kind of hybrid steam Rankine combined cycle generating unit, this device comprises the Rankine cycle of high voltage terminal steam, the Rankine cycle of low voltage terminal steam, it is characterized in that:
Described high voltage terminal steam Rankine cycle, refers to by boiler body 1 saturated vapour 2 out, forms high pressure superheated steam 3-1 through high-pressure superheater 3, sends into high-pressure turbine 4 drive electrical generators 19 and generates electricity; High-pressure turbine 4 exhaust steam 4-1 out directly mixes with the feedwater of low voltage terminal steam Rankine cycle and produces saturated vapour 5-1 in low-pressure steam generator 5, the condensed water 6 formed sends into high-pressure feed-water heater 8, boiler body 1 through high pressure water pump 7, boiler body 1 produces saturated vapour again, thus forms high voltage terminal steam Rankine cycle circuit.
Described low voltage terminal steam Rankine cycle, refer to that low-pressure steam generator 5 adopts the steam discharge 4-1 of high voltage terminal steam Rankine cycle as thermal source, low-pressure saturated steam 5-1 is produced with the low voltage terminal direct Hybrid Heating that feeds water, form low-pressure superheated steam 16 through low-pressure superheater 15, send into low-pressure turbine 17 drive electrical generators 19 and generate electricity; Low-pressure turbine 17 exhaust steam out condenses into low voltage terminal water of condensation 9 at low pressure vapour condenser 18, water of condensation 9 is through condensate pump 10, low-pressure feed heater 11, oxygen-eliminating device 12, low pressure feed water pump 13, secondary low-pressure feed heater 14, send into low-pressure steam generator 5, low-pressure steam generator 5 produces steam 5-1 again, thus forms low voltage terminal steam Rankine cycle circuit.
Described low-pressure steam generator 5 adopts operation under positive pressure mode, i.e. the pressure of high-pressure turbine 4 exhaust steam is out higher than atmospheric pressure.
Described high voltage terminal steam Rankine cycle and the Rankine cycle of low voltage terminal steam are got up by low-pressure steam generator 5 direct combination, the latent heat of vaporization discharged during the steam-condensation of high efficiente callback temperature end steam Rankine cycle generates electricity for the Rankine cycle of low-temperature end steam, the low-pressure superheater technology adopted, receive the advantage of reheat vapor cycle technology, therefore can significantly improve the thermal efficiency of whole circulation.
The high-temperature flue gas that fuel combustion produces enters air through boiler body 1, low-pressure superheater 15, high-pressure superheater 3, high-pressure feed-water heater 8, secondary low-pressure feed heater 14, low-pressure feed heater 11 after lowering the temperature; Or enter air through boiler body 1, high-pressure superheater 3, low-pressure superheater 15, high-pressure feed-water heater 8, secondary low-pressure feed heater 14, low-pressure feed heater 11 after lowering the temperature.
When described low-pressure feed heater 11 and flue gas adopt separated type heat exchange mode, low-pressure feed heater is compound phase change heat exchanger, comprises vaporizer 11-1, condenser 11-2, vaporizer 11-1 and condenser employing is split type or the structure of integral type; Phase-change working substance wherein adopts water or other suitable materials; The heat that phase-change working substance absorbs flue gas in vaporizer 11-1 produces saturated vapour, saturated vapour is by condenser 11-2 and low voltage terminal water of condensation 9 wall-type heat exchange, form condensation water is absorbed flue gas again heat generation steam by vaporizer 11-1 after cooling, thus form the inner cyclic process of phase-change working substance; Phase-change working substance adopts natural circulation or pump circulation mode; Preferred method is vaporizer, the split type layout of condenser, and namely vaporizer 11-1 is arranged in flue 20, condenser 11-2 is arranged in outside flue, and phase-change working substance adopts water, adopts natural circulation mode.
Described high-pressure feed-water heater 8, low pressure steam vaporizer 5, low-pressure feed heater 14, low-pressure feed heater 11, high-pressure superheater 3, low-pressure superheater 15 can arrange one or more respectively, adopt series, parallel or series-parallel connection mode to connect.
