CN103066623A - 一种光伏并网逆变器 - Google Patents

一种光伏并网逆变器 Download PDF

Info

Publication number
CN103066623A
CN103066623A CN2013100099510A CN201310009951A CN103066623A CN 103066623 A CN103066623 A CN 103066623A CN 2013100099510 A CN2013100099510 A CN 2013100099510A CN 201310009951 A CN201310009951 A CN 201310009951A CN 103066623 A CN103066623 A CN 103066623A
Authority
CN
China
Prior art keywords
switching tube
capacitor
connects
node
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013100099510A
Other languages
English (en)
Inventor
黄新东
赵丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Zhongjie Energy Technology Co Ltd
Original Assignee
Wuxi Zhongjie Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Zhongjie Energy Technology Co Ltd filed Critical Wuxi Zhongjie Energy Technology Co Ltd
Priority to CN2013100099510A priority Critical patent/CN103066623A/zh
Publication of CN103066623A publication Critical patent/CN103066623A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Inverter Devices (AREA)

Abstract

本发明公开一种光伏并网逆变器,其包括升降压正弦半波电路和全桥换相电路。所述升降压正弦半波电路与光伏电池组件连接,用于将光伏电池组件输出的直流电调制为正弦半波电流,输出给全桥换相电路。所述全桥换相电路与升降压正弦半波电路、交流电网连接,用于将输入的所述正弦半波电流转换为与交流电网同相的正弦交流电,输出给交流电网。与传统光伏并网逆变器相比,本发明电路结构简单,一级实现升降压,减少了高频工作的开关管数量,降低了能量损耗,提高了转换效率。

