CN103064070A - 一种单脉冲雷达系统自检与状态参数的监测结构和方法 - Google Patents

一种单脉冲雷达系统自检与状态参数的监测结构和方法 Download PDF

Info

Publication number
CN103064070A
CN103064070A CN2013100045559A CN201310004555A CN103064070A CN 103064070 A CN103064070 A CN 103064070A CN 2013100045559 A CN2013100045559 A CN 2013100045559A CN 201310004555 A CN201310004555 A CN 201310004555A CN 103064070 A CN103064070 A CN 103064070A
Authority
CN
China
Prior art keywords
signal
radar system
passage
monopulse radar
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013100045559A
Other languages
English (en)
Other versions
CN103064070B (zh
Inventor
杨陈
曾耿华
张海
李中云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronic Engineering of CAEP
Original Assignee
Institute of Electronic Engineering of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronic Engineering of CAEP filed Critical Institute of Electronic Engineering of CAEP
Priority to CN201310004555.9A priority Critical patent/CN103064070B/zh
Publication of CN103064070A publication Critical patent/CN103064070A/zh
Application granted granted Critical
Publication of CN103064070B publication Critical patent/CN103064070B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开的是一种单脉冲雷达系统自动校准与状态参数的监测结构和方法,该结构包括耦合器、数控衰减器与单刀双执开关,合理加入到单脉冲雷达系统中,该结构通过耦合器将雷达发射机信号形成自检信号,并馈入雷达接收通道中,在不同模式的接收处理时序与处理算法的配合下,接收机通过接收自检信号或发射机泄漏信号,实现对雷达系统通道自检、校准、灵敏自动测量以及发射机状态检测;使用本发明不需要添加任何外围测试设备,便可实现单脉冲雷达系统的校准与状态参数监视与测量,可广泛应用于雷达系统的在线检测系统中。

