CN103083222B - 一锅法制备三组分聚合物胶束 - Google Patents

一锅法制备三组分聚合物胶束 Download PDF

Info

Publication number
CN103083222B
CN103083222B CN201110335423.5A CN201110335423A CN103083222B CN 103083222 B CN103083222 B CN 103083222B CN 201110335423 A CN201110335423 A CN 201110335423A CN 103083222 B CN103083222 B CN 103083222B
Authority
CN
China
Prior art keywords
micelle
alginic acid
add
daa
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110335423.5A
Other languages
English (en)
Other versions
CN103083222A (zh
Inventor
倪才华
蔡洪
张丽萍
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201110335423.5A priority Critical patent/CN103083222B/zh
Publication of CN103083222A publication Critical patent/CN103083222A/zh
Application granted granted Critical
Publication of CN103083222B publication Critical patent/CN103083222B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

一种制备胶束的新方法,属于生物医用材料技术领域。本发明将海藻酸、甲基丙烯酸-2-(N,N-二甲基)氨基乙酯(DEMA)和双丙酮丙烯酰胺(DAA)在水溶液中进行聚合,制备胶束。通过DEMA和DAA共聚形成胶束的核,海藻酸中的羧基与聚甲基丙烯酸-2-(N,N-二甲基)氨基乙酯(PDEMA)中氨基之间的静电引力形成胶束的壳。通过改变DAA的含量,研究胶束的结构及性能的变化,结果表明当三种组分的摩尔比为1∶1∶0.5(ADD-05)时效果最好,所得胶束形貌规整、粒径分布最窄,对疏水性药物布洛芬的载药率和包封率最高。本发明优点是:胶束制备方法简单、不使用有机溶剂、生物相容性好、可生物降解。胶束可以提高对疏水性药物的负载量,在模拟人体生理条件下具有良好的缓释效果。