Description

一种光伏并网逆变器
技术领域
本发明涉及光伏发电技术领域,尤其涉及一种光伏并网逆变器。
背景技术
在跨入二十一世纪以来,人类正面临着实现经济和社会可持续发展的重大挑战,在资源有限和环保严格要求的双重制约下发展经济已经成为全球热点问题。而能源问题将更为突出,不仅表现在常规能源的匮乏,更重要的是化石能源的开发利用带来了一系列的问题,例如环境污染、温室效应等。人类要解决这些能源问题,实现可持续发展,只能依靠科技进步,大规模地开发利用可再生洁净能源。太阳能作为一种无污染、可再生的新能源具有非常广阔的应用和发展前景。随着社会经济的发展,利用太阳能发电成为提供生产生活能源和改善环境污染问题的一条可靠途径。
光伏并网逆变器是光伏电池组件与交流电网连接的桥梁,是光伏发电系统的核心部分,其效率的高低、可靠性的好坏将直接影响整个光伏发电系统的性能。传统光伏并网逆变器一般为单相并网逆变器,其拓扑可以归纳为降压式变换器结构。为满足光伏并网逆变器的在电压较低时也能使用,常用的解决方法有两种:一、逆变后使用隔离变压器升压。二、采用两级变换结构,即前一级的直流变换电路将光伏电压稳定在后一级交流变换所需要直流电压范围内,后一级交流变换电路将稳定的直流电变换为交流电网所需的交流电。但是,无论是采用隔离变压器升压,还是采用两级变换结构,无形中都降低了光伏并网逆变器的转换效率。而且,单相并网逆变器的在高频状态的开关器件数量较多,致使光伏并网逆变器的能耗较大。
发明内容
针对上述技术问题,本发明的目的在于提供一种光伏并网逆变器,其减少了高频工作的开关管数量,降低了能量损耗,提高了转换效率。
为达此目的,本发明采用以下技术方案:
一种光伏并网逆变器,其包括升降压正弦半波电路和全桥换相电路;
所述升降压正弦半波电路与光伏电池组件连接,用于将光伏电池组件输出的直流电调制为正弦半波电流,输出给全桥换相电路;
所述全桥换相电路与升降压正弦半波电路、交流电网连接,用于将输入的所述正弦半波电流转换为与交流电网同相的正弦交流电,输出给交流电网。
特别地,所述升降压正弦半波电路包括:电容C1、开关管Q1、电感L1、二极管D1及电容C2;
其中,所述电容C1负极与光伏电池组件负极连接后的结点连接开关管Q1的源极,开关管Q1的漏极与电感L1一端连接后的结点连接二极管D1阳极,电感L1的另一端与电容C2一端连接后的结点连接电容C1正极,二极管D1阴极与电容C2的另一端连接,电容C1正极与光伏电池组件正极连接。
特别地,所述升降压正弦半波电路包括:电容C1、开关管Q1、电感L1、二极管D1及电容C2;
其中,所述电容C1正极与光伏电池组件正极连接后的结点连接开关管Q1的漏极,开关管Q1的源极与电感L1一端连接后的结点连接二极管D1阴极,电感L1的另一端与电容C2一端连接后的结点连接电容C1负极,二极管D1阳极与电容C2的另一端连接,电容C1负极与光伏电池组件负极连接。
特别地,所述全桥换相电路包括:开关管Q2、开关管Q3、开关管Q4及开关管Q5;
其中,所述开关管Q2的漏极与开关管Q4的漏极连接后的结点连接二极管D1阴极,开关管Q2的源极与开关管Q3的漏极连接并作为输出端连接交流电网,开关管Q4的源极与开关管Q5的漏极连接并作为输出端连接交流电网,开关管Q3的源极与开关管Q5的源极连接后的结点连接电容C1正极。
特别地,所述全桥换相电路包括:开关管Q2、开关管Q3、开关管Q4及开关管Q5;
其中,所述开关管Q2的漏极与开关管Q4的漏极连接后的结点连接电容C1负极,开关管Q2的源极与开关管Q3的漏极连接并作为输出端连接交流电网,开关管Q4的源极与开关管Q5的漏极连接并作为输出端连接交流电网,开关管Q3的源极与开关管Q5的源极连接后的结点连接二极管D1阳极。
特别地,所述开关管Q1、开关管Q2、开关管Q3、开关管Q4及开关管Q5均可选用绝缘栅双极性晶体管。
与传统光伏并网逆变器相比,本发明电路结构简单,没有使用隔离变压器,通过升降压正弦半波电路将光伏电池组件输出的直流电调制为正弦半波电流,通过全桥换相电路正弦半波电流转换为与交流电网同相的正弦交流电,一级实现升降压,减少了逆变器高频工作的开关管数量,有效的降低了开关器件损耗,提高转换效率。
附图说明
图1为本发明实施例一提供的光伏并网逆变器结构图;
