CN103079677B - 从气态流中分离co2的方法 - Google Patents

从气态流中分离co2的方法 Download PDF

Info

Publication number
CN103079677B
CN103079677B CN201280002608.7A CN201280002608A CN103079677B CN 103079677 B CN103079677 B CN 103079677B CN 201280002608 A CN201280002608 A CN 201280002608A CN 103079677 B CN103079677 B CN 103079677B
Authority
CN
China
Prior art keywords
gas
separation
methylimidazole
emim
chemisorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280002608.7A
Other languages
English (en)
Other versions
CN103079677A (zh
Inventor
P.雅尼切克
R.卡尔布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VTU Holding GmbH
Original Assignee
VTU Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VTU Holding GmbH filed Critical VTU Holding GmbH
Publication of CN103079677A publication Critical patent/CN103079677A/zh
Application granted granted Critical
Publication of CN103079677B publication Critical patent/CN103079677B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/104Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/30Ionic liquids and zwitter-ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/05Biogas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

通过化学吸附至1-乙基-3-甲基咪唑鎓(emim)或1-丙基-3-甲基咪唑鎓(pmim)从气态流中分离CO2的方法,其特征在于emim或pmim以羧酸盐存在且化学吸附在胍鎓乙酸盐或1-丁基-3-甲基咪唑鎓(bmim)乙酸盐存在下进行。

Description

从气态流中分离CO2的方法
本发明涉及一种从气态流(例如天然气)中分离或脱除CO2(二氧化碳)的方法。
二氧化碳(CO2)为存在于天然气和其它气源中的非期望的稀释剂。CO2的分离或脱除是天然气加工中的常见分离过程,且通常需要该过程以改善天然气的燃料质量。
一般使用和工业使用的从惰性组分中提取二氧化碳的方法基于化学或物理吸收,有时基于两者的组合。此外,还使用吸附或膜。
该过程通常称为“气体脱硫(gas-sweetening)”,这是因为CO2(次于其它一些)通常被描述为“酸气”。脱除是重要的,这是因为CO2降低售气的热值并当暴露不受控时还将负面影响环境。对于化学吸收,一般使用水性胺溶液(例如单或二乙醇胺(MEA、DEA)、N-甲基-二乙醇胺(MDEA)或热钾碱(Benfield或Catacarb))。
物理吸收通常提供较高的吸收能力,因此需要较低的泵速率,但共吸收烃(特别是较高级的一些)。使用的典型物质是甲醇、烷基-吡咯烷(pyrrolidin)或醚化聚乙二醇的衍生物。混合过程利用物理(例如环丁砜)和化学(例如MDEA或二异丙醇胺(DIPA))吸收剂的混合物用于较高分压。
使用膜是相当年轻的技术并可进一步用于不同烃的分离,但对于酸气分离它们并非100%选择性,因此导致售气规格的不一致。“污染”(膜的污染)是另一缺点。
已知离子液体(IL)吸收CO2。当工业界认识到绿色化学具有前景且京都议定书开始时,吸收性IL公开于许多出版物中的若干期刊中。
真正的研究潮流完成于[BF4]-、[二(三氟甲基磺酰基)酰亚胺]-(通常缩写为[NTf2]-)和[PF6]-阴离子,主要与咪唑鎓基阳离子组合。虽然合成相当容易,但是巨大的缺点为高粘度、对水解的不稳定性和导致的氟化分解产物。