Description

一锅法制备三组分聚合物胶束
技术领域
本研究涉及由三组分聚合物进行胶束的制备,属于生物医用材料技术领域。
背景技术
双亲性共聚物在水中通过自组装可以形成纳米胶束,通常情况下双亲性共聚物的合成需要用到有机溶剂,合成复杂,成本较高。近年来,将天然高分子制备成胶束用作药物载体引起了人们的广泛关注。具有纳米尺寸的胶束具有超微小体积,能穿过组织间隙并被细胞吸收,且能够避免被吞噬细胞清除掉,使其在药物和基因输送方面具有许多优越性。但之前利用两种聚电解质直接复合制备的胶束亲水性较强,对疏水性药物的负载率不高。
Chen Ying通过质子供体PAA和质子受体HPC之间的氢键作用制备了具有半互穿网络聚合物结构的HPC-PAA粒子,显示出了热敏和pH双重敏感性,并利用奥沙利铂中的铂原子与PAA中羧基之间的复合作用负载了亲水性的抗癌药物奥沙利铂。载药粒子具有抗癌活性高,生物相容性好和制备方法温和的优点。此外,他还通过在碱性条件下将HPC核去除以制得具有对蛋白质药物牛血清白蛋白、抗癌药物盐酸阿霉素具有超高负载量的空核-多孔壳的PAA纳米凝胶,能够保护内部的药物不变性且具有较好的缓释效应。Hu Yong利用两种带相反电荷的聚电解质之间的作用制备了负载阿霉素(DOX)的CS-PAA中空纳米球,与游离的DOX相比显示出长效、低毒的特征,在肝脏中可达较高浓度,且能够输送到脑部,研究表明这是一种制备有着较好的生物相容性和生物降解性的中空聚合物纳米粒子的简单、直接的方法。上述这些研究说明了纳米胶束在基因传递、抗癌类药物释放领域有着巨大的应用潜力。
发明内容
为了既满足胶束提高对疏水性药物的负载率、发挥缓释药物的功能,又能到达容易制备、性能优良、安全易降解的目的,本发明通过DEMA与DAA共聚形成胶束的核,海藻酸中的羧基与PDEMA中的氨基间的静电引力形成胶束的壳,得到核壳型结构的胶束。
海藻酸的制备:采用电动搅拌装置控制较高的搅拌速度,将一定浓度的海藻酸钠溶液缓慢滴入一定浓度的盐酸溶液中,滴加完毕继续搅拌1h,并用玻璃棒挤压沉淀以提高其酸化程度。所得沉淀用去离子水洗涤、过滤至滤液呈中性,再用少量无水乙醇浸泡1h,过滤,真空干燥至恒重。
胶束的制备:取0.5g经过充分干燥、研成粉末的海藻酸和30mL超纯水加入三口瓶中,电动搅拌20min后,加入10mL溶有0.39gDEMA的溶液,电动搅拌20min后,再加入30mL溶有0.21gDAA的溶液,以K2S2O8为引发剂,搅拌均匀的体系在70℃下反应90min得到胶束。
载药胶束的制备:将制备胶束的三种组分混合均匀后,加入一定量的布洛芬,搅拌使其混合均匀,升温至70℃后加入一定量的K2S2O8,反应90min,冷却至室温后用去离子水透析12小时除去未反应的单体及小分子的盐,在10000r/min的转速下离心20min分离出未被包埋的布洛芬,剩余部分加入超纯水重新分散至原体积,得载药胶束。
药物累积释放百分率的测定:精密量取一定量的载药胶束于透析袋内,分别置于一定量的介质为0.01M pH=5.8、7.4、8.0的磷酸盐缓冲溶液(PBS)中、0.9%、0.6%、0.3%的NaCl溶液、超纯水中,控制水浴温度为37±0.5℃,慢速磁力搅拌,每隔一定时间取样并加入相同体积相同温度的新鲜释放介质。通过紫外分光光度计检测样品中药物的浓度。
结论:控制两种三组分不同的摩尔比,通过透射电子显微镜观察胶束的形貌,纳米粒度仪测量胶束的粒径及其分布,得出当三者的摩尔比为1∶1∶0.5时效果最好,胶束形貌规整、粒径分布最窄,对疏水性药物的负载率最高。药物释放结果表明载药胶束在模拟人体生理条件下具有良好的缓释效果。
本发明的优点:
1、所用原料海藻酸钠的生物相容性好、可生物降解;PDEMA使胶束具有pH敏感性;PDAA可以提高对疏水性药物布洛芬的负载量。
2、制备方法简单、不使用有机溶剂,节能环保,且所得胶束形态规整,大小均匀,稳定性较好。
3、制备胶束的同时可以提高对疏水性药物布洛芬的负载率,且具有良好的缓释效果。
附图说明
图1红外光谱图(a)ALG-H,(b)PDEMA,(c)PDAA,(d)ADD-05
图2荧光光谱图alginate(■),(b)ADD-05(●),(c)ADD-025(▲),(d)ADD-0167(e)ADD-0125(◆)
图3胶束(ADD-05)的透射电镜照片
图4载药胶束(ADD-0)在pH=7.4(■)的磷酸盐缓冲溶液(PBS)中;载药胶束(ADD-05)分别在pH=5.8(●)、7.4(▲)、8.0的PBS中;载药胶束(ADD-05)分别在超纯水(■)、0.3%(●)、0.6%(▲)、0.9%的NaCl溶液中的累积释药百分率曲线图
具体实施方式
实施例1
海藻酸的制备:配制1.5%(m/v)的海藻酸钠溶液1000mL,搅拌均匀后静置除气泡;配制5%(m/v)的盐酸溶液2500mL。采用电动搅拌装置控制较高的搅拌速度,将海藻酸钠溶液缓慢滴入盐酸溶液中,滴加完继续搅拌1h,并不断用玻璃棒挤压沉淀以提高其酸化程度。过滤出沉淀,用去离子水洗涤、过滤至滤液呈中性。所得沉淀用少量无水乙醇浸泡1h,过滤,真空干燥至恒重。
实施例2
胶束的制备:取0.5g经过充分干燥、研成粉末的海藻酸和30mL超纯水加入三口瓶中,电动搅拌20min后,加入10mL溶有0.39g DEMA的溶液,电动搅拌20min后,再加入30mL溶有0.21gDAA的溶液,以K2S2O8为引发剂,搅拌均匀的体系在70℃下反应90min得到胶束。
用红外光谱仪、荧光分光光度计对胶束结构进行了表征,如图1、2,红外光谱图1(d)中的胶束在1610cm-1处-COONH中N-H弯曲振动吸收峰明显增强,说明ALG-H中的羧基与PDEMA中的氨基之间通过静电引力结合在了一起,3370cm-1处归属于海藻酸中的-OH和DAA中的N-H伸缩振动吸收峰。胶束的红外光谱中包含了三种组分中的特征吸收峰。
用荧光分光光度计对不同DAA含量的胶束的CMC值进行了表征,结果表明:随着疏水性组分DAA含量的增加,胶束的CMC降低。其中较理想的一组胶束ADD-05其CMC值为0.005mg/ml。用透射电子显微镜对胶束形貌进行了观察,如图3,说明了控制三组分的摩尔比为1∶1∶0.5时,所得胶束尺寸在120nm左右,形态较规整,粒径分布较窄。
实施例3
载药胶束的制备:将制备胶束的三种组分混合均匀后,加入一定量的布洛芬,搅拌使其混合均匀,升温至70℃后加入一定量的K2S2O8,反应90min,冷却至室温后用去离子水透析12小时除去未反应的单体及小分子的盐,在10000r/min的转速下离心20min分离出未被包埋的布洛芬,剩余部分加入超纯水重新分散至原体积,得载药胶束。
实施例4
药物累积释放百分率的测定:精密量取4ml载药胶束(ADD-0)于透析袋内,置于250ml介质为0.01M pH=7.4的PBS中;精密量取4ml载药胶束(ADD-05)于透析袋内,分别置于250ml介质为0.01M pH=5.8、7.4、8.0的PBS中;超纯水中,0.3%、0.6%、0.9%的NaCl溶液中,控制水浴温度为37±0.5℃,慢速磁力搅拌,每隔一定时间取样4ml并加入相同体积相同温度的新鲜释放介质,通过紫外分光光度计检测样品中药物的浓度。图4给出所制备的载药胶束在不同条件下的缓释结果。