Description

一种单脉冲雷达系统自检与状态参数的监测结构和方法
技术领域
本发明属于雷达系统设计技术领域,更确切地说涉及一种单脉冲雷达系统自检与状态参数的监测结构和方法。
背景技术
由于雷达系统设计要求集成化、设计简单化,因而系统性参数的测量以及系统自检测等往往通过人工接入信号源而实现。然而人工的参与以及外围测试设备的引入不但会带来如大量接线接试等繁琐的复杂测试过程,而且还会使不确定因数增多,因而无监测系统的系统设计在雷达系统状态的准确性以及系统检测快速响应性上存在快速检测与准确检测等问题。
发明内容
本发明鉴于上述技术问题,目的是在不改变雷达性能的情况下,提供一种单脉冲雷达系统自检与状态参数的监测结构和方法,结构设计简单、易于实现,在该结构下,单脉冲雷达系统可以快速自检与状态参数检测。
本发明的目的是这样实现的:
一种单脉冲雷达系统自动校准与状态参数的监测方法,其特征在于:单脉冲雷达系统的发射信号被分成两路,其中:第一路信号经数控衰减调整、耦合后进入馈线网络,从而使第一路信号进入单脉冲雷达系统的接收通道;第二路信号经由调制放大后,按照由静偏磁场确定的方向顺序进入发射通道;第一路信号存在时,第二路信号不工作;第一路信号在固定的数控衰减情况下,由馈线网络经过多个接收通道形成幅度固定、相位差固定的信号,形成的信号再经由射频接收前端、微波接收前端后再被进行信号处理;第二路信号正常工作为单脉冲雷达系统正常发射,单脉冲雷达系统的泄漏信号经由射频接收前端、微波接收前端后再被进行信号处理。
用于上述方法的单脉冲雷达系统自动校准与状态参数的监测结构,所述单脉冲雷达系统包括天线、馈线网络、射频接收前端、微波接收前端、信号处理与系统控制器、信号源,天线连接至馈线网络,馈线网络通过对应的接收通道连接至射频接收前端,射频接收前端通过对应的接收通道连接至微波接收前端,微波接收前端通过对应的接收通道连接至信号处理与系统控制器,信号处理与系统控制器分别发送不同的信号至射频接收前端、微波接收前端、信号源,信号源将信号发送射频接收前端和微波接收前端,其特征在于:馈线网络与射频接收前端之间的通道设置有环行器,信号源通过调制放大器连接至环行器,该检测结构包括耦合器、数控衰减器与单刀双执开关,单刀双执开关连接于信号源与调制放大器之间,单刀双执开关的一个输出端连接至数控衰减器,数控衰减器的输出端连接至耦合器,耦合器连接于天线和馈线网络之间。
所述馈线网络、射频接收前端、微波接收前端及信号处理与系统控制器都是三通道接收通路。三通道分别为和通道、方位差通道,俯仰差通道。
所述环行器的隔离度与射频接收前端的通断比之和优于80dB。
所述第一路信号经数控衰减器的最大衰减与耦合器进入接收通道的信号低于单脉冲雷达系统接收设计的灵敏度。
所述监测系统的具体工作步骤为:
(1)工作状态自检:将单刀双执开关执向第一路信号,并调整数控衰减器至接收机的动态范围内,从而第一路信号进入单脉冲雷达系统的接收通道内,同时开启单脉冲雷达系统的接收;从而使单脉冲雷达系统的正常接收第一路信号,信号处理与系统控制器检测和通道、方位差通道、俯仰差通道是否有无信号,以检验和通道、方位差通道、俯仰差通道是否工作正常;
(2)通道校正:通道校正主要就是获取校正因子;将单刀双执开关执向第一路信号,在单脉冲雷达系统的和通道、方位差通道、俯仰差通道均工作正常情况下,可得和通道、方位差通道、俯仰差通道的接收信号频点峰值分别为:                                                
Figure 2013100045559100002DEST_PATH_IMAGE001
Figure 2013100045559100002DEST_PATH_IMAGE003