总的来说,可以说剩余的IL的大部分将不会进入工业应用的焦点,这是因为它们仅在实验室规模可合成。Shifflet等人首先使用咪唑鎓基羧酸盐用于二氧化碳吸收。仅可猜测为什么没有其他研究组加强其对这组化合物的关注是因为根据亨利系数它们显示高的势(potential)。
根据普遍接受的文献(例如Wasserscheid,Peter;Welton,Tom(Eds.);"IonicLiquidsinSynthesis(合成中的离子液体)",Wiley-VCH2008;ISBN978-3-527-31239-9),离子液体是熔点等于或低于100℃的低熔点盐的熔体。这些离子液体展现一些非常令人感兴趣的特征,例如具有极低的(实际上不可测)蒸气压、大的液相线范围、良好的电导率和令人感兴趣的溶剂化特征。这些特征可注定离子液体用于若干应用,例如作为溶剂(例如,在有机或无机合成、过渡金属催化、生物催化、多相反应、光化学、聚合物合成和纳米技术中)、萃取剂(例如液-液或液气萃取、在原油加工期间脱硫、在水处理期间重金属的去除和液膜萃取)、电解质(例如,在电池、燃料电池、电容器、太阳能电池、传感器、电镀、电化学金属加工、电化学合成和纳米技术中)、润滑剂、热流体、凝胶、用于有机合成的试剂、在所谓“绿色化学”中(例如作为挥发性有机化合物的替换)、抗静电添加剂、化学分析(例如气相色谱、质谱、毛细管区电泳)中的具体应用、液晶等。
然而,熔融温度≤100℃是由定义任意选择的,因此依据本申请,也包括熔融温度>100℃但<250℃的盐。术语“离子液体”可具体地包括所有液体有机盐和由有机阳离子、有机阴离子或无机阴离子组成的盐的混合物。此外,额外的带有无机阳离子和有机或无机阴离子的盐可溶于离子液体中,所述的盐含有但明确不限于如基本的离子液体中所见的相同的阴离子或相同的多种阴离子。此外,小量添加剂可溶于离子液体。此外,离子液体可具有的熔点低于250℃并特别地,低于100℃并优选低于室温。
为允许IL的工业应用,高质量和高纯度液体是必需的。通过易位合成的IL具有高的残余氯离子(Cl-)量。本发明的发明人发现当这些IL用于CO2捕获时,无固体沉淀发生。然而,当使用具有无残余氯离子的IL以保持低的钢腐蚀时,固体沉淀发生,固体沉淀对于CO2脱除是一个相当大的缺点。在工业的动态应用中,其中液体应被泵送,洗涤介质的不受控固化是不期望的。
因此本发明的问题是开发一种方法或程序,当与CO2强烈接触时,其结合高质量生产和防止结晶过程两者。
本发明的目的在以下方法中满足:通过化学吸附至1-乙基-3-甲基咪唑鎓(emim)或1-丙基-3-甲基咪唑鎓(pmim)从含有CO2的气态流中分离CO2的方法,其特征在于emim或pmim以羧酸盐存在且化学吸附在胍鎓乙酸盐或1-丁基-3-甲基咪唑鎓(bmim)乙酸盐存在下进行。
在发明性方法的一个优选实施方案中,羧酸盐为乙酸盐。
本发明方法的一个进一步优选的实施方案的特征在于化学吸附在bmim乙酸盐和水存在下进行。
本发明性方法可用于从含有CO2的不同气体(例如天然气、由碳源用水重整产生的气体、合成气、照明气、城镇气、城市气、燃料气、燃烧气、源自固体腐败燃料气化的气体、来自水煤气变换反应的气体、水煤气和生物气)中分离CO2。该方法还可用来从惰性气流(例如N2)中分离CO2
以下,更详细地描述本发明的优选实施方案。
实验描述:
若未作不同声明,所有使用和描述的离子液体(IL)根据WO2005/021484合成。
在大气条件(960-980mbar(a)之间的压力,20-23℃之间的温度)下,把IL的已知量(5-10g)称取入带有磁性搅拌棒的20ml气密烧瓶中。通过在烧瓶上的隔膜,可用注射器刺穿它以允许气态二氧化碳(质量4.5,AirLiquide)经过IL鼓泡。
实验在图中显示的设备内进行。
用于IL/CO2结晶研究的配置:
在恒定搅拌(~500rpm)下,在约1-1.5bar(a)和50ml/min流率下,气态二氧化碳经过IL鼓泡。CO2吸收在IL上,允许残余的CO2通过第二注射器离开。
1小时后以下IL变成固体:
此外,观察到通过易位合成(经由[emim][X]通过阴离子交换)的[emim][OAc]不变成固体,但当根据WO2005/021484制备它时,它变成固体。已知最近提到的氯离子含量几乎可忽视。把可能的*反应物的不同量([emim][Cl]和NaCl,每个具有1和1.5重量%)添加至[emim][OAc](根据WO2005/021484合成)且CO2鼓泡通过数小时。之后,将它放置1周。
为防止结晶过程,如上文所说明成功地测试了IL的以下混合物:
*经由[bmim][X]通过阴离子交换,不可排除残余的防止结晶的[bmim][X]或X-仍存在。