Claims (2)

1.一种三组分的聚合物胶束,其特征是由海藻酸与甲基丙烯酸-2-(N,N-二甲基)氨基乙酯(DEMA)和双丙酮丙烯酰胺(DAA)的共聚物在水溶液中复合所形成,该共聚物的数均分子量为2.40×104,通过DEMA与DAA共聚形成胶束的核,海藻酸中的羧基与聚甲基丙烯酸-2-(N,N-二甲基)氨基乙酯(PDEMA)中的氨基通过静电引力复合,形成胶束的壳;所述胶束的制备采用了“一锅法”,首先将粘均分子量为2.01×105的海藻酸钠进行酸化处理,在该处理过程中海藻酸钠与HCl的摩尔比为1∶45,室温高速搅拌1h,过滤、洗涤至滤液呈中性,无水乙醇浸泡1h后真空干燥得到海藻酸,其酸化程度为90%,然后,将海藻酸真空干燥至恒重后研磨成粉末,称取0.5g海藻酸粉末和30mL超纯水加入三口瓶中,电动搅拌20min后,加入10mL溶有0.39gDEMA的溶液,电动搅拌20min后,再加入30mL溶有0.21gDAA的溶液,以K2S2O8为引发剂,搅拌均匀的体系在70℃下反应90min得到聚合物胶束。
2.一种权利要求1所述的聚合物胶束的制备方法:其特征是所述胶束的制备采用了“一锅法”,首先将粘均分子量为2.01×105的海藻酸钠进行酸化处理,在该处理过程中海藻酸钠与HCl的摩尔比为1∶45,室温高速搅拌1h,过滤、洗涤至滤液呈中性,无水乙醇浸泡1h后真空干燥得到海藻酸,其酸化程度为90%;然后,将海藻酸真空干燥至恒重后研磨成粉末,称取0.5g海藻酸粉末和30mL超纯水加入三口瓶中,电动搅拌20min后,加入10mL溶有0.39gDEMA的溶液,电动搅拌20min后,再加入30mL溶有0.21gDAA的溶液,以K2S2O8为引发剂,搅拌均匀的体系在70℃下反应90min得到胶束。
CN201110335423.5A 2011-10-28 2011-10-28 一锅法制备三组分聚合物胶束 Expired - Fee Related CN103083222B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110335423.5A CN103083222B (zh) 2011-10-28 2011-10-28 一锅法制备三组分聚合物胶束

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110335423.5A CN103083222B (zh) 2011-10-28 2011-10-28 一锅法制备三组分聚合物胶束

Publications (2)

Publication Number Publication Date
CN103083222A CN103083222A (zh) 2013-05-08
CN103083222B true CN103083222B (zh) 2015-08-19

Family

ID=48196709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110335423.5A Expired - Fee Related CN103083222B (zh) 2011-10-28 2011-10-28 一锅法制备三组分聚合物胶束

