CN103061725A - 烃采收工艺 - Google Patents

烃采收工艺 Download PDF

Info

Publication number
CN103061725A
CN103061725A CN2012102536781A CN201210253678A CN103061725A CN 103061725 A CN103061725 A CN 103061725A CN 2012102536781 A CN2012102536781 A CN 2012102536781A CN 201210253678 A CN201210253678 A CN 201210253678A CN 103061725 A CN103061725 A CN 103061725A
Authority
CN
China
Prior art keywords
water
stratum
aqueous displacement
oil
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102536781A
Other languages
English (en)
Other versions
CN103061725B (zh
Inventor
I·R·科林斯
G·R·杰诺尔德
A·拉格尔
P·L·麦吉尔
K·韦布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BP Exploration Operating Co Ltd
BP Corp North America Inc
Original Assignee
BP Exploration Operating Co Ltd
BP Corp North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BP Exploration Operating Co Ltd, BP Corp North America Inc filed Critical BP Exploration Operating Co Ltd
Publication of CN103061725A publication Critical patent/CN103061725A/zh
Application granted granted Critical
Publication of CN103061725B publication Critical patent/CN103061725B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/904Process of making fluids or additives therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/935Enhanced oil recovery
    • Y10S507/936Flooding the formation

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种提高从包含至少一种多孔、可渗透的地层的油藏采收原油的采收率的方法,其中所述地层包含砂岩和至少一种在油藏条件下ζ电位为负的矿物且其中原油和原生水存在于所述地层的孔内,所述方法包括:向所述地层中注入从所述地层的孔表面驱替原油的含水驱替液,其中所述含水驱替液的总溶解固体(TDS)含量在200-10,000ppm范围内且所述含水驱替液的多价阳离子的总含量对所述原生水的多价阳离子的总含量的分数小于1,其中所述含水驱替液在二次采收期间被注入所述地层中。