,根据信号处理与系统控制器所得的三种接收通道结果生成通道校正因子:
Figure 448523DEST_PATH_IMAGE004
, 
Figure 2013100045559100002DEST_PATH_IMAGE005
,从而完成对单脉冲雷达系统的模拟接收前端三通道幅度、相位一致性校正;
(3)灵敏度测试:将单刀双执开关执向第一路信号,调整数控衰减器的值,通过信号处理与系统控制器输出检测结果,并根据检测结果调整数控衰减器的值,从而使单脉冲雷达系统达到检测的临界值,最后根据临界检测情况下的数控衰减器的值查表得出单脉冲雷达系统的接收灵敏度,从而验证系统性能;
(4)发射机自检:将单刀双执开关执向第二路信号,使单脉冲雷达系统处于正常发射状态,同时关闭射频接收的接收开关,从而进一步衰减泄漏信号;调整接收时序,使微波接收前端与信号处理与系统控制器接收大功率信号源所泄露至接收通道的信号,并由信号处理与系统控制器获取是否检测到信号,从而判别雷达发射机否正常工作。
本发明的有益效果如下:
在不改变雷达性能情况下,设计了一种结构简单、易于实现的雷达系统自检与参数监测结构,该结构通过耦合器将信号通过耦合器旁路进入天线接收通道,而不影响系统的性能;该结构通过数控衰减器的信号,其输出信号的大小随数字衰减控制而定;该结构通过单刀双执开关将信号分别在两通道分时输出;该结构可以满足雷达系统易于集成的要求,同时采用其系统状态自动,快速检测方法,满足雷达系统快速响应的要求;可应用于探测与制导雷达系统中。
附图说明
图 1为本发明的结构实现框图
图 2为本发明的接收通道自检时序图
图 3为本发明的接收通道校准时序图
图 4为本发明的接收通道灵敏度测试时序图
图 5为本发明的发射机工作状测试时序图
其中,附图标记为:1天线,2耦合器,3馈线网络,4数控衰减器,5单刀双执开关,6调制放大器,7环行器,8射频接收前端,8-1、8-2、8-3均为和通道,9微波接收前端,9-1、9-2、9-3均为方位差通道,10信号源,11信号处理与系统控制器,11-1、11-2、11-3均为俯仰差通道,12输出频率码,13发射与校正开关控制,14衰减码,15单刀双执开关的控制信号,16微波接收前端的控制信号,17射频接收前端的开关控制信号,18第一路信号通路,19第二路信号通路,20信号源泄漏信号通路。
具体实施方式
下面结合附图对本发明做更详细的描述:
一般的单脉冲雷达系统由天线1、馈线网络3、调制放大器6、环行器7、射频接收前端8、微波接收前端9、信号源10以及信号处理与系统控制器11组成,为了增加系统状态自检与系统自动校准功能,在统中加入了小信号耦合器2,数控衰减器4以及单刀双执开关5。
如图1所示,该系统为毫米波雷达系统,耦合器2采用波导耦合,其耦合系数为-70dB,数控衰减器4为6位数可控,动态可达64dB,考虑到数控衰减器4至耦合器2的第一路信号18的功率为0dBm,系统设计的灵敏度为-130dBm,耦合器2与数控衰减器4的设计是合理的。考虑到调制放大器6输出的最大信号为50dBm,设计环行器7的隔离度为-30dB,同时射频接收前端8的开关通断比为-40dB,使信号发射时雷达系统能正常工作。
结合图1与图2,由信号处理与系统控制器11将单刀双执开关5的控制信号15设为高电平,同时打开射频接收前端8与微波接收前端9,即将射频接收前端8的控制信号17与微波接收前端9的控制信号16设置为高电平。信号沿第一路信号通路18经数控衰减器4后再经由耦合器2进入天线1的馈线网络3,从而使信号进入正常的接收通道,数控衰减器4为不衰减。
信号由天线1的馈线网络3传输到和通道、方位差通道、俯仰差通道,因此信号处理与系统控制器11将同时收到三路信号。若信号处理与系统控制器11同时检测出三个信号接收通道有信号,说明信号接收通道工作正常。若信号处理与系统控制器11在任意一个、两个或三个信号接收通道中未检测到信号则说明系统信号接收通道工作不正常。