图2为本发明实施例二提供的光伏并网逆变器结构图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图和实施例对本发明作进一步说明。
实施例一
请参照图1所示,本实施例中光伏并网逆变器包括升降压正弦半波电路101和全桥换相电路102。
所述升降压正弦半波电路101与光伏电池组件PV连接,用于将光伏电池组件PV输出的直流电调制为正弦半波电流,输出给全桥换相电路102。
所述升降压正弦半波电路101包括:电容C1、开关管Q1、电感L1、二极管D1及电容C2。需要说明的是,开关管Q1既可以选用场效应晶体管,也可以选用绝缘栅双极性晶体管(IGBT),本实施例仅以场效应晶体管为例进行说明。
其中,所述电容C1负极与光伏电池组件PV负极连接后的结点连接开关管Q1的源极,开关管Q1的漏极与电感L1一端连接后的结点连接二极管D1阳极,电感L1的另一端与电容C2一端连接后的结点连接电容C1正极,二极管D1阴极与电容C2的另一端连接,电容C1正极与光伏电池组件PV正极连接。
该升降压正弦半波电路101既可以做升压变换又可以做降压变换,三级管Q1按SPWM(Sinusoidal Pulse Width Modulation)方式高频开关工作,将光伏电池组件PV输出的直流电调制为正弦半波电流,输出给全桥换相电路102。
所述全桥换相电路102与升降压正弦半波电路101、交流电网AC连接,用于将输入的所述正弦半波电流转换为与交流电网AC同相的正弦交流电,输出给交流电网AC。
所述全桥换相电路102包括:开关管Q2、开关管Q3、开关管Q4及开关管Q5。需要说明的是,开关管Q2、开关管Q3、开关管Q4及开关管Q5既可以选用场效应晶体管,也可以选用绝缘栅双极性晶体管,本实施例仅以场效应晶体管为例进行说明。
其中,所述开关管Q2的漏极与开关管Q4的漏极连接后的结点连接二极管D1阴极,开关管Q2的源极与开关管Q3的漏极连接并作为输出端连接交流电网AC,开关管Q4的源极与开关管Q5的漏极连接并作为输出端连接交流电网AC,开关管Q3的源极与开关管Q5的源极连接后的结点连接电容C1正极。
当开关管Q2、开关管Q5导通,开关管Q3、开关管Q4关断时,全桥换相电路102输出正弦电流的正半周期,当开关管Q2、开关管Q5关断,开关管Q3、开关管Q4导通时,全桥换相电路102输出正弦电流的负半周期。通过控制开关管Q2、开关管Q5和开关管Q3、开关管Q4的交替导通,将升降压正弦半波电路101输出的正弦半波电流转换为与交流电网AC同相的正弦交流电,完成并网。
实施例二
请参照图2所示,本实施例中光伏并网逆变器包括升降压正弦半波电路201和全桥换相电路202。
所述升降压正弦半波电路201与光伏电池组件PV连接,用于将光伏电池组件PV输出的直流电调制为正弦半波电流,输出给全桥换相电路202。
所述升降压正弦半波电路201包括:电容C1、开关管Q1、电感L1、二极管D1及电容C2。同样的,开关管Q1既可以选用场效应晶体管,也可以选用绝缘栅双极性晶体管,本实施例仅以场效应晶体管为例进行说明。其中,所述电容C1正极与光伏电池组件PV正极连接后的结点连接开关管Q1的漏极,开关管Q1的源极与电感L1一端连接后的结点连接二极管D1阴极,电感L1的另一端与电容C2一端连接后的结点连接电容C1负极,二极管D1阳极与电容C2的另一端连接,电容C1负极与光伏电池组件PV负极连接。
与实施例一原理相同,该升降压正弦半波电路201既可以做升压变换又可以做降压变换,三级管Q1按SPWM方式高频开关工作,将光伏电池组件PV输出的直流电调制为正弦半波电流。
所述全桥换相电路202与升降压正弦半波电路201、交流电网AC连接,用于将输入的所述正弦半波电流转换为与交流电网AC同相的正弦交流电,输出给交流电网AC。
所述全桥换相电路202包括:开关管Q2、开关管Q3、开关管Q4及开关管Q5。同样的,开关管Q2、开关管Q3、开关管Q4及开关管Q5既可以选用场效应晶体管,也可以选用绝缘栅双极性晶体管,本实施例仅以场效应晶体管为例进行说明。其中,所述开关管Q2的漏极与开关管Q4的漏极连接后的结点连接电容C1负极,开关管Q2的源极与开关管Q3的漏极连接并作为输出端连接交流电网AC,开关管Q4的源极与开关管Q5的漏极连接并作为输出端连接交流电网AC,开关管Q3的源极与开关管Q5的源极连接后的结点连接二极管D1阳极。