Description

烃采收工艺
本申请是2007年9月5日提交的题为“烃采收工艺”的PCT/GB2007/003337号发明专利申请的分案申请,原申请进入中国国家阶段获得的国家申请号为200780041330.3。
技术领域
本发明涉及一种通过向地层中注入低含盐量的水而自多孔、可渗透的含烃地层中采收烃的工艺。
背景技术
人们早已知道,由于油藏的天然能量故仅部分油可从含油地层中采收。所谓的二次采收技术被用来迫使更多的油从油藏中出来,其最简单的方法是用另一种介质(通常是水或气体)直接置换。
注水是最成功并广泛使用的二次采收方法之一。水在压力下经注入井注入油藏岩石中,从而驱使油通过岩石流向生产井。注水中使用的水通常为来自天然源的盐水如海水(后文称“水源水(source water)”)。
控制原油/盐水/岩石相互作用的因素及其对可润湿性和油采收率的影响涉及复杂的且有时竞争的机制。业已报道,油采收率可取决于注入的盐水浓度。具体地讲,Morrow及同事的实验室岩心研究已表明在注水过程中使用含盐量较低的注入水可比使用较高含盐量的水提高油采收率。P.L.McGuire、J.R.Chatham、F.K.Paskvan、D.M.Sommer、F.H.Carini:“低含盐量油的采收:阿拉斯加北部坡带令人激动的新EOR机会(Low Salinity Oil Recovery:An Exciting New EOR Opportunity forAlaska’s North Slope)”Society of Petroleum Engineers,第2卷,No.93903,2005,422-436页描述了采用含盐量较低注入水的较新工作。
但油井处通常没有含盐量较低的水可用而不得不用各种技术如反渗透或正渗透降低较高含盐量的水的总离子浓度。
发明内容
因此存在如何用相对于相同的采收率而言更廉价或相对于相同的成本而言提供更好的油采收率的方法提高从含油地层中采收油的问题。
目前已经发现,通过调节低含盐量注入水的多价阳离子的总浓度及向含油地层中注入最小孔隙体积倍数的经调节的低含盐量的水,与注入原始的低含盐量的水或较高含盐量的水相比,地层的残余油饱和度可降低。具体地讲,业已发现,更佳的油采收率的关键在于使用注入水中总溶解固体含量(TDS)在200-10,000ppm范围内的特定的较低多价阳离子含量的注入水。也已发现,使用低含盐量的水时油采收率的提高取决于地层的性质。
因此,本发明提供了一种提高从包含至少一种多孔、可渗透的地层的油藏采收原油的采收率的方法,其中所述地层包含砂岩和至少一种在油藏条件下ζ电位为负的矿物且其中原油和原生水存在于所述地层的孔内,所述方法包括:向所述地层中注入从所述地层的孔表面驱替原油的含水驱替液,其中所述含水驱替液的总溶解固体(TDS)含量在200-10,000ppm范围内且所述含水驱替液的多价阳离子的总含量对所述原生水的多价阳离子的总含量的分数小于1。
在本发明的一个优选实施方案中,提供了一种提高从包含至少一种多孔、可渗透的地层的油藏采收原油的采收率的方法,其中(a)所述地层包含砂岩和至少一种在油藏条件下ζ电位为负的矿物;(b)原油和原生水存在于所述地层的孔内且所述原油包含具有阴离子官能团的组分(后文称“阴离子组分”)和/或具有阳离子官能团的组分(后文称“阳离子组分”);和(c)来自所述原生水的多价阳离子被吸附到所述地层的孔表面上并与溶解在所述原生水中的游离的多价阳离子平衡且至少部分被吸附的多价阳离子与所述原油的阴离子组分缔合(后文称“油缔合多价阳离子”)和/或所述地层的孔表面上的荷负电官能团与所述原油的阳离子组分缔合(后文称“吸附的阳离子组分”),所述方法包括:
向所述地层中注入总溶解固体(TDS)含量在200-10,000ppm范围内且具有溶解于其中的驱替阳离子的含水驱替液,其中所述含水驱替液中多价阳离子的浓度低于所述原生水中游离的多价阳离子的浓度以便从所述地层的孔表面驱替出所述油缔合多价阳离子和/或所述吸附的阳离子组分而代之以从所述含水驱替液中吸附的驱替阳离子,从而从所述地层的孔表面驱替原油。
优选所述含水驱替液从注入井通过地层以从地层的孔表面驱替原油,将驱替出的原油从与所述注入井隔开的生产井回收。但也预见本发明可应用于“蒸汽吞吐”工艺,其中生产井经历自所述井向地层中注入含水驱替液、让所述井浸渍和然后从所述井产油的周期。
含水驱替液通过的地层包含通过含在孔中或颗粒之间或以别的方式与油缔合的砂岩。所述地层也可包含其他成分如石英。此外,所述地层包含一种或多种在油藏条件下ζ电位为负的矿物。因此,所述地层在油藏条件下具有负的表面电荷。“ζ电位”是本领域内众所周知的参数,可通过本领域技术人员熟知的标准方法测定。通过在水性介质中形成矿物的淤浆、使电流经电极通过所述淤浆并确定所述淤浆颗粒的运动方向和速度来测定ζ电位。优选矿物在油藏条件下的ζ电位为0.1到-50mV,例如-20到-50mV。“油藏条件”是指地层的温度和压力及原生水的pH。通常,地层的温度在25-300℃的范围内,例如50-200℃,特别是100-150℃。通常,地层的压力在100-1000巴的范围内。通常,原生水的pH在4-8的范围内,特别是5-7的范围内。
通常,所述地层包含至少0.1%的至少一种在油藏条件下ζ电位为负的矿物,优选1-50%,更优选1-30%,尤其是2.5-20%(除非另有说明,否则本说明书中的所有含量均以重量表达)。所述矿物可为粘土,特别是蒙脱石类型(如蒙脱石)、叶蜡石类型、高岭石类型、伊利石类型和海绿石类型的粘土。优选所述粘土在从地层采收原油的条件下是不膨胀的。在油藏条件下ζ电位为负的矿物的其他实例包括过渡金属化合物如氧化物和碳酸盐,例如氧化铁、陨铁和斜长石。地层中这类矿物的量可用碾碎的地层岩通过X-射线衍射确定。已发现油采收率增高的水平与地层中一种或多种矿物的增加量相关。
来自原生水的多价阳离子(优选二价和/或三价阳离子)被吸附到地层的孔表面上。不希望受任何理论的束缚,我们认为,所述多价阳离子化学吸附到地层的孔表面上。我们也认为,吸附的多价阳离子与原生水中所含的多价阳离子平衡。
具有阴离子官能团的原油组分(“阴离子组分”)的实例包括具有羧酸根、羟基、膦酸根、硫酸根或磺酸根官能团的烃。具体地讲,原油的阴离子组分可为环烷酸根。
原油的阴离子组分与吸附的多价阳离子“缔合”是指阴离子组分可直接或间接地与吸附的多价阳离子配位。原油的阴离子组分可经离子键(术语称“阳离子桥接”)或配价键(术语称“配体桥接”)与吸附的多价阳离子直接配位。或者,原油的阴离子组分可经氢键通过一个或多个桥接水分子的媒介(术语称“水桥接”)与吸附的多价阳离子间接配位。以下针对羧酸和吸附的二价阳离子(Ca2+和Mg2+)说明原油阴离子组分与吸附的多价阳离子的直接和间接配位:
具有阳离子官能团的原油组分(“阳离子组分”)的实例包括式RR1R2R3N+X-的季铵盐,其中R、R1、R2和R3基团代表烃基,X-为阴离子例如氯离子或溴离子。通常,原油的阳离子组分经离子键与地层的孔表面上存在的阴离子基团直接配位。例如,如下所示,粘土矿物表面上存在的羟基的氢离子可与式RR1R2R3N+的季铵离子间有阳离子交换。
Figure BSA00000752774800051
含水驱替液的驱替阳离子可为多价阳离子或一价阳离子。但一价阳离子在从地层的孔表面驱替吸附的多价阳离子(及其缔合的原油阴离子组分)和/或吸附的原油阳离子组分时不那么有效。因此,优选含水驱替液中存在至少某些多价驱替阳离子,条件是含水驱替液的多价阳离子的总含量低于原生水的多价阳离子的总含量。
含水驱替液中多价阳离子的总含量对原生水中多价阳离子的总含量的分数(后文称“多价阳离子分数”)小于1,例如小于0.9。通常,多价阳离子分数越低,从特定地层中采收的油的量越高。因此,多价阳离子分数优选低于0.8,更优选低于0.6,还更优选低于0.5,尤其是低于0.4或低于0.25。多价阳离子分数可为至少0.001,优选至少0.01,最优选至少0.05,特别是至少0.1。多价阳离子分数的优选范围为0.01到0.9、0.05到0.8,但尤其是0.05到0.6或0.1到0.5。所述含水驱替液的二价阳离子的总含量对所述原生水的二价阳离子的总含量的分数(后文称“二价阳离子分数”)也小于1。多价阳离子分数的优选值和范围原则上可适用于二价阳离子分数。
一价驱替阳离子可适宜地选自I族金属阳离子,特别是Na+。多价驱替阳离子优选二价阳离子或三价阳离子。可用作驱替阳离子的二价阳离子包括II族金属阳离子,特别是Ca2+和Mg2+,还有Ba2+和Sr2+,优选Ca2+。可用作驱替阳离子的三价阳离子包括Cr2+、Cr3+、Al3+、V2+或V3+。最有效的驱替阳离子在其水化半径(阳离子和其紧密结合的水分子的半径)上具有较高的电荷密度。因此,作为驱替阳离子,Ca2+比Mg2+更有效。驱替液中可采用驱替阳离子的混合物。
含水驱替液的钠含量通常为20-4,000ppm,优选150-2,500ppm,例如200-1,000ppm。含水驱替液中钠含量对多价阳离子半含量的分数通常大于1,优选1.05-50,最优选5-40,特别是5-20或20-40,较高的值通常与含水驱替液的较高的TDS水平联系在一起。
含水驱替液的钙含量通常为至少1ppm,优选至少5ppm,例如至少10ppm。通常,钙含量在1-100ppm范围内,优选5-50ppm。含水驱替液的镁含量可为至少1ppm,优选至少5ppm,更优选至少10ppm。通常,镁含量在5-100ppm范围内,优选5-30ppm。含水驱替液的钡含量可在0.1-20ppm例如1-10ppm范围内。钙与镁的重量比通常为10∶1到1∶10,尤其是10∶1到1∶1,例如10∶1到4∶1或5∶1到1∶6,例如1∶1到1∶6。因此,钙含量可高于镁含量。优选含水驱替液的三价阳离子含量为至少1ppm,优选至少10ppm,例如至少20ppm。优选含水驱替液的多价阳离子含量为至少10ppm,例如至少20ppm,条件是多价阳离子分数小于1。通常,含水驱替液中多价阳离子的总含量为1-200ppm,优选3-100ppm,尤其是5-50ppm,条件是多价阳离子分数小于1。
所述含水驱替液的TDS含量为至少200ppm,优选至少500ppm。TDS含量可高至10,000ppm,优选高至8,000ppm,更优选高至7,000ppm。具体地讲,TDS可在500-10,000ppm范围内,优选1,000-8,000ppm,例如1,000-5,000ppm。
优选含水驱替液的多价阳离子含量对所述含水驱替液的总溶解固体(TDS)含量的分数小于1×10-2,例如0.01-0.9×10-2,优选0.1-0.8×10-2。这些分数原则上适用于含水驱替液的二价阳离子含量对所述含水驱替液的总溶解固体(TDS)含量的分数。