结合图1与图3,在信号接收通道都正常工作的情况下,由信号处理与系统控制器11将单刀双执开关5的控制信号15设为高电平,同时打开射频接收前端8与微波接收前端9,即将射频接收前端8的控制信号17与微波接收前端9的控制信号16设置为高电平。信号沿第一信号通路18经数控衰减器4后再经由耦合器2进入天线1的馈线网络3,从而使信号进入正常的雷达信号接收通道中,数控衰减器4设为不衰减。信号由天线1的馈线网络3传输到三个信号接收通道。根据实际设计使信号经馈线网络3后进入三个信号接收通道为等幅度等相位的信号
Figure 2739DEST_PATH_IMAGE006
,因三个信号接收通道存在差异,设传输函数分别为
Figure 2013100045559100002DEST_PATH_IMAGE007
Figure 819385DEST_PATH_IMAGE008
Figure 2013100045559100002DEST_PATH_IMAGE009
,假定三个信号接收通道的传输函不随时间的改变而改变,因此,在单一频点下其为是一个常量,分别记为
Figure 142099DEST_PATH_IMAGE002
Figure 634261DEST_PATH_IMAGE003
,则至信号处理器11的A/D采样器的信号分别为
Figure 875886DEST_PATH_IMAGE010
Figure 2013100045559100002DEST_PATH_IMAGE011
Figure 714791DEST_PATH_IMAGE012
,以和通道(由7,8-1,9-1,11-1组成)为接收参考基准,由信号处理器测得方位差通道(由8-2,9-2,11-2组成)、俯仰差通道(由8-3,9-3,11-3组成)的校准系数为:
Figure 420579DEST_PATH_IMAGE004
, 
Figure 755746DEST_PATH_IMAGE005
。在宽带的情况下,通过改变信号源10的输出频率码12,即改变
Figure 2013100045559100002DEST_PATH_IMAGE013
值,实现系统的宽带校准。
结合图1与图 4,在信号接收通道都正常工作的情况下,由信号处理与系统控制器11将单刀双执开关5的控制信号15设为高电平, 信号沿第一信号通路18经数控衰减器4后再经由耦合器2进入天线1的馈线网络3,从而使信号进入正常的雷达信号接收通道,同时射频接收前端8的控制信号17与微波接收前端9的控制信号16按图4的时序工作。系统设计的检测概率为80%,按图4的时序工作100帧,由信号处理与系统控制器11统计系统检测到信号的次数,若高于80次则通过改变数控衰减器4的衰减码14,重新按图4的时序工作100帧,直至统计检测次数首次低于80次时停止工作,同时获取最后一次高于80次时的衰减器4衰减码14,根据衰减码14的值查询系统工作的灵敏度,从而向上位机输出检测结果。
结合图1与图5,在信号接收通道都正常工作的情况下,由信号处理与系统控制器11将单刀双执开关5的控制信号15设为低电平,信号沿第二信号通路19通入天线,向空间辐射。其泄漏信号沿通路20进入第一路信号接收通道内。此时为了增加对信号的隔离度,将射频接收前端8的开关控制信号17设为低电平,保证泄漏适量的能量到信号接收通道内。同时微波接收前端9与调制放大器6在相同的时序下工作,以保证雷达所收到的信号为发射机所发射时的泄漏信号。由信号处理与系统控制器11对信号源10工作状态进行判别,若由信号处理与系统控制器11检测到信号则表示发射工作正常,反之则不正常。