与实施例一原理相同,当开关管Q2、开关管Q5导通,开关管Q3、开关管Q4关断时,全桥换相电路202输出正弦电流的正半周期,当开关管Q2、开关管Q5关断,开关管Q3、开关管Q4导通时,全桥换相电路202输出正弦电流的负半周期。通过控制开关管Q2、开关管Q5和开关管Q3、开关管Q4的交替导通,将升降压正弦半波电路201输出的正弦半波电流转换为与交流电网AC同相的正弦交流电,完成并网功能。
本发明的技术方案通过升降压正弦半波电路将光伏电池组件输出的直流电调制为正弦半波电流,通过全桥换相电路正弦半波电流转换为与交流电网同相的正弦交流电,一级实现升降压并且只使用一个高频工作的开关管,降低了能量损耗,提高了转换效率。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种光伏并网逆变器,其特征在于,包括升降压正弦半波电路和全桥换相电路;
所述升降压正弦半波电路与光伏电池组件连接,用于将光伏电池组件输出的直流电调制为正弦半波电流,输出给全桥换相电路;
所述全桥换相电路与升降压正弦半波电路、交流电网连接,用于将输入的所述正弦半波电流转换为与交流电网同相的正弦交流电,输出给交流电网。
2.根据权利要求1所述的光伏并网逆变器,其特征在于,所述升降压正弦半波电路包括:电容C1、开关管Q1、电感L1、二极管D1及电容C2,所述开关管Q1选用场效应晶体管;
其中,所述电容C1负极与光伏电池组件负极连接后的结点连接开关管Q1的源极,开关管Q1的漏极与电感L1一端连接后的结点连接二极管D1阳极,电感L1的另一端与电容C2一端连接后的结点连接电容C1正极,二极管D1阴极与电容C2的另一端连接,电容C1正极与光伏电池组件正极连接。
3.根据权利要求1所述的光伏并网逆变器,其特征在于,所述升降压正弦半波电路包括:电容C1、开关管Q1、电感L1、二极管D1及电容C2,所述开关管Q1选用场效应晶体管;
其中,所述电容C1正极与光伏电池组件正极连接后的结点连接开关管Q1的漏极,开关管Q1的源极与电感L1一端连接后的结点连接二极管D1阴极,电感L1的另一端与电容C2一端连接后的结点连接电容C1负极,二极管D1阳极与电容C2的另一端连接,电容C1负极与光伏电池组件负极连接。
4.根据权利要求2所述的光伏并网逆变器,其特征在于,所述全桥换相电路包括:开关管Q2、开关管Q3、开关管Q4及开关管Q5,所述开关管Q2、开关管Q3、开关管Q4及开关管Q5选用场效应晶体管;
其中,所述开关管Q2的漏极与开关管Q4的漏极连接后的结点连接二极管D1阴极,开关管Q2的源极与开关管Q3的漏极连接并作为输出端连接交流电网,开关管Q4的源极与开关管Q5的漏极连接并作为输出端连接交流电网,开关管Q3的源极与开关管Q5的源极连接后的结点连接电容C1正极。
5.根据权利要求3所述的光伏并网逆变器,其特征在于,所述全桥换相电路包括:开关管Q2、开关管Q3、开关管Q4及开关管Q5,所述开关管Q2、开关管Q3、开关管Q4及开关管Q5选用场效应晶体管;
其中,所述开关管Q2的漏极与开关管Q4的漏极连接后的结点连接电容C1负极,开关管Q2的源极与开关管Q3的漏极连接并作为输出端连接交流电网,开关管Q4的源极与开关管Q5的漏极连接并作为输出端连接交流电网,开关管Q3的源极与开关管Q5的源极连接后的结点连接二极管D1阳极。
6.根据权利要求2至5之一所述的光伏并网逆变器,其特征在于,所述开关管Q1、开关管Q2、开关管Q3、开关管Q4以及开关管Q5均可选用绝缘栅双极性晶体管。
CN2013100099510A 2013-01-11 2013-01-11 一种光伏并网逆变器 Pending CN103066623A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013100099510A CN103066623A (zh) 2013-01-11 2013-01-11 一种光伏并网逆变器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013100099510A CN103066623A (zh) 2013-01-11 2013-01-11 一种光伏并网逆变器