本发明可用来提高地层的油采收率,该地层中原生水具有宽范围的TDS水平,例如至少500ppm,通常500-200,000ppm,例如2,000-50,000ppm,特别是2,000-5,000ppm或10,000-50,000ppm,尤其是20,000-45,000ppm。原生水为与地层中的油伴生的水并与之平衡,尤其是就其多价阳离子含量、特别是其二价阳离子(例如钙)含量而言。原生水的钙含量通常为至少150ppm,例如200-30,000ppm、200-6,000ppm,尤其是200-1,000ppm。原生水的镁含量通常为至少150ppm,例如200-30,000ppm、200-6,000ppm,尤其是200-1,000ppm。原生水的二价阳离子的总含量通常为至少180ppm,例如250-15,000ppm,优选350-3,000ppm,尤其是400-2,000ppm或1,000-2,000ppm。原生水中钙与镁的重量比通常为10∶1到1∶10,尤其是10∶1到1∶1,例如10∶1到4∶1或5∶1到1∶6,例如1∶1到1∶6。一般来讲,原生水包含低水平的三价阳离子,通常低于5ppm。
可让含水驱替液连续地进入地层中。但优选含水驱替液以一份或多份受控的孔隙体积PV进入(后文称“段塞(slugs)”)。本文使用的术语“孔隙体积”是指注入井与生产井间的波及体积并可易于通过本领域技术人员已知的方法确定。这类方法包括建模研究。但也可通过使其中含示踪剂的高含盐量的水从注入井通过地层到达生产井来确定孔隙体积。所述波及体积为驱替液驱扫过的体积在注入井和生产井间的所有流程上的平均。这可参照产生的高含盐量的水中的第一瞬间(firsttemporal moment)示踪剂分布确定,这是本领域技术人员熟知的。
业已发现含水驱替液段塞的体积可令人惊奇地小而段塞仍能释放基本所有可在油藏条件下从地层的孔表面驱替的油。通常,由于较低孔隙体积倍数的段塞倾向于分散在地层中,且不引起可观的增产油量,故含水驱替液段塞为至少0.2PV。也已发现,当含水驱替液的孔隙体积倍数为至少0.3PV、优选至少0.4PV时,段塞倾向于在地层内保持其完整性(不分散在地层内),因此继续将驱替的油驱扫向生产井。因此,使用至少0.3PV、优选至少0.4PV的段塞,特定地层的油采收率的提高将接近最大值,使用更高孔隙体积倍数的段塞,油采收率几乎没有额外增加。虽然可能继续向地层中注入含水驱替液,但通常使含水驱替液段塞的孔隙体积倍数最小,这是因为由于需要处理产出水故含水驱替液的注入容量有限。因此,含水驱替液的孔隙体积倍数优选小于1PV、更优选小于0.9PV、最优选小于0.7PV,特别是小于0.6PV,例如小于0.5PV。通常,含水驱替液段塞的孔隙体积倍数在0.2-0.9PV范围内,优选0.3-0.6PV,尤其是0.3-0.45PV。
在注入取得油采收率最大提高的孔隙体积倍数的含水驱替液(优选小于1PV的含水驱替液段塞)后,可向地层中注入较高多价阳离子含量和/或较高TDS(通常二者)的驱替用(或后冲洗)水。当含水驱替液段塞的孔隙体积倍数小于1PV时,后冲洗水将确保含水驱替液段塞(和因此释放的油)被驱扫过地层到达生产井。此外可能需要注入后冲洗水以维持油藏中的压力。通常,该后冲洗水的PV大于含水驱替液段塞的PV。优选该后冲洗水不具有比注入的含水驱替液更高的pH且未向其中加入碱如氢氧化钠、碳酸钠、硅酸钠或磷酸钠。
含水驱替液可有效地使用许多水源,包括淡水、海水、微咸水、含水层水、原生水或产出水(produced water)。淡水可自河或湖中获得且TDS含量通常低于1500ppm。微咸水可自有潮或潮汐河源获得且TDS含量通常为5000-25,000ppm。此外,微咸水可自与伴随原油的层分开的层中的含水层获得。但不是所有含水层水均为微咸水。因此,含水层水的TDS含量可在1000-300,000ppm范围内。当原生水或产出水(从自生产井产生的油中分离出的水)被用作含水驱替液的水源时,该原生水或产出水的TDS含量可在2000-300,000ppm TDS范围内。当对原生水或产出水的排放有限制时,原生水或产出水作为含水驱替液的水源的使用是有利的。也可考虑用海水作为含水驱替液的水源,无论是含量为15,000-40,000ppm的内海如里海中的水还是例如含量为30,000-45,000ppm TDS的外海中的水。如果需要,可使用所期望的水的混合物作为含水驱替液的水源,例如低TDS含水层水与较高含盐量的水如产出水或海水混合。混合水的使用在启动新的生产井时特别重要,因为最初可能没有或没有足够的产出水用作含水驱替液的水源。
当水源水的TDS含量及其多价阳离子含量已处于含水驱替液为从含特定原生水的地层中取得提高的油采收率所需的值时,所述水源水可用作含水驱替液而无需处理以降低其多价阳离子含量。可用作含水驱替液而无需处理的水的实例包括淡水和低含盐量含水层水。虽然多价阳离子水平可不改变,但如果需要可例如通过用二价阳离子如钙沉淀或通过阴离子交换(例如使用阴离子交换树脂)或通过使用阴离子选择性膜纳滤而降低多价阴离子含量如二价阴离子如硫酸根或碳酸根或三价阴离子如磷酸根的含量。如有必要,可向淡水或含水层水中加入多价阳离子(特别是二价阳离子和三价阳离子)以获得所需的多价阳离子含量。
当水源水的TDS含量已处于含水驱替液所需的值但多价阳离子水平高于从含特定原生水的地层中取得提高油采收率所需的水平时,对所述水源水处理以降低其多价阳离子水平。这类水源水的实例包括某些低含盐量产出水和某些低含盐量含水层水。所述处理可为通过例如加入氢氧化钠、碳酸钠、碳酸氢钠、磷酸钠或硅酸钠沉淀和分离包含多价阳离子的沉淀物(例如通过过滤或离心分离)从而产生较低多价阳离子水平的经处理的水以用作含水驱替液。水源水的处理也可通过纳滤进行,例如用多价阳离子选择性膜如Dow Filmtec NF系列(特别是NF40、NF40HF、NF50、NF70、NF90和NF270膜)、HydranauticsESNAl系列、Desal-5膜(Desalination Systems,Escondido,加利福尼亚)、SU600膜(Toray,日本)或NRT7450和NTR7250膜(Nitto Electric,日本)。用这类膜从低TDS含量(微咸水TDS含量或更低)的水中选择性地去除多价阳离子,这在US5,858,420及K Kosutic,I Novak,LSipos和B Kunst编著的Separation and Purification Technology(分离和纯化技术),37(2004),“Removal of sulfates and other inorganics frompotable water by nanofiltration membranes of characterized porosity(通过特征性孔隙度的纳滤膜从饮用水中去除硫酸盐及其他无机物)”中有讨论。或者,所述水源水可通过流经阳离子交换树脂如氢或钠阳离子交换树脂床得到处理。这些处理方法(除用氢阳离子交换树脂的阳离子交换外)的好处在于与未经处理的水相比,含水驱替液的pH提高幅度不大。如果需要,也可如上所述降低所述经处理的水的多价阴离子含量。
当水源水的TDS高于含水驱替液所需且当多价阳离子水平也高于从含特定原生水的地层中取得提高的油采收率所需的水平时,所述水源水需经处理以降低其TDS含量及其多价阳离子含量至所需的值。通常,用例如反渗透、正渗透或其组合处理所述水源水以降低其TDS和多价阳离子含量二者至所需的值。以这种方式处理的水源水包括海水、较高含盐量的微咸水、高盐含量产出水和高盐含量含水层水。反渗透或正渗透中采用的膜可阻止水源水中基本所有的溶解固体进入经处理的水(渗透质)中。阻止基本所有溶解固体的适宜的膜是本领域技术人员熟知的。因此,经处理的水的TDS可低至200ppm,二价阳离子含量可低至1-2ppm。通常,经处理的水将不含任何三价阳离子。如果需要,可向经处理的水中加入多价阳离子(二价阳离子和/或三价阳离子),条件是经处理的水的多价阳离子的总含量低于原生水的多价阳离子的总含量。此外,如果需要,可向经处理的水中加入一价阳离子的盐以增加其TDS含量,条件是TDS含量不超过10,000ppm。或者,可用如国际专利申请号WO2006/002192中所述的“疏松的(loose)”反渗透膜处理所述水源水,从而直接形成所需TDS含量和所需多价阳离子含量的含水驱替液。
含水驱替液也可包含水溶性聚合增稠剂如天然胶、聚丙烯酰胺和聚丙烯酸。为避免疑义,认为这些增稠剂对含水驱替液的总TDS含量没有贡献。
设想表面活性剂也可被原样或以含乳化烃的胶束溶液形式加入到含水驱替液中,特别是磺酸盐如烯烃苯磺酸盐。
优选含水驱替液中不加碱如氢氧化钠、碳酸钠、碳酸氢钠、硅酸钠或磷酸钠。当已加入任何这类碱性物质以降低高多价阳离子含量水源水的多价阳离子含量时,含水驱替液的pH应比水源水的高0.5以下,优选高0.2以下。
含水驱替液与地层岩接触,该地层岩与油缔合,该油的密度可为0.9659-0.7389g/ml,优选为0.8762-0.8017g/ml,例如0.934-0.8762g/ml(美国石油协会(API)比重至少为15-60°,优选至少30-45°,例如20-30°)。
在本发明的方法中,优选将含水驱替液在例如10,000到100,000kPa(100到1000巴)的压力下注入至少一个与生产井隔开的注入井中且其从注入井直接进入含油地层中。含水驱替液的通过迫使原生水和驱替出的油在含水驱替液之前流向生产井,从该生产井回收油,最初是与原生水一起回收,在长时间注入含水驱替液后是与原生水和含水驱替液的混合物一起回收,最终可能仅与含水驱替液一起回收。
本发明的方法通常用于地层中压力不足的生产井以产生显著量的油(初次采收后)。这些生产井可能在二次采收(初次采收后)中或三次采收(二次采收后)中。因此,本发明的方法对于成熟的生产井特别有价值。
本领域技术人员应理解,在二次采收中,从注入井向地层中注入液体是为了维持地层中的压力和将油驱扫向生产井。在二次采收期间向地层中注入含水驱替液的优势在于该含水驱替液已配制或选择,以便从地层的孔表面释放另外的油(与注入更高TDS含量和/或更高多价阳离子含量的水相比)。因此,从生产井回收无水油的时间段可更长,从而推迟见水。此外,甚至在见水后,与使用更高TDS含量和/或更高多价阳离子含量的水相比,也将提高油采收率。
本领域技术人员应理解,在三次采收中,原液体的注入停止了而不同的液体被注入地层中以提高油采收率。因此,在三次采收期间注入地层中的液体为选定TDS含量和选定多价阳离子含量的含水驱替液,而之前在二次采收期间注入地层中的液体可为比所述含水驱替液具有更高TDS含量和/或更高多价阳离子含量的水(例如海水和/或产出水)。因此,在三次采收期间注入含水驱替液的优势在于引起油采收率的提高。