Claims (6)

1.一种单脉冲雷达系统自动校准与状态参数的监测方法,其特征在于:单脉冲雷达系统的发射信号被分成两路,其中:第一路信号经数控衰减调整、耦合后进入馈线网络,从而使第一路信号进入单脉冲雷达系统的接收通道;第二路信号经由调制放大后,按照由静偏磁场确定的方向顺序进入发射通道;第一路信号存在时,第二路信号不工作;第一路信号在固定的数控衰减情况下,由馈线网络经过多个接收通道形成幅度固定、相位差固定的信号,形成的信号再经由射频接收前端、微波接收前端后再被进行信号处理;第二路信号正常工作为单脉冲雷达系统正常发射,单脉冲雷达系统的泄漏信号经由射频接收前端、微波接收前端后再被进行信号处理。
2.根据权利要求1所述方法的单脉冲雷达系统自动校准与状态参数的监测结构,所述单脉冲雷达系统包括天线、馈线网络、射频接收前端、微波接收前端、信号处理与系统控制器、信号源;天线连接至馈线网络,馈线网络通过对应的接收通道连接至射频接收前端,射频接收前端通过对应的接收通道连接至微波接收前端,微波接收前端通过对应的接收通道连接至信号处理与系统控制器,信号处理与系统控制器分别发送不同的信号至射频接收前端、微波接收前端、信号源,信号源将信号发送射频接收前端和微波接收前端,其特征在于:馈线网络与射频接收前端之间的通道设置有环行器,信号源通过调制放大器连接至环行器,该检测结构包括耦合器、数控衰减器与单刀双执开关,单刀双执开关连接于信号源与调制放大器之间,单刀双执开关的一个输出端连接至数控衰减器,数控衰减器的输出端连接至耦合器,耦合器连接于天线和馈线网络之间。
3.根据权利要求2所述的监测结构,其特征在于:所述馈线网络、射频接收前端、微波接收前端及信号处理与系统控制器都是三通道接收通路,三通道分别为和通道、方位差通道,俯仰差通道。
4.根据权利要求2或3所述的监测结构,其特征在于:所述环行器的隔离度与射频接收前端的通断比之和优于80dB。
5.根据权利要求4所述的监测结构,其特征在于:所述第一路信号经数控衰减器的最大衰减与耦合器进入接收通道的信号低于单脉冲雷达系统接收设计的灵敏度。
6.根据权利要求2或5所述的监测结构,其特征在于工作步骤为:
(1)工作状态自检:将单刀双执开关执向第一路信号,并调整数控衰减器至接收机的动态范围内,从而第一路信号进入单脉冲雷达系统的接收通道内,同时开启单脉冲雷达系统的接收;从而使单脉冲雷达系统的正常接收第一路信号,信号处理与系统控制器检测和通道、方位差通道、俯仰差通道是否有无信号,以检验和通道、方位差通道、俯仰差通道是否工作正常;
(2)通道校正:通道校正主要就是获取校正因子;将单刀双执开关执向第一路信号,在单脉冲雷达系统的和通道、方位差通道、俯仰差通道均工作正常情况下,可得和通道、方位差通道、俯仰差通道的接收信号频点峰值分别为:                                                
Figure 2013100045559100001DEST_PATH_IMAGE001
Figure 2013100045559100001DEST_PATH_IMAGE003
,根据信号处理与系统控制器所得的三种接收通道结果生成通道校正因子:
Figure 648066DEST_PATH_IMAGE004
, 
Figure 2013100045559100001DEST_PATH_IMAGE005
,从而完成对单脉冲雷达系统的模拟接收前端三通道幅度、相位一致性校正;
(3)灵敏度测试:将单刀双执开关执向第一路信号,调整数控衰减器的值,通过信号处理与系统控制器输出检测结果,并根据检测结果调整数控衰减器的值,从而使单脉冲雷达系统达到检测的临界值,最后根据临界检测情况下的数控衰减器的值查表得出单脉冲雷达系统的接收灵敏度,从而验证系统性能;
(4)发射机自检:将单刀双执开关执向第二路信号,使单脉冲雷达系统处于正常发射状态,同时关闭射频接收的接收开关,从而进一步衰减泄漏信号;调整接收时序,使微波接收前端与信号处理与系统控制器接收大功率信号源所泄露至接收通道的信号,并由信号处理与系统控制器获取是否检测到信号,从而判别雷达发射机否正常工作。
CN201310004555.9A 2013-01-07 2013-01-07 一种单脉冲雷达系统自检与状态参数的监测结构和方法 Expired - Fee Related CN103064070B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310004555.9A CN103064070B (zh) 2013-01-07 2013-01-07 一种单脉冲雷达系统自检与状态参数的监测结构和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310004555.9A CN103064070B (zh) 2013-01-07 2013-01-07 一种单脉冲雷达系统自检与状态参数的监测结构和方法