Claims (3)

1.通过化学吸附至1-乙基-3-甲基咪唑鎓(emim)或1-丙基-3-甲基咪唑鎓(pmim)从含有CO2的气态流中分离CO2的方法,其特征在于emim或pmim以羧酸盐存在且化学吸附在胍鎓乙酸盐或1-丁基-3-甲基咪唑鎓(bmim)乙酸盐存在下进行。
2.权利要求1的方法,其中所述羧酸盐为乙酸盐。
3.权利要求1或2的方法,其中化学吸附在bmim乙酸盐和水存在下进行。
CN201280002608.7A 2011-06-14 2012-06-05 从气态流中分离co2的方法 Expired - Fee Related CN103079677B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11004826.1 2011-06-14
EP11004826 2011-06-14
PCT/EP2012/060589 WO2012171831A1 (en) 2011-06-14 2012-06-05 Process for separating co2 from a gaseous stream

Publications (2)

Publication Number Publication Date
CN103079677A CN103079677A (zh) 2013-05-01
CN103079677B true CN103079677B (zh) 2016-03-16

Family

ID=44454809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280002608.7A Expired - Fee Related CN103079677B (zh) 2011-06-14 2012-06-05 从气态流中分离co2的方法

Country Status (4)

Country Link
US (1) US20130195744A1 (zh)
EP (1) EP2720780B1 (zh)
CN (1) CN103079677B (zh)
WO (1) WO2012171831A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9321004B2 (en) 2013-04-30 2016-04-26 Uop Llc Mixtures of physical absorption solvents and ionic liquids for gas separation
US9321005B2 (en) 2013-04-30 2016-04-26 Uop Llc Mixtures of physical absorption solvents and ionic liquids for gas separation
CN105327687A (zh) * 2015-11-19 2016-02-17 华侨大学 一种二氧化碳吸收剂、其制备方法及其应用
CN115151334A (zh) * 2020-02-25 2022-10-04 国立研究开发法人产业技术综合研究所 二氧化碳分离膜用离子液体组合物及保持有该组合物的二氧化碳分离膜、以及具备该二氧化碳分离膜的二氧化碳的浓缩装置
WO2023248669A1 (ja) * 2022-06-24 2023-12-28 三洋化成工業株式会社 酸性ガス吸収剤の製造方法及び酸性ガス回収方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1709553A (zh) * 2005-06-02 2005-12-21 中国科学院过程工程研究所 氨基酸类离子液体用于酸性气体吸收
CN101500691A (zh) * 2006-08-03 2009-08-05 多特蒙德大学 从气体混合物中除去co2的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7527775B2 (en) * 2003-12-16 2009-05-05 Chevron U.S.A. Inc. CO2 removal from gas using ionic liquid absorbents
EP2087930A1 (de) * 2008-02-05 2009-08-12 Evonik Degussa GmbH Verfahren zur Absorption eines flüchtigen Stoffes in einem flüssigen Absorptionsmittel
AU2010278675A1 (en) * 2009-07-29 2012-02-16 Commonwealth Scientific And Industrial Research Organisation Ionic liquids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1709553A (zh) * 2005-06-02 2005-12-21 中国科学院过程工程研究所 氨基酸类离子液体用于酸性气体吸收
CN101500691A (zh) * 2006-08-03 2009-08-05 多特蒙德大学 从气体混合物中除去co2的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Phase Behavior of Carbon Dioxide in Ionic Liquids: [emim][Acetate],[emim][Trifluoroacetate], and [emim][Acetate] + [emim][Trifluoroacetate] Mixtures;Mark B. Shiflett et al;《J. Chem. Eng. Data》;20081203;第54卷(第1期);第108-111页 *

Also Published As

Publication number Publication date
EP2720780A1 (en) 2014-04-23
US20130195744A1 (en) 2013-08-01
WO2012171831A1 (en) 2012-12-20
CN103079677A (zh) 2013-05-01
EP2720780B1 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
Aissaoui et al. Potential applications of deep eutectic solvents in natural gas sweetening for CO2 capture
Zhang et al. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges
Li et al. Absorption of carbon dioxide using ethanolamine-based deep eutectic solvents
Han et al. Ionic liquids in separations
Jiang et al. Phase splitting agent regulated biphasic solvent for efficient CO2 capture with a low heat duty
Li et al. Highly efficient, reversible, and selective absorption of SO2 in 1-ethyl-3-methylimidazolium chloride plus imidazole deep eutectic solvents
Zheng et al. Capturing CO2 into the precipitate of a phase-changing solvent after absorption
Zhou et al. Novel nonaqueous liquid–liquid biphasic solvent for energy-efficient carbon dioxide capture with low corrosivity
CN103079677B (zh) 从气态流中分离co2的方法
Chatel et al. Mixing ionic liquids–“simple mixtures” or “double salts”?
Li et al. Dynamics of CO2 absorption and desorption processes in alkanolamine with cosolvent polyethylene glycol
Alivand et al. Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: the role of antisolvent
Ding et al. Highly efficient and reversible SO2 capture by surfactant-derived dual functionalized ionic liquids with metal chelate cations
US20110186441A1 (en) Electrolytic recovery of retained carbon dioxide
Kanakubo et al. CO2 solubility in ether functionalized ionic liquids on mole fraction and molarity scales
Uma Maheswari et al. Carbon dioxide capture and utilization by alkanolamines in deep eutectic solvent medium
Sheng et al. High-efficiency absorption of SO2 by a new type of deep eutectic solvents
CN103596932A (zh) 含n-官能化咪唑的系统及使用方法
MX2010012733A (es) Liquidos ionicos y metodos para usar los mismos.
Koech et al. Chemically selective gas sweetening without thermal-swing regeneration
Akhmetshina et al. Absorption behavior of acid gases in protic ionic liquid/alkanolamine binary mixtures
Cui et al. Efficient SO2 absorption by anion-functionalized deep eutectic solvents
Chen et al. Carbon dioxide capture by diethylenetriamine hydrobromide in nonaqueous systems and phase-change formation
Zhao et al. SO2 absorption by carboxylate anion-based task-specific ionic liquids: effect of solvents and mechanism
Lu et al. Densities and viscosities of binary mixtures of 2-ethyl-1, 1, 3, 3-tetramethylguanidinium ionic liquids with ethanol and 1-propanol

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160316

Termination date: 20160605