可有一个注入井和一个生产井,但优选可有多于一个注入井和多于一个生产井。该注入井或各注入井与该生产井或各生产井间可有许多不同的空间关系。注入井可布置在生产井周围。或者注入井可呈两排或更多排,各排间布置生产井。这些布局在术语上称为“井网注水”,本领域技术人员将知道如何操作注入井以在注水处理(二次或三次采收)过程中获得最大油采收率。
在本发明的另一个优选实施方案中,提供了一种提高从包含至少一种多孔、可渗透的地层的油藏采收原油的采收率的方法,其中(a)所述地层包含砂岩和至少一种在油藏条件下ζ电位为负的矿物;(b)原油和原生水存在于所述地层的孔内;和(c)含水驱替液被注入所述地层中以从所述地层的孔表面驱替原油,其中所述含水驱替液通过下述方法选择:
(a)确定原生水的多价阳离子含量;和
(b)选择总溶解固体含量在200-10,000ppm范围内、多价阳离子总含量为这样以致含水驱替液的多价阳离子总含量对所述原生水的多价阳离子总含量的分数小于1的水源水作为含水驱替液。
原生水的样品可通过从地层取岩心获得并确定该岩心内所含水的多价阳离子含量。或者,当已见水但油藏仍在初次采收中时,可确定从油中分离出的水的多价阳离子含量。
当没有适宜的水源水用作含水驱替液时,可调节(如上所述)水源水的TDS含量和/或多价阳离子总含量以得到具有所需TDS含量和所需多价阳离子总含量的含水驱替液。
具体实施方式
现在结合图1-2和以下实施例说明本发明。
实施例
以下实施例说明本发明,在该实施例中,不同组成的含水驱替液进入不同粘土含量的含油地层中,当为所述液体所饱和时,该地层的残余油含量(下文称Sor)通过单井化学示踪剂试验(SWCTT)测定。
该试验已广泛用于测试油采收工艺中。其涉及从生产井向含油地层中注入少量以两种化学示踪剂标记的受试含水驱替液,随后注入无示踪剂的液体,然后关井,随后在地层压力下迫使含水驱替液回到生产井;然后分析返回生产井的液体的示踪剂或其水解产物。一种示踪剂通常为醇如异丙醇和/或正丙醇,其不在地层中的油相和水相间分配。通常为酯如乙酸乙酯(后文称“分配酯(partitioning ester)”)的另一种示踪剂在关井期间水解形成不在油相和水相间分配的醇。分配酯以比非分配醇慢的速率返回生产井。较慢的速率及因此酯和醇之间返回生产井较大的间隔对应于地层中减少的油含量及因此残余油含量(Sor)。该技术在P.L.McGuire、J.R.Chatham、F.K.Paskvan、D.M.Sommer、F.H.Carini:“低含盐量油的采收:阿拉斯加北部坡带令人激动的新EOR机会(Low Salinity Oil Recovery:An Exciting New EOROpportunity for Alaska’s North Slope)”Society of Petroleum Engineers,第2卷,No.93903,2005,422-436页有详细描述,其公开内容通过引用结合到本文中。
如上面所讨论的,对若干井进行试验。在各井的情况下,该试验首先用原生水进行以测定原生水的Sor水平。然后用不同二价阳离子分数的含水驱替液重复进行试验以测定该介质的Sor水平。
表1和2中给出了若干井中的油、含水驱替液和原生水的分析、地层的非膨胀粘土含量和饱和残余油(Sor)含量的详情。
井A含API比重为24°的油,来自含2.2%高岭石和10-20%海绿石的地层。
井B含API比重为24°的油,来自含7.4%高岭石的地层。
井C含API比重为27°的油,来自含高岭石的地层。
井D含API比重为25°的油,来自含高岭石的地层。
井E含API比重为17°的油,来自含约3%高岭石的地层。
表1
Figure BSA00000752774800141
*Divs=二价阳离子
表2
这些结果图示于图1和2中。
实施例8
用若干不同大小的经分析含Ca1.47ppm/Mg0ppm/二价TDS10ppm的含水驱替液(注入水)段塞重复实施例1-7的SWCTT试验。原生水含Ca320ppm/Mg48ppm/二价物(Divalent)398ppm/TDS31705ppm,使得二价分数(divalent fraction)为0.003。油的API比重为23°。地层含13.8%的高岭石。
首先使产出水(即试验中的原生水)进入地层,得到Sor为0.42。然后使0.2PV的注入水段塞通过,得到Sor为0.42,随后是产出水的重复段塞。然后使0.4PV的注入水段塞通过,得到Sor为0.27,随后又是产出水的段塞。在0.7PV的注入水段塞再次通过并随后通过产出水后Sor为0.27。孔隙体积PV由建模研究确定。
实施例9
用若干不同大小的经分析含Ca30ppm/Mg6ppm/二价TDS37ppm(Divalent37ppm TDS)的含水驱替液(注入水)段塞重复实施例8的SWCTT试验。原生水与实施例8中的相同,二价分数为0.09。油的密度为0.0159g/ml(API比重为23°)。地层含12.2%的高岭石。
首先使产出水(即试验中的原生水)进入地层,得到Sor为0.41。然后使0.2PV的注入水段塞通过,得到Sor为0.37,随后是产出水的重复段塞。然后使0.3PV的注入水段塞通过,得到Sor为0.30,随后又是产出水的段塞。孔隙体积PV通过建模研究确定。
实施例10
下面的研究利用在高至150℃和6.89x107pa(10,000psi)的油藏条件下操作的岩心驱替(coreflood)设施。岩心驱替设施的装置具有原位饱和度监测器(在下面描述)并使用含气液(live fluid)(与油藏气平衡的油藏液)用于老化和液体流动。在油藏条件下的体积产量用在线分离器测定。驱替过程中及驱替结束时的饱和度通过测定被放射性掺杂的盐水占据的孔隙空间的量获知。由于高含盐量放射性掺杂盐水与低含盐量盐水俘获截面的差异,故原位饱和度监测器不仅确定饱和度而且提供段塞完整性的定量分析。
岩心制备
本研究使用标称长7.62cm(3″)、直径3.81cm(1.5″)的岩心栓型样品。首先将样品复原,即用可混溶的溶剂清洗样品以便其尽可能接近“水湿”条件。清洗后将样品置于流体静力学岩心夹持器中并通过使水在回压下流经栓型岩心而用模拟地层水(盐水)饱和。在通过约10倍孔隙体积的盐水后,从流体静力学岩心夹持器移除样品并在各样品中用下面所述的程序建立初始水饱和度。
初始水饱和度的获取
栓型岩心样品必须具有与油藏中油水接触上方高度处的水饱和度相匹配的代表性初始水饱和度(Swi)值。各样品的初始水饱和度用强非润湿气体氮气通过多孔板的去饱和作用获得。一旦取得初始水饱和度即将样品装到流体静力学岩心夹持器中并通过使精制油在回压下流经样品而饱和。
原位饱和度监测用来提供饱和度分布数据以帮助解释实验结果。该技术使用γ-射线源和检测器并基于γ-射线的线性衰减。各源/检测器对监测一片宽4mm的岩心。计数(γ-射线的透射通量)的对数和水饱和度间存在线性关系。因此,通过对各源/检测器组件采用仔细的标定程序可计算油/高盐盐水驱替过程中及各低含盐量段塞结束时的流体饱和度。沿栓状岩心样品安装若干这些组件以便在固定位置处监测注水过程中水饱和度对时间/通过量的关系。
在各次注水结束时为各源/检测器对收集两组标定数据。在各清洗段结束时记录100%高盐含量盐水饱和度标定值。在试验结束时用被含气原油100%饱和的岩心测定100%油饱和度标定值。
在这些实验中有必要用碘离子置换高盐含量海水注入盐水中的氯离子以便增加原位饱和度监测过程中水相和油相间的对比。这将降低信噪比并改善原位饱和度计算值的精确度。掺杂盐水的摩尔浓度保持与未掺杂盐水的相同以确保不发生不利的岩石/流体相互作用。
老化过程
将样品装到“油藏条件”岩心夹持器中并缓慢提升温度和压力至油藏条件。油藏温度为130℃。
在油藏条件下经甲苯段塞以含气原油可混溶地驱替精制油至恒定的气油比。因此,在注入原油前向样品中注入甲苯段塞。甲苯与精制油和原油均可混溶,因此精制油易于为原油所驱替。当压差稳定时测定含气原油粘度和向含气原油的有效渗透率。然后使样品在含气原油中老化三周。含气原油是指已与其伴生气复合的死(脱气)原油。在老化过程中每数天更换一次含气原油。最少注入一倍孔隙体积的含气原油并使用足够的量来获得通过样品的恒定压降和恒定的气油比。
高盐含量剩余油饱和度(High Salinity Remaining Oil Saturation)注水程序
在油藏条件下,使用原位饱和度监测对样品进行非稳态注水。原位饱和度用来提供在注水过程中得到的油分布的数据。
使用盐水(海水)以典型的油藏前进速率(1英尺每天(0.3048m/天),通常对应于实验室中的4cm3/小时)对复原的样品进行低速率注水。在盐水注入过程中连续监测产油量和压降。在油藏条件下于超声分离器中记录产油量。这具有直接测定油藏条件下的产油量的优势。继续注入高含盐量的水使通过量为约15PV。
将盐水用分离气(separator gas)(即在生产设备中从原油中分离出的气体)预平衡至油藏孔隙压力。这确保了没有气体从油传输至水相,而这样的传输可能导致油藏条件试验过程中栓样品中的油收缩。
低含盐量的水段塞注入
测定注入高含盐量的水后的剩余油饱和度。依次注入0.1、0.2、0.3、0.4、0.5、0.75和1PV的低含盐量注入水段塞。表3中给出了低含盐量盐水组成及原生水组成和高盐含量盐水(海水)组成。所有低含盐量盐水均如前所述用分离气预平衡。
表3-低含盐量盐水的组成
Figure BSA00000752774800191
原位饱和度数据用来确定低含盐量注入水段塞的稳定性和用各段塞大小产生的油量。
结果和讨论
发现0.3倍孔隙体积的低含盐量注入水段塞无分散地从“油藏条件”岩心夹持器的入口进入出口(通过7.5cm的栓样品)。0.1PV段塞在低含盐量的水达到10%时分散于栓型岩心样品中。0.2PV段塞在达到约30%后分散于岩心栓样品中。
表4中给出了当注入低含盐量的水段塞时产生的累计油体积。0.1PV段塞不产生任何增产油量。这是意料中的,因为该段塞不驱扫过任何栓型岩心样品。0.2PV段塞产生小量增产油。此增产油归因于靠近岩心夹持器入口的岩心样品部分中油的流动。0.3PV段塞产生大量增产油,0.4PV段塞产生接近95%的总增产油量。
表4-注入低含盐量的水的累计产油量
  注入的低含盐量的水的孔隙体积倍数   累计产油量(孔隙体积倍数)
  0.1   0
  0.2   0.005
  0.3   0.044
  0.4   0.064
  0.5   0.064
  0.6   0.069
  0.75   0.069
  1.   0.073