Publications (1)

Publication Number Publication Date
CN103066623A true CN103066623A (zh) 2013-04-24

Family

ID=48109135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013100099510A Pending CN103066623A (zh) 2013-01-11 2013-01-11 一种光伏并网逆变器

Country Status (1)

Country Link
CN (1) CN103066623A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947617A (zh) * 2017-10-23 2018-04-20 胡炎申 一种混合开关单相逆变器
CN109617446A (zh) * 2018-11-06 2019-04-12 德州新动能铁塔发电有限公司 移动式并行水氢发电逆变系统
CN110611445A (zh) * 2018-06-15 2019-12-24 阳光电源股份有限公司 一种变换器装置及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304221A (zh) * 2008-06-19 2008-11-12 江苏津恒能源科技有限公司 太阳能光伏并网逆变器
CN101610038A (zh) * 2009-07-13 2009-12-23 南京航空航天大学 Boost与Buck级联的光伏并网逆变器及其控制方法
CN101950985A (zh) * 2010-11-01 2011-01-19 上海兆能电力电子技术有限公司 单相并网光伏逆变器输出谐波及直流分量的抑制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101304221A (zh) * 2008-06-19 2008-11-12 江苏津恒能源科技有限公司 太阳能光伏并网逆变器
CN101610038A (zh) * 2009-07-13 2009-12-23 南京航空航天大学 Boost与Buck级联的光伏并网逆变器及其控制方法
CN101950985A (zh) * 2010-11-01 2011-01-19 上海兆能电力电子技术有限公司 单相并网光伏逆变器输出谐波及直流分量的抑制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐春方: "基于buck-boost的双级光伏并网系统研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947617A (zh) * 2017-10-23 2018-04-20 胡炎申 一种混合开关单相逆变器
CN110611445A (zh) * 2018-06-15 2019-12-24 阳光电源股份有限公司 一种变换器装置及其控制方法
CN109617446A (zh) * 2018-11-06 2019-04-12 德州新动能铁塔发电有限公司 移动式并行水氢发电逆变系统

Similar Documents

Publication Publication Date Title
CN102185514B (zh) 一种单相三电平逆变器
CN102005958B (zh) 一种光伏并网三电平逆变器
CN202444440U (zh) 一种无桥逆变电路与太阳能无桥逆变器
CN202535290U (zh) 一种光伏逆变电路
CN203423631U (zh) 一种包括高升压电路的太阳能无桥逆变器
CN101350569A (zh) 太阳能光伏逆变器拓扑结构
CN103023362A (zh) 一种无桥逆变电路与太阳能无桥逆变器
CN108599604B (zh) 一种单相七电平逆变电器及其pwm信号调制方法
CN105048490A (zh) 低电流应力的光伏微逆变器及其数字控制装置
CN101667793B (zh) 一种并网逆变器
CN103956927A (zh) 一种电压有源箝位的无变压器型单相光伏逆变器
CN102088252B (zh) 一种开关电容实现无变压器型逆变器及应用
CN104638971A (zh) 一种光伏并网逆变器及其控制方法
WO2017028776A1 (zh) 高电压增益的五电平逆变器拓扑电路
CN201536328U (zh) 一种并网逆变器
CN111064378A (zh) 一种五电平混合中点钳位变换器
CN110112943B (zh) 一种双端多电平逆变电路及逆变系统
CN103618336A (zh) 整流式高频链并网逆变器的输出数字调制电路及控制系统
CN205377786U (zh) 一种双降压式光伏发电系统
CN204947610U (zh) 一种非隔离全桥光伏并网发电系统
CN104065293A (zh) 一种电压混合钳位的无变压器型单相光伏逆变器
CN103066623A (zh) 一种光伏并网逆变器
CN201515320U (zh) 一种并网逆变器
CN202183738U (zh) 自生成级联电源的级联型多电平逆变电路
CN203026964U (zh) 一种光伏并网逆变器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130424