Country Status (1)

Country Link
CN (1) CN103083222B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108299597B (zh) * 2018-01-18 2020-06-19 嘉兴学院 一种合成双丙酮丙烯酰胺与海藻酸钠共聚物的方法
CN110302155B (zh) * 2019-07-31 2021-09-21 江南大学 一种黄原胶共聚物纳米胶束的制备方法及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2322263C2 (ru) * 2001-11-13 2008-04-20 Астеллас Фарма, Инк. Система продолжительного высвобождения растворимого лекарственного средства
CA2654593A1 (en) * 2006-06-08 2007-12-13 Bayer Schering Pharma Aktiengesellschaft Functionalized, solid polymer nanoparticles for diagnostic and therapeutic applications
US20090148384A1 (en) * 2007-12-10 2009-06-11 Fischer Katrin Functionalized, solid polymer nanoparticles comprising epothilones
CN101503497B (zh) * 2009-03-02 2010-08-25 江南大学 一种星型嵌段酸敏性纳米胶束的制备方法

Also Published As

Publication number Publication date
CN103083222A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
Giacomelli et al. pH-triggered block copolymer micelles based on a pH-responsive PDPA (poly [2-(diisopropylamino) ethyl methacrylate]) inner core and a PEO (poly (ethylene oxide)) outer shell as a potential tool for the cancer therapy
Huo et al. A new class of silica cross-linked micellar core− shell nanoparticles
Guller et al. Cytotoxicity and non-specific cellular uptake of bare and surface-modified upconversion nanoparticles in human skin cells
Talelli et al. Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery
Ma et al. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: synthesis and applications in drug delivery
McAllister et al. Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents
Zhou et al. A nanogel of on-site tunable pH-response for efficient anticancer drug delivery
Huang et al. Reduction-responsive polypeptide nanogel delivers antitumor drug for improved efficacy and safety
Tang et al. Solubilization and controlled release of a hydrophobic drug using novel micelle-forming ABC triblock copolymers
Chaibundit et al. Micellization and gelation of mixed copolymers P123 and F127 in aqueous solution
Yang et al. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid–polymer hybrid nanoparticles
Miao et al. Charge reversible and biodegradable nanocarriers showing dual pH-/reduction-sensitive disintegration for rapid site-specific drug delivery
Sun et al. Benzaldehyde-functionalized polymer vesicles
Gao et al. A smart drug delivery system responsive to pH/enzyme stimuli based on hydrophobic modified sodium alginate
WO2014133172A1 (ja) 物質内包ベシクル及びその製造方法
San Miguel et al. Biodegradable and thermoresponsive micelles of triblock copolymers based on 2-(N, N-dimethylamino) ethyl methacrylate and ε-caprolactone for controlled drug delivery
Šachl et al. Preparation and characterization of self-assembled nanoparticles formed by poly (ethylene oxide)-block-poly (ε-caprolactone) copolymers with long poly (ε-caprolactone) blocks in aqueous solutions
Li et al. In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers
CN104231155A (zh) 胆固醇修饰两亲性pH响应刷状共聚物和制备及其胶束
You et al. Co-delivery of cisplatin and CJM-126 via photothermal conversion nanoparticles for enhanced synergistic antitumor efficacy
CN103110954A (zh) 胆固醇修饰的生物可降解聚阳离子载体及制备方法和用途
Zhong et al. Galactose-based polymer-containing phenylboronic acid as carriers for insulin delivery
CN109288794A (zh) 一种蜂毒素脂质体纳米制剂及其制备方法与应用
Gong et al. Enzymatic synthesis of PEG–poly (amine-co-thioether esters) as highly efficient pH and ROS dual-responsive nanocarriers for anticancer drug delivery
Jiang et al. One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Liu Jie

Inventor before: Ni Caihua

Inventor before: Cai Hong

Inventor before: Zhang Liping

CB03 Change of inventor or designer information
TR01 Transfer of patent right

Effective date of registration: 20170920

Address after: The 063000 District of Tangshan City in Hebei province Lutai Province Lu Nan Zhen Xi Shuang Zhuang 3 area 5 ranked No. 2

Patentee after: Liu Jie

Address before: School of chemical engineering Jiangnan University No. 1800 214122 Jiangsu city of Wuxi Province Li Lake Avenue

Patentee before: Jiangnan University

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150819

Termination date: 20171028

CF01 Termination of patent right due to non-payment of annual fee