Claims (11)

1.一种提高从包含至少一种多孔、可渗透的地层的油藏采收原油的采收率的方法,其中所述地层包含砂岩和至少一种在油藏条件下ζ电位为负的矿物且其中原油和原生水存在于所述地层的孔内,所述方法包括:
向所述地层中注入从所述地层的孔表面驱替原油的含水驱替液,其中所述含水驱替液的总溶解固体(TDS)含量在200-10,000ppm范围内且所述含水驱替液的多价阳离子的总含量对所述原生水的多价阳离子的总含量的分数小于1,其中所述含水驱替液在二次采收期间被注入所述地层中。
2.权利要求1的方法,其中所述含水驱替液从注入井通过所述地层以从所述地层的孔表面驱替原油,和将驱替出的原油从与所述注入井隔开的生产井回收。
3.权利要求1或2的方法,其中所述矿物在油藏条件下的ζ电位为-0.1到-50mV。
4.前述权利要求中的任一项的方法,其中所述矿物以1-30%重量的量存在于所述地层中。
5.前述权利要求中的任一项的方法,其中所述含水驱替液的多价阳离子的总含量对所述原生水的多价阳离子的总含量的分数小于0.8。
6.权利要求5的方法,其中所述含水驱替液的多价阳离子的总含量对所述原生水的多价阳离子的总含量的分数小于0.6。
7.权利要求6的方法,其中所述含水驱替液的多价阳离子的总含量对所述原生水的多价阳离子的总含量的分数小于0.5。
8.权利要求7的方法,其中所述含水驱替液的多价阳离子的总含量对所述原生水的多价阳离子的总含量的分数小于0.4。
9.前述权利要求中的任一项的方法,其中所述含水驱替液为未经处理的淡水或未经处理的含水层水。
10.权利要求1-8中的任一项的方法,其中所述含水驱替液通过降低水源水的多价阳离子含量形成,其中所述水源水的TDS在200-10,000ppm的所需范围内。
11.权利要求1-8中的任一项的方法,其中所述含水驱替液利用反渗透、正渗透或其组合自高多价阳离子含量的高含盐量的水源水形成。
CN201210253678.1A 2006-09-08 2007-09-05 烃采收工艺 Active CN103061725B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US84300006P 2006-09-08 2006-09-08
US60/843000 2006-09-08
CN2007800413303A CN101535443B (zh) 2006-09-08 2007-09-05 烃采收工艺