The air 21 that gas fan 22 is sent here enters air preheater 23, form hot air 24, enter fuel-burning equipment 25 and participate in burning, the high-temperature flue gas of generation is discharged after reducing temperature through boiler body 1, low-pressure superheater 15, high-pressure superheater 3, high-pressure feed-water heater 8, secondary low-pressure feed heater 14, air preheater 23, low-pressure feed heater 11.
Described low voltage terminal vapour condenser 18 conveniently technology is arranged, and adopts water or air etc. as cooling medium.
The heat-exchanging element of aforementioned device mentioned in the present invention can adopt tubulation, fin tube, coiler or spiral groove pipe, or adopts the pipe of other augmentation of heat transfer measures or the hollow cavity heat-exchanging element of other patterns.
Control a little higher than flue gas acid dew point temperature of wall surface temperature of the vaporizer 11-1 heat exchanger surface of low-pressure feed heater 11, or adopt corrosion-resistant material effectively to alleviate the cold end corrosion of flue gas, can effectively reduce temperature of exhaust fume, avoid flue gas low-temperature corrode while, high efficiente callback fume afterheat.
Unaccounted equipment and standby system, pipeline, instrument, valve in the present invention, be incubated, there is regulatory function bypass facility etc. adopt known mature technology to carry out supporting.
Be provided with the safety supporting with present system, regulating controller, the known Mature Regulation technology of existing steam Rankine cycle power station, Cheng's cycle power station or gas-steam combined cycle power plant is adopted to carry out supporting, hybrid steam Rankine combined cycle generating unit energy economy, safety, high thermal efficiency are run, reaches energy-saving and cost-reducing object.
the present invention compared to existing technology tool has the following advantages:
1, the hybrid steam Rankine combined cycle generating unit of the present invention's design, be different from traditional steam Rankine cycle system, the low-pressure steam generator 5 of high voltage terminal steam Rankine cycle adopts operation under positive pressure mode, using the thermal source of the steam discharge of high-pressure turbine 4 as the steam generator of low voltage terminal steam Rankine cycle, feedwater mixing directly with the Rankine cycle of low voltage terminal steam produces low pressure steam, thus the Rankine cycle of high voltage terminal steam and the Rankine cycle of low voltage terminal steam are combined by low-pressure steam generator is ingenious, in the Rankine cycle of high voltage terminal steam, the latent heat of vaporization of steam is all utilized effectively, compare the load of the low voltage terminal vapour condenser of the unit of same generated output, the absolute amplitude value that the load of vapour condenser alleviates can reach 20%, the absolute efficiency value of whole system circulation at least improves more than 2%, back pressure because of high voltage terminal steam Rankine cycle steam turbine adopts malleation mode to run, high-pressure turbine outlet exhaust steam can ensure certain degree of superheat, when high voltage terminal superheat steam temperature is constant, improve thermal efficiency of cycle more than 2% further by the method suitably improving the first pressing of high voltage terminal steam.Adopt system optimization technology, the absolute amplitude value that the efficiency of combined cycle system improves can reach more than 5%.
2, the fume afterheat of power plant realizes high efficiente callback utilization: during the heat exchanger employing phase-change heat-exchanger that back-end ductwork is arranged, can the waste heat of high efficiente callback flue gas, temperature of exhaust fume can be reduced to about 120 DEG C, during phase-change heat-exchanger vaporizer employing resistant material, temperature of exhaust fume can reduce more, reach about 85 DEG C, very favourable to the operation of system for desulfuration and denitration, while effectively avoiding flue gas low-temperature to corrode, the heat reclaimed is used for Rankine cycle system efficiency power generation, more meets cascaded utilization of energy principle.
3, safety in operation significantly improves:
The high-pressure steam turbine operation under positive pressure of high voltage terminal steam Rankine cycle, outlet vapor is superheated vapor, and the operating conditions of steam turbine is optimized; Low-pressure superheater in the Rankine cycle of low voltage terminal steam, because pressure is lower, safety in operation improves; The admission of low-pressure turbine adopts superheated vapor, the advantage of traditional reheat vapor cycle is not fully exerted, effectively can solve the problem that in conventional vapor Rankine cycle, last stage vane of steam turbine brings because of wet vapor to design, manufacture and operation problem, obviously improve before the vibration comparatively of steam turbine generator set.
4, the solution of the present invention both can be used for design, the construction of newly-built power plant system, also can be used for the reducing energy consumption to existing Rankine cycle unit, the potentiality of the abundant excavating device of energy, vitalize existing assets, meet the industrial policy of country simultaneously, economical, the Security of unit operation obtain Reliable guarantee, effectively can improve the thermal efficiency of system.
Accompanying drawing explanation
Fig. 1 is one of the present invention hybrid steam Rankine combined cycle generating unit schematic flow sheet.
In Fig. 1: 1-boiler body, 2-saturated vapour, 3-high-pressure superheater, 3-1-high pressure superheated steam, 4-high-pressure turbine, 4-1-high-pressure turbine steam discharge, 5-low-pressure steam generator, 5-1-low-pressure saturated steam, 6-condensed water, 7-high pressure water pump, 8-high-pressure feed-water heater, 9-low pressure condensate water, 10-condensate pump, 11-low-pressure feed heater, 11-1-vaporizer, 11-2-condenser, 12-oxygen-eliminating device, 13-low pressure feed water pump, 14-secondary low-pressure feed heater, 15-low-pressure superheater, 16-low-pressure superheated steam, 17-low-pressure turbine, 18-low pressure vapour condenser, 19-generator, 20-flue, 21-air, 22-gas fan, 23-air preheater, 24-hot air, 25-fuel-burning equipment.
Embodiment
Below in conjunction with the drawings and specific embodiments, the present invention is described in further detail.
embodiment 1.
As shown in Figure 1, a kind of hybrid steam Rankine combined cycle generating unit, this device comprises the Rankine cycle of high voltage terminal steam, the Rankine cycle of low voltage terminal steam, described high voltage terminal steam Rankine cycle:
Described high voltage terminal steam Rankine cycle, refers to by boiler body 1 saturated vapour 2 out, forms high pressure superheated steam 3-1 through high-pressure superheater 3, sends into high-pressure turbine 4 drive electrical generators 19 and generates electricity; High-pressure turbine 4 exhaust steam 4-1 out directly mixes with the feedwater of low voltage terminal steam Rankine cycle and produces saturated vapour 5-1 in low-pressure steam generator 5, the condensed water 6 formed sends into high-pressure feed-water heater 8, boiler body 1 through high pressure water pump 7, boiler body 1 produces saturated vapour again, thus forms high voltage terminal steam Rankine cycle circuit.
Described low voltage terminal steam Rankine cycle, refer to that low-pressure steam generator 5 adopts the steam discharge 4-1 of high voltage terminal steam Rankine cycle as thermal source, low-pressure saturated steam 5-1 is produced with the low voltage terminal direct Hybrid Heating that feeds water, form low-pressure superheated steam 16 through low-pressure superheater 15, send into low-pressure turbine 17 drive electrical generators 19 and generate electricity; Low-pressure turbine 17 exhaust steam out condenses into low voltage terminal water of condensation 9 at low pressure vapour condenser 18, water of condensation 9 is through condensate pump 10, low-pressure feed heater 11, oxygen-eliminating device 12, low pressure feed water pump 13, secondary low-pressure feed heater 14, send into low-pressure steam generator 5, low-pressure steam generator 5 produces steam 5-1 again, thus forms low voltage terminal steam Rankine cycle circuit.
Described low-pressure steam generator 5 adopts operation under positive pressure mode, i.e. the pressure of high-pressure turbine 4 exhaust steam is out higher than atmospheric pressure.
Described low-pressure feed heater 11 adopts separated type heat exchange mode with flue gas, for compound phase change heat exchanger, comprise vaporizer 11-1, condenser 11-2, vaporizer 11-1 is arranged in flue 20, condenser 11-2 is arranged in outside flue 20, phase-change working substance adopts water, adopts natural circulation mode.The heat that phase-change working substance absorbs flue gas in vaporizer 11-1 produces saturated vapour, saturated vapour is by condenser 11-2 and low voltage terminal water of condensation 9 wall-type heat exchange, form condensation water is absorbed flue gas again heat generation steam by vaporizer 11-1 after cooling, thus form the inner cyclic process of phase-change working substance; The high-temperature flue gas that fuel combustion produces enters air after the vaporizer 11-1 of boiler body 1, low-pressure superheater 15, high-pressure superheater 3, high-pressure feed-water heater 8, secondary low-pressure feed heater 14, air preheater 23, low-pressure feed heater 11 lowers the temperature; Low-pressure steam generator 5 adopts the steam discharge 4-1 of high voltage terminal steam Rankine cycle as thermal source, low-pressure saturated steam 5-1 is produced with the low voltage terminal direct Hybrid Heating that feeds water, form low-pressure superheated steam 16 through low-pressure superheater 15, send into low-pressure turbine 17 drive electrical generators 19 and generate electricity; Low-pressure turbine 17 exhaust steam out condenses into low voltage terminal water of condensation 9 at low pressure vapour condenser 18, water of condensation 9 is through condenser 11-2, oxygen-eliminating device 12, low pressure feed water pump 13, the secondary low-pressure feed heater 14 of condensate pump 10, low-pressure feed heater 11, send into low-pressure steam generator 5, low-pressure steam generator 5 produces steam 5-1 again, thus forms low voltage terminal steam Rankine cycle circuit.
Described high-pressure feed-water heater 8, low pressure steam vaporizer 5, secondary low-pressure feed heater 14, low-pressure feed heater 11, high-pressure superheater 3, low-pressure superheater 15 can arrange one or more respectively, adopt series, parallel or series-parallel connection mode to connect.
The air 21 that gas fan 22 is sent here enters air preheater 23, form hot air 24, enter fuel-burning equipment 25 and participate in burning, the high-temperature flue gas of generation is discharged after reducing temperature through boiler body 1, low-pressure superheater 15, high-pressure superheater 3, high-pressure feed-water heater 8, secondary low-pressure feed heater 14, air preheater 23, low-pressure feed heater 11.
Described low voltage terminal vapour condenser 18 conveniently technology is arranged, and adopts water as cooling medium.
The heat-exchanging element of aforementioned device mentioned in the present invention can adopt tubulation, fin tube, coiler or spiral groove pipe, or adopts the pipe of other augmentation of heat transfer measures or the hollow cavity heat-exchanging element of other patterns.
Control a little higher than flue gas acid dew point temperature of wall surface temperature of the vaporizer 11-1 heat exchanger surface of low-pressure feed heater 11, or adopt corrosion-resistant material effectively to alleviate the cold end corrosion of flue gas, can effectively reduce temperature of exhaust fume, avoid flue gas low-temperature corrode while, high efficiente callback fume afterheat.
Unaccounted equipment and standby system, pipeline, instrument, valve in the present invention, be incubated, there are regulatory function bypass, safety protection device etc. adopt known mature technology to carry out supporting.
Be provided with the safety supporting with present system, regulating controller, the known Mature Regulation technology of existing steam Rankine cycle power station, Cheng's cycle power station or gas-steam combined cycle power plant is adopted to carry out supporting, cascade type steam Rankine combined cycle generating unit energy economy, safety, high thermal efficiency are run, reaches energy-saving and cost-reducing object.
Although the present invention with preferred embodiment openly as above, they are not for limiting the present invention, being anyly familiar with this those skilled in the art, without departing from the spirit and scope of the invention, from ought making various changes or retouch, belong to the protection domain of the present invention equally.What therefore protection scope of the present invention should define with the claim of the application is as the criterion.

Claims (2)

1. a hybrid steam Rankine combined cycle generating unit, this device comprises the Rankine cycle of high voltage terminal steam and low voltage terminal steam Rankine cycle system, it is characterized in that:
Described high voltage terminal steam Rankine cycle, boiler body (1) saturated vapour out (2), form high pressure superheated steam (3-1) through high-pressure superheater (3), send into high-pressure turbine (4) drive electrical generators (19) generating; High-pressure turbine (4) steam discharge out (4-1) forms condensed water (6) through low-pressure steam generator (5), condensed water (6) sends into high-pressure feed-water heater (8), boiler body (1) through high pressure water pump (7), boiler body (1) produces saturated vapour again, thus forms high voltage terminal steam Rankine cycle circuit;
Described low voltage terminal steam Rankine cycle, the saturated vapour (5-1) produced by low-pressure steam generator (5), form low-pressure superheated steam (16) through low-pressure superheater (15), send into low-pressure turbine (17) drive electrical generators (19) generating; Low-pressure turbine (17) exhaust steam out condenses into low voltage terminal water of condensation (9) at vapour condenser (18), low voltage terminal water of condensation (9) is through condensate pump (10), low-pressure feed heater (11), oxygen-eliminating device (12), low pressure feed water pump (13), secondary low-pressure feed heater (14), send into low-pressure steam generator (5), directly mix with the steam discharge (4-1) of high-pressure turbine, produce saturated vapour (5-1), thus form low voltage terminal steam Rankine cycle circuit;
Described low-pressure steam generator (5) adopts operation under positive pressure mode, and namely high-pressure turbine (4) pressure of steam discharge (4-1) of discharging is higher than atmospheric pressure;
Described high voltage terminal steam Rankine cycle and the Rankine cycle of low voltage terminal steam are got up by low-pressure steam generator (5) direct combination, and the latent heat of vaporization discharged when reclaiming the steam-condensation of high voltage terminal steam Rankine cycle generates electricity for the Rankine cycle of low voltage terminal steam.
2. device according to claim 1, is characterized in that:
Described low-pressure feed heater (11) and flue gas adopt separated type heat exchange mode, comprise vaporizer (11-1), condenser (11-2); Vaporizer (11-1) is arranged in fume side, by phase-change working substance with flue gas wall-type heat exchange, phase-change working substance heat absorption produces steam, steam is by the feedwater wall-type heat exchange of condenser (11-2) with the Rankine cycle of low voltage terminal steam, form condensation water is absorbed flue gas again heat generation steam by vaporizer (11-1) after cooling, thus form the inner cyclic process of phase-change working substance.
CN201310029385.XA 2013-01-27 2013-01-27 Mixed type steam Rankine combined cycle power generation device Expired - Fee Related CN103089352B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310029385.XA CN103089352B (en) 2013-01-27 2013-01-27 Mixed type steam Rankine combined cycle power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310029385.XA CN103089352B (en) 2013-01-27 2013-01-27 Mixed type steam Rankine combined cycle power generation device

Publications (2)

Publication Number Publication Date
CN103089352A CN103089352A (en) 2013-05-08
CN103089352B true CN103089352B (en) 2015-05-06

Family

ID=48202398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310029385.XA Expired - Fee Related CN103089352B (en) 2013-01-27 2013-01-27 Mixed type steam Rankine combined cycle power generation device

Country Status (1)

Country Link
CN (1) CN103089352B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105114938A (en) * 2015-09-18 2015-12-02 上海电气电站设备有限公司 Coiler type high-pressure feed-water heater
CN108194913B (en) * 2017-12-06 2019-06-18 中国科学院工程热物理研究所 A kind of carbon-based solid fuel cogeneration method and system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59205446D1 (en) * 1991-07-17 1996-04-04 Siemens Ag Process for operating a gas and steam turbine plant and plant for carrying out the process
DE102005026534B4 (en) * 2005-06-08 2012-04-19 Man Diesel & Turbo Se Steam generating plant
CN101782002A (en) * 2009-01-15 2010-07-21 中国科学院工程热物理研究所 New gas condensing type thermal power generation technology based on working medium changing positive and negative coupling circulation system
CN101614139A (en) * 2009-07-31 2009-12-30 王世英 Multicycle power generation thermodynamic system
CN101832158A (en) * 2010-03-17 2010-09-15 昆明理工大学 Steam-organic Rankine cascade power cycle generating system and method
JP5999322B2 (en) * 2011-06-03 2016-09-28 戸田工業株式会社 Power generation system
CN202645658U (en) * 2012-07-04 2013-01-02 河北联合大学 Fuel-steam-organic working medium combined cycle power generation unit
CN203097971U (en) * 2013-01-27 2013-07-31 南京瑞柯徕姆环保科技有限公司 Mixed steam Rankine combined cycle power generating device

Also Published As

Publication number Publication date
CN103089352A (en) 2013-05-08

Similar Documents

Publication Publication Date Title
CN103075216B (en) Brayton-cascade steam Rankine combined cycle power generation system
CN203201663U (en) Britten-steam exhausting type steam Rankine combined cycle power generation device
CN103089439B (en) Boulez pauses-steam Rankine-organic Rankine combined cycle cogeneration device
CN203035350U (en) Britten-hybrid combined steam rankine cycle power generation device
CN203271835U (en) Britten-steam Rankine-ammonia vapour Rankine combined cycle generating set
CN103075213B (en) Cascade type steam Rankine combined cycle generating device
CN103089442B (en) Boulez pauses-steam Rankine-organic Rankine combined cycle generating unit
CN104727870A (en) Multistage cascaded steam Rankine combined cycle power generation device
CN103089352B (en) Mixed type steam Rankine combined cycle power generation device
CN103075215A (en) Extracted steam type steam Rankine-ammonia steam Rankine combined cycle power generation device
CN103075251B (en) Boulez pauses-steam-extracting type steam Rankine combined cycle generating unit
CN203097971U (en) Mixed steam Rankine combined cycle power generating device
CN203223295U (en) Brayton-steam Rankine-organic Rankine combined cycle power generation device
CN103089355B (en) Steam Rankine-low boiling working fluid Rankine combined cycle generating unit
CN204572090U (en) Multistage cascade type steam Rankine combined cycle generating unit
CN103089440B (en) Boulez pauses-hybrid steam Rankine combined cycle generating unit
CN103075214B (en) Extracted steam type steam Rankine combined cycle power generation device
CN103089350A (en) Britten-steam Rankine-ammonia vapor Rankine combined cycle power generation device
CN103147806B (en) Steam Rankine-organic Rankine combined cycle power generation device
CN103147810B (en) The type that draws gas steam Rankine-organic Rankine combined cycle generating unit
CN203050817U (en) Steam extraction type steam rankine-ammonia steam rankine combined cycle power generation unit
CN103089354B (en) Steam Rankine-ammonia vapor Rankine combined cycle power generation device
CN203097975U (en) Vapor Rankine and ammonia vapor Rankine combined cycle electricity generation device
CN203097973U (en) Steam extraction type steam Rankine combined cycle power generation device
CN203097970U (en) Overlapped-type steam Rankine combined cycle power generation device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150506

CF01 Termination of patent right due to non-payment of annual fee