Publications (2)

Publication Number Publication Date
CN103064070A true CN103064070A (zh) 2013-04-24
CN103064070B CN103064070B (zh) 2014-09-24

Family

ID=48106774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310004555.9A Expired - Fee Related CN103064070B (zh) 2013-01-07 2013-01-07 一种单脉冲雷达系统自检与状态参数的监测结构和方法

Country Status (1)

Country Link
CN (1) CN103064070B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106375034A (zh) * 2016-08-29 2017-02-01 成都九洲迪飞科技有限责任公司 通过天线空间耦合来对tr组件收发通道进行校准的系统
CN108196250A (zh) * 2018-01-26 2018-06-22 西安电子科技大学 用于低空小目标探测的连续波雷达系统及其方法
CN108474843A (zh) * 2016-01-29 2018-08-31 松下知识产权经营株式会社 距离测量装置
CN109061584A (zh) * 2018-06-29 2018-12-21 北京无线电测量研究所 雷达接收系统的动态测试方法及系统
CN109444835A (zh) * 2018-11-16 2019-03-08 北京遥感设备研究所 一种基于驻波反射的接收通道自检方法及系统
CN110361708A (zh) * 2019-08-21 2019-10-22 上海无线电设备研究所 一种微波收发组件自检电路及方法
CN111537963A (zh) * 2020-05-15 2020-08-14 扬州宇安电子科技有限公司 一种军事训练用雷达电子诱饵系统
CN113612549A (zh) * 2021-06-29 2021-11-05 西安空间无线电技术研究所 一种基于数字信号重构的单通道单脉冲角跟踪方法
CN113917470A (zh) * 2021-12-14 2022-01-11 成都锐芯盛通电子科技有限公司 一种高效率dbf雷达及标校方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201600449U (zh) * 2009-12-30 2010-10-06 南京誉葆科技有限公司 一体化微波高度表前端装置
CN102662163A (zh) * 2012-05-28 2012-09-12 中国电子科技集团公司第二十二研究所 一种基于微处理器arm的数字控制装置及雷达有源校准器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201600449U (zh) * 2009-12-30 2010-10-06 南京誉葆科技有限公司 一体化微波高度表前端装置
CN102662163A (zh) * 2012-05-28 2012-09-12 中国电子科技集团公司第二十二研究所 一种基于微处理器arm的数字控制装置及雷达有源校准器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108474843A (zh) * 2016-01-29 2018-08-31 松下知识产权经营株式会社 距离测量装置
CN106375034A (zh) * 2016-08-29 2017-02-01 成都九洲迪飞科技有限责任公司 通过天线空间耦合来对tr组件收发通道进行校准的系统
CN106375034B (zh) * 2016-08-29 2018-11-30 成都九洲迪飞科技有限责任公司 通过天线空间耦合来对tr组件收发通道进行校准的系统
CN108196250A (zh) * 2018-01-26 2018-06-22 西安电子科技大学 用于低空小目标探测的连续波雷达系统及其方法
CN108196250B (zh) * 2018-01-26 2022-04-15 西安电子科技大学 用于低空小目标探测的连续波雷达系统及其方法
CN109061584A (zh) * 2018-06-29 2018-12-21 北京无线电测量研究所 雷达接收系统的动态测试方法及系统
CN109444835A (zh) * 2018-11-16 2019-03-08 北京遥感设备研究所 一种基于驻波反射的接收通道自检方法及系统
CN110361708A (zh) * 2019-08-21 2019-10-22 上海无线电设备研究所 一种微波收发组件自检电路及方法
CN111537963A (zh) * 2020-05-15 2020-08-14 扬州宇安电子科技有限公司 一种军事训练用雷达电子诱饵系统
CN113612549A (zh) * 2021-06-29 2021-11-05 西安空间无线电技术研究所 一种基于数字信号重构的单通道单脉冲角跟踪方法
CN113612549B (zh) * 2021-06-29 2024-02-09 西安空间无线电技术研究所 基于数字重构的单通道单脉冲角跟踪方法、系统及介质
CN113917470A (zh) * 2021-12-14 2022-01-11 成都锐芯盛通电子科技有限公司 一种高效率dbf雷达及标校方法

Also Published As

Publication number Publication date
CN103064070B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
CN103064070B (zh) 一种单脉冲雷达系统自检与状态参数的监测结构和方法
CN101915909B (zh) 一种对系统接收通道的幅度及相位进行校准的实现方法
CN101180551B (zh) 天线阵列校准系统及方法
CN102281113B (zh) 通信中继装置及其驻波比检测装置和方法
CN108387878B (zh) 一种相控阵雷达tr组件自动测试装置与方法
CN108196235A (zh) 一种用于多通道毫米波雷达的幅相校准方法
ITTO20070623A1 (it) Rilevamento di repliche in un radar secondario di sorveglianza
CN107707264A (zh) 功率检测反馈电路及方法
CN101706863B (zh) 一种测试rfid阅读器接收灵敏度的方法、设备及其阅读器
CN101958756A (zh) 驻波检测方法、驻波检测装置及基站
US20140050114A1 (en) Method, apparatus and system for determining voltage standing wawe ratio in downlink period of radio communication
CN105388466B (zh) T/r组件测试系统中发射激励信号的调理装置
CN104360328A (zh) 一种相控阵雷达发射通道远场校准方法及系统
CN107872284B (zh) 无线直放站的自激检测方法及装置
AU2009351552A1 (en) Method and device for duplexer fault detection
CN201796003U (zh) 驻波检测装置
CN108761413B (zh) 用于大功率rcs测试的射频开关保护装置及方法
KR101464352B1 (ko) 전술항행표시시설 시뮬레이션 장치
US20180269994A1 (en) Dynamic passive intermodulation reference signal generator
CN103427915A (zh) 一种射频设备驻波比检测中的去干扰方法和装置
CN104917574A (zh) 短距离电力通信用无线通信测试系统自校准方法
CN106507957B (zh) 一种射频目标仿真系统的延时标定方法
CN211579982U (zh) 基于Python的DUT射频自动校准测试系统
CN108983170B (zh) 一种雷达高度计定标测试系统及方法
CN102565544A (zh) 航空电子设备综合测试系统高频信号转接控制器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140924

Termination date: 20160107