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2007800413303A Division CN101535443B (zh) 2006-09-08 2007-09-05 烃采收工艺

Publications (2)

Publication Number Publication Date
CN103061725A true CN103061725A (zh) 2013-04-24
CN103061725B CN103061725B (zh) 2015-08-19

Family

ID=38714205

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2007800413303A Active CN101535443B (zh) 2006-09-08 2007-09-05 烃采收工艺
CN201210253678.1A Active CN103061725B (zh) 2006-09-08 2007-09-05 烃采收工艺

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2007800413303A Active CN101535443B (zh) 2006-09-08 2007-09-05 烃采收工艺

Country Status (13)

Country Link
US (2) US7987907B2 (zh)
CN (2) CN101535443B (zh)
AR (1) AR062716A1 (zh)
AU (1) AU2007293281B2 (zh)
BR (1) BRPI0716508B1 (zh)
CA (1) CA2662295C (zh)
DK (2) DK178809B1 (zh)
EA (1) EA015208B1 (zh)
EG (1) EG26795A (zh)
GB (2) GB2455016B (zh)
MX (1) MX2009002513A (zh)
NO (1) NO343975B1 (zh)
WO (1) WO2008029124A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105980656A (zh) * 2013-10-23 2016-09-28 国际壳牌研究有限公司 由载油地层采收油的方法
CN110520595A (zh) * 2016-12-20 2019-11-29 英国石油勘探运作有限公司 石油开采方法

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8794320B2 (en) * 2006-03-27 2014-08-05 Shell Oil Company Water injection systems and methods
US7987907B2 (en) * 2006-09-08 2011-08-02 Bp Exploration Operating Company Limited Hydrocarbon recovery process
WO2009123683A2 (en) * 2008-04-03 2009-10-08 Bp Corporation North America Inc. Softened injection water
MX2011007278A (es) 2009-01-08 2011-08-15 Bp Corp North America Inc Proceso para recuperar hidrocarburos.
WO2010092097A1 (en) 2009-02-13 2010-08-19 Shell Internationale Research Maatschappij B.V. Aqueous displacement fluid injection for enhancing oil recovery from an oil bearing formation
CN102356141A (zh) * 2009-02-13 2012-02-15 国际壳牌研究有限公司 用于强化由石灰石或白云石地层的油采收的含水置换流体注入
EP2261459A1 (en) * 2009-06-03 2010-12-15 BP Exploration Operating Company Limited Method and system for configuring crude oil displacement system
US10519362B2 (en) * 2009-07-18 2019-12-31 University Of Wyoming Single-well diagnostics and increased oil recovery by oil injection and sequential waterflooding
EA025116B1 (ru) 2010-01-14 2016-11-30 Бп Эксплорейшн Оперейтинг Компани Лимитед Способ получения воды с контролируемой минерализацией
EP2542759A4 (en) * 2010-03-04 2015-11-18 Peter E Rose COLLOID CRYSTALLINE QUANTUM POINTS AS A TRACER IN UNDERGROUND FORMATIONS
US8550164B2 (en) 2010-07-23 2013-10-08 Saudi Arabian Oil Company Oil recovery process for carbonate reservoirs
US8550163B2 (en) 2010-07-23 2013-10-08 Saudi Arabian Oil Company Oil recovery process for carbonate reservoirs
US8739869B2 (en) 2010-11-19 2014-06-03 Exxonmobil Upstream Research Company Systems and methods for enhanced waterfloods
US8656996B2 (en) 2010-11-19 2014-02-25 Exxonmobil Upstream Research Company Systems and methods for enhanced waterfloods
US8657000B2 (en) 2010-11-19 2014-02-25 Exxonmobil Upstream Research Company Systems and methods for enhanced waterfloods
US9206348B2 (en) * 2011-02-16 2015-12-08 Wintershall Holding GmbH Process for mineral oil production from mineral oil deposits with high deposit temperature
EP2707453B8 (en) * 2011-05-13 2019-11-27 Saudi Arabian Oil Company Carbon-based fluorescent tracers as oil reservoir nano-agents
US9982521B2 (en) 2011-05-18 2018-05-29 Bp Exploration Operating Company Limited Method for injecting low salinity water
US8812271B1 (en) 2011-09-06 2014-08-19 Sandia Corporation Waterflooding injectate design systems and methods
US9518449B1 (en) 2011-09-06 2016-12-13 Sandia Corporation Waterflooding injectate design systems and methods
DK2812409T3 (en) * 2012-02-09 2019-03-25 Bp Exploration Operating Co Ltd IMPROVED PROCEDURES FOR OIL EXTRACTION USING LOW SALT CONDITIONS
WO2014025847A1 (en) * 2012-08-09 2014-02-13 Shell Oil Company Process for producing and separating oil
EP2716730A1 (en) 2012-10-08 2014-04-09 Maersk Olie Og Gas A/S Method and device for the recovery of hydrocarbons from an oil reservoir
EP2716731A1 (en) * 2012-10-08 2014-04-09 Maersk Olie Og Gas A/S Method for the recovery of hydrocarbons from an oil reservoir
CN103206208B (zh) * 2013-03-08 2016-01-20 中国石油化工股份有限公司河南油田分公司石油勘探开发研究院 一种微观不同赋存状态剩余油宏观量化的方法
WO2014158906A1 (en) 2013-03-14 2014-10-02 Sandia Corporation Financial methods for waterflooding injectate design
CN105555906A (zh) * 2013-07-17 2016-05-04 英国石油勘探运作有限公司 采油方法
EA031121B1 (ru) * 2013-10-23 2018-11-30 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ снижения вязкости полимерсодержащей текучей среды, добытой при извлечении нефти
US9470080B2 (en) 2014-03-12 2016-10-18 General Electric Company Method and system for recovering oil from an oil-bearing formation
MX358599B (es) * 2014-04-04 2018-08-27 Multi Chem Group Llc Determinar la composición del fluido de tratamiento con un dispositivo de miniyacimiento.
JP6684042B2 (ja) * 2014-09-08 2020-04-22 任天堂株式会社 電子機器
US10308863B2 (en) * 2014-09-15 2019-06-04 Shell Oil Company Formation preconditioning using an aqueous polymer preflush
AR103391A1 (es) 2015-01-13 2017-05-03 Bp Corp North America Inc Métodos y sistemas para producir hidrocarburos desde roca productora de hidrocarburos a través del tratamiento combinado de la roca y la inyección de agua posterior
GB2550819B (en) * 2015-02-03 2021-03-10 Geoquest Systems Bv Multi-phase polymer apparent viscosity determination in polymer coreflood simulation study workflow
US10711177B2 (en) 2015-03-20 2020-07-14 Chevron U.S.A. Inc. Engineering formation wettability characteristics
US10865341B2 (en) 2015-03-20 2020-12-15 Chevron U.S.A. Inc. Engineering formation wettability characteristics
WO2016153934A1 (en) 2015-03-20 2016-09-29 Chevron U.S.A. Inc. Engineering formation wettability characteristics
US10442979B2 (en) * 2015-06-08 2019-10-15 Schlumberger Technology Corporation Injection fluid tuning
RU2609031C1 (ru) * 2015-08-26 2017-01-30 Акционерное общество "Зарубежнефть" Состав ионно-модифицированной воды для повышения нефтеотдачи пласта
US10781362B2 (en) 2016-01-19 2020-09-22 Saudi Arabian Oil Company Oil recovery process using an oil recovery composition of aqueous salt solution and dilute polymer for carbonate reservoirs
US10550312B2 (en) 2016-01-19 2020-02-04 Saudi Arabian Oil Company Oil recovery process using an oil recovery composition of aqueous salt solution and dilute polymer for carbonate reservoirs
US10287485B2 (en) 2016-01-19 2019-05-14 Saudi Arabian Oil Company Oil recovery process using an oil recovery composition of aqueous salt solution and dilute polymer for carbonate reservoirs
US10287486B2 (en) 2016-01-19 2019-05-14 Saudi Arabian Oil Company Oil recovery process using an oil recovery composition of aqueous salt solution and dilute polymer for carbonate reservoirs
US10723937B2 (en) 2016-01-19 2020-07-28 Saudi Arabian Oil Company Oil recovery process using an oil recovery composition of aqueous salt solution and dilute polymer for carbonate reservoirs
US10961831B2 (en) 2016-01-19 2021-03-30 Saudi Arabian Oil Company Polymer flooding processes for viscous oil recovery in carbonate reservoirs
GB201604962D0 (en) * 2016-03-23 2016-05-04 Bp Exploration Operating Method to detect incremental oil production arising from a low salinity waterflood
CA3043371A1 (en) * 2016-11-23 2018-05-31 Bp Exploration Operating Company Limited Oil recovery method
EP3583418A4 (en) * 2017-02-17 2021-05-05 The Saskatchewan Research Council CORE-FREE INJECTIVITY TEST PROCESS
AR113213A1 (es) 2017-03-28 2020-02-19 Bp Exploration Operating Co Ltd Proceso y sistema para suministrar agua de inyección de baja salinidad
US10738233B2 (en) 2017-05-10 2020-08-11 Saudi Arabian Oil Company Pressure pulse assisted injection water flooding processes for carbonate reservoirs
US10844274B2 (en) * 2018-04-17 2020-11-24 University Of Wyoming Organic acid-based enhanced waterflooding
US10711582B2 (en) 2018-04-20 2020-07-14 Saudi Arabian Oil Company Salinated wastewater for enhancing hydrocarbon recovery
EP3567211A1 (en) 2018-05-10 2019-11-13 BP Exploration Operating Company Limited Produced water balance tool
GB2575243A (en) 2018-06-08 2020-01-08 Bp Exploration Operating Co Ltd Computerized control system for a desalination plant
WO2020165618A1 (en) * 2019-02-14 2020-08-20 Total Sa Method for enhanced oil recovery
US10954764B2 (en) * 2019-03-04 2021-03-23 Saudi Arabian Oil Company Tailored injection water slug designs for enhanced oil recovery in carbonates
CN110056346B (zh) * 2019-04-17 2022-05-17 中国石油天然气股份有限公司 一种基于趋势变化函数的油藏三维原始含水饱和度模拟方法
US11385160B2 (en) * 2020-02-28 2022-07-12 Saudi Arabian Oil Company System and method for dynamic measurement of streaming potential in a core plug
US11555812B2 (en) 2020-04-27 2023-01-17 Saudi Arabian Oil Company Methods of determining cation exchange sites occupied by crude oil and the wettability of cation exchange sites in rock core samples in a non-preserved state
US11300494B2 (en) * 2020-04-27 2022-04-12 Saudi Arabian Oil Company Methods of determining cation exchange sites in rock core samples
US11883783B2 (en) 2021-02-26 2024-01-30 Saudi Arabian Oil Company System and method for electrochemical treatment of aqueous fluid for oilfield applications
CN113933148B (zh) * 2021-11-29 2023-03-21 东北石油大学 不同赋存态页岩油含量及储集空间定量分析的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927716A (en) * 1974-09-25 1975-12-23 Mobil Oil Corp Alkaline waterflooding process
CN85101888A (zh) * 1985-04-01 1987-01-10 法国石油机构 从注入在水中有溶解性的微胞表面活化剂溶液来增加收采石油的方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330347A (en) 1964-10-30 1967-07-11 Exxon Production Research Co Method of oil recovery using surfactants formed in situ
US3369602A (en) * 1965-09-01 1968-02-20 Cities Service Oil Co Secondary recovery of petroleum
US3414053A (en) * 1966-11-18 1968-12-03 Pan American Petroleum Corp Removal of interfering ions in waterflood
US3410343A (en) 1967-06-07 1968-11-12 Mobil Oil Corp Waterflood employing a viscoelastic, shear-hardening, positive nonsimple liquid withstabilizing agent
US3474864A (en) * 1967-10-09 1969-10-28 Mobil Oil Corp Method of desorbing surfactant and reusing it in flooding water
US3467190A (en) * 1967-10-09 1969-09-16 Mobil Oil Corp Adjusting salinity to achieve low interfacial tension between aqueous and hydrocarbon phases
US3648770A (en) * 1970-07-09 1972-03-14 Marathon Oil Co Control of water solubilization in micellar solutions
US3688844A (en) * 1971-03-29 1972-09-05 Wayne O Roszelle Oil recovery process using micellar dispersions containing a metal phosphate
US3827499A (en) * 1972-10-02 1974-08-06 Marathon Oil Co Injectivity in supplemented oil recovery
US3888309A (en) * 1973-08-17 1975-06-10 Marathon Oil Co Polymer waterflooding by controlling water hardness
USRE29219E (en) * 1974-05-31 1977-05-17 Texaco Inc. Surfactant oil recovery process
GB1520877A (en) * 1975-10-14 1978-08-09 Atomic Energy Authority Uk Recovery of oil
US4036300A (en) 1976-06-23 1977-07-19 Union Oil Company Of California Micellar flooding process
US4074755A (en) * 1977-03-21 1978-02-21 Shell Oil Company Ion exchange controlled chemically aided waterflood process
US4122895A (en) * 1977-06-06 1978-10-31 Phillips Petroleum Company Correlation of weighted effect of different ions and surfactant composition for surfactant flood
US4250961A (en) * 1979-04-23 1981-02-17 Texaco Inc. Oil recovery method utilizing a surfactant slug driven by water of a controlled salinity
US4359093A (en) 1980-11-21 1982-11-16 Union Oil Co. Of California Method for enhanced oil recovery in reservoirs containing dissolved divalent metal cations
US4723603A (en) 1987-02-03 1988-02-09 Marathon Oil Company Preventing plugging by insoluble salts in a hydrocarbon-bearing formation and associated production wells
NO324183B1 (no) 2004-04-30 2007-09-03 Ior Aqua As Fremgangsmate for a fortrenge petroleum fra en karbonatbergart
WO2005119007A1 (en) 2004-05-28 2005-12-15 Bp Exploration Operating Company Limited Desalination method
GB0416310D0 (en) 2004-07-21 2004-08-25 Bp Exploration Operating Method
GB2451008B (en) * 2005-05-19 2009-04-22 Bp Exploration Operating Desalination method
US7987907B2 (en) * 2006-09-08 2011-08-02 Bp Exploration Operating Company Limited Hydrocarbon recovery process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927716A (en) * 1974-09-25 1975-12-23 Mobil Oil Corp Alkaline waterflooding process
CN85101888A (zh) * 1985-04-01 1987-01-10 法国石油机构 从注入在水中有溶解性的微胞表面活化剂溶液来增加收采石油的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105980656A (zh) * 2013-10-23 2016-09-28 国际壳牌研究有限公司 由载油地层采收油的方法
CN110520595A (zh) * 2016-12-20 2019-11-29 英国石油勘探运作有限公司 石油开采方法
CN110520595B (zh) * 2016-12-20 2022-04-26 英国石油勘探运作有限公司 石油开采方法

Also Published As

Publication number Publication date
BRPI0716508B1 (pt) 2018-02-06
CA2662295C (en) 2014-02-18
GB201108593D0 (en) 2011-07-06
US20120085555A1 (en) 2012-04-12
DK200900353A (da) 2009-03-13
GB0903526D0 (en) 2009-04-08
NO343975B1 (no) 2019-08-05
MX2009002513A (es) 2009-08-07
US8439111B2 (en) 2013-05-14
GB2455016A (en) 2009-06-03
EA015208B1 (ru) 2011-06-30
GB2478217B (en) 2011-11-09
GB2478217A (en) 2011-08-31
CN101535443B (zh) 2013-01-02
CN103061725B (zh) 2015-08-19
EG26795A (en) 2014-09-15
AU2007293281A1 (en) 2008-03-13
GB2455016B (en) 2011-10-19
WO2008029124A1 (en) 2008-03-13
AR062716A1 (es) 2008-11-26
AU2007293281B2 (en) 2013-04-04
BRPI0716508A2 (pt) 2013-10-08
CN101535443A (zh) 2009-09-16
US7987907B2 (en) 2011-08-02
NO20091263L (no) 2009-04-03
EA200900382A1 (ru) 2009-12-30
DK178809B1 (en) 2017-02-13
CA2662295A1 (en) 2008-03-13
DK179973B1 (en) 2019-11-20
US20100006283A1 (en) 2010-01-14
DK201570687A1 (en) 2015-11-02

Similar Documents

Publication Publication Date Title
CN103061725B (zh) 烃采收工艺
US9840657B2 (en) Method, system, and composition for producing oil
AU737643B2 (en) Use of oil and gas field chemicals
US9982520B2 (en) Oil recovery method
CN103180405A (zh) 水注入系统和方法
WO2008029131A1 (en) Hydrocarbon recovery
CN104520532A (zh) 用于生产和分离油的方法
US20110278002A1 (en) Hydrocarbon recovery process
US20140174735A1 (en) Method, system, and composition for producing oil
WO2015108900A1 (en) Process and composition for producing oil
Hughes et al. Advantages of brines in secondary recovery of petroleum by water-flooding
US3523581A (en) Oil recovery process using viscosifier and shear-thickening liquid
AU2013200986B2 (en) Hydrocarbon recovery process
EA038232B1 (ru) Способ извлечения нефти
WO2016100103A1 (en) Process and composition for alkaline surfactant polymer flooding
AlBredi Improving Oil Displacement Factor by Alkaline Flooding in the DERO Field
OA17805A (en) Process for recovery of oil from an oilbearing formation.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant