CN103054847A - 丹酚酸b作为儿茶酚-o-甲基转移酶抑制剂在帕金森病治疗中的应用 - Google Patents

丹酚酸b作为儿茶酚-o-甲基转移酶抑制剂在帕金森病治疗中的应用 Download PDF

Info

Publication number
CN103054847A
CN103054847A CN201310000005XA CN201310000005A CN103054847A CN 103054847 A CN103054847 A CN 103054847A CN 201310000005X A CN201310000005X A CN 201310000005XA CN 201310000005 A CN201310000005 A CN 201310000005A CN 103054847 A CN103054847 A CN 103054847A
Authority
CN
China
Prior art keywords
sab
levodopa
dopa
disease
comt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310000005XA
Other languages
English (en)
Inventor
王广基
郝海平
亓蕖
郝琨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Pharmaceutical University
Original Assignee
China Pharmaceutical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Pharmaceutical University filed Critical China Pharmaceutical University
Priority to CN201310000005XA priority Critical patent/CN103054847A/zh
Publication of CN103054847A publication Critical patent/CN103054847A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明涉及天然药物领域,具体涉及丹酚酸B(SAB)作为儿茶酚-O-甲基转移酶(COMT)抑制剂在帕金森病治疗中的应用,主要表现为SAB对帕金森病经典治疗药物左旋多巴的体内外甲基化代谢的抑制。体外,通过用肝胞浆COMT温孵,发现SAB可以浓度依赖性的抑制左旋多巴的甲基化代谢(IC50为1.84μM),体内,当左旋多巴/卡比多巴和SAB同时给予SD大鼠后,与单独给予左旋多巴/卡比多巴相比,血浆和纹状体中左旋多巴的甲基化代谢产物3-氧甲基左旋多巴都明显下降,说明SAB可以明显的抑制COMT介导的左旋多巴的甲基化代谢,改善其对帕金森病的治疗效果。

Description

丹酚酸B作为儿茶酚-O-甲基转移酶抑制剂在帕金森病治疗中的应用
技术领域
本发明涉及天然药物领域,具体涉及丹酚酸B作为儿茶酚-O-甲基转移酶抑制剂在帕金森病治疗中的应用。
背景技术
儿茶酚-O-甲基转移酶(Catechol-O-methyltransferase,COMT)是生物体内一种重要的II相代谢酶,参与将含有儿茶酚结构的物质进行0-甲基化代谢。其底物有内源性物质如肾上腺素、去甲肾上腺素等儿茶酚胺类神经递质和外源性物质(药物)如茶多酚、左旋多巴等。因此,调节COMT的功能可能会影响这些物质在生物体内的代谢过程,从而产生一系列生理、药理效应。。
帕金森病是一种慢性神经退行性疾病,患者脑内黑质纹状体中多巴胺减少,出现肌肉震颤、强直等一系列症状。目前对于帕金森病尚没有根治方法,只能通过服用药物来减缓症状。临床上常用的L-DOPA是多巴胺的前体药物,可以透过血脑屏障脱羧产生多巴胺进入脑内从而达到治疗效果。由于L-DOPA在外周被大量代谢(脱羧)导致其入脑量不到给药量的10%,临床上采用都是外周脱羧酶抑制剂如卡比多巴(Carbidopa)或苄丝肼与L-DOPA联合用药以达到增加其中枢浓度的作用。然而,即使在L-DOPA与Carbidopa合用后,仍然只有不到10%的L-DOPA可以入脑,原因是L-DOPA在外周的脱羧反应被抑制后,大约有90%的L-DOPA被COMT代谢生成3-氧甲基左旋多巴(3-OMD)。因此,将L-DOPA与脱羧酶抑制剂及COMT抑制剂(如托卡朋,恩他卡朋)合用是目前临床上的建议用法。然而,托卡朋有很强的肝毒性,恩他卡朋的毒性虽小但效应不够理想,二者在临床上的应用都受到各种限制,所以需要寻找新的低毒、有效的COMT抑制剂以改善左旋多巴(L-DOPA)对帕金森病的治疗效果。
丹酚酸B(SAB)为中药丹参的中最主要的水溶性成分之一,具有抗氧化、抗血小板聚集以及抗癌等多种效应。其结构式为:
SAB的临床前药代动力学的研究表明,SAB在体内快速被代谢为甲基化代谢产物并通过胆汁排泄,提示COMT在SAB的代谢中发挥了重要的作用。我们的早期研究也发现在甲基供体S-腺苷甲硫氨酸(SAM)的存在下,通过体外温孵,SAB会被代谢生成甲基化代谢产物,而且有明显的底物抑制现象。因此,我们推测SAB可能会有效的抑制COMT其它底物如L-DOPA的代谢。
发明内容
本发明的目的是提供SAB的一种新的医药用途,即可通过抑制COMT介导的L-DOPA的甲基化代谢从而改善L-DOPA治疗帕金森病的效果。首先我们制备了大鼠的肝胞浆COMT,优化了L-DOPA的体外温孵条件以保证代谢物3-OMD的生成与温孵时间和酶浓度呈线性。通过时间依赖性曲线发现3-OMD的线性时间范围为10-45min,同理通过酶浓度依赖曲线可以得出线性酶浓度范围为0.2-1mg/ml,所以最终选取酶浓度为0.5mg/ml,温孵时间为30min。然后考察了L-DOPA的体外甲基化代谢情况,得到酶动力学曲线,符合经典的酶动力学,Km值为16μM,在温孵体系中加入了一系列浓度的SAB后,发现SAB可以浓度依赖的抑制L-DOPA的甲基化代谢,IC50为1.84μM。对于体内研究,同时给予SD大鼠L-DOPA/Carbidopa和SAB后,与单独给予L-DOPA/Caibidopa相比,血浆和纹状体中的3-OMD的浓度都明显下降(p<0.05),说明丹酚酸B的确可以抑制L-DOPA在体内的甲基化代谢。
附图说明
图1:A,L-DOPA体外温孵的时间依赖性曲线;B,L-DOPA体外温孵的酶浓度依赖性曲线。
图2:L-DOPA的酶动力学曲线。
图3:SAB对L-DOPA体外甲基化代谢的抑制曲线。
图4:SAB对L-DOPA体内甲基化代谢的抑制作用。A,SAB对血浆中3-OMD浓度的影响;B,SAB对脑部纹状体部位的3-OMD浓度的影响。
具体实施方式
实施例1.大鼠肝胞浆COMT酶的制备
实验材料:SD大鼠,SPF级别,购自上海西普尔-必凯实验动物有限公司。
实验方法:采用差速离心法制备大鼠肝胞浆COMT酶。具体操作如下:取SD大鼠5只,实验前禁食12h,将大鼠股动脉放血处死,迅速取肝,用磷酸盐缓冲液将血水冲洗干净,吸干水分后称重。将肝组织剪碎,加入一定体积的(1ml/1g肝组织)0.1M磷酸盐缓冲液,于冰水浴中匀浆,并于4℃15000g离心15min,去除漂浮上面的脂肪部分后,将上清部分于10,000g离心1h,上清即为肝胞浆COMT酶,分装后保存于-80℃,温孵前用BCA定蛋白法定酶浓度用于温孵。
实施例2.L-DOPA的体外温孵条件的优化
实验材料:L-DOPA、SAM购于美国sigma公司,3-OMD购于Toronto Research Chemicals inc.,
分析仪器为Shimadzu HPLC-荧光检测器。
实验方法:
1.L-DOPA体外温孵时间的优化
200μL总反应体系中包括160μL磷酸盐缓冲液(5mM,pH 7.8)、10μL终浓度分别为0.5mg/ml、5mM、5μM的肝胞浆COMT酶、氯化镁和L-DOPA,在37℃水浴中预温孵5min后加入10μL终浓度为300μM的SAM启动反应,分别在反应10、20、30、45、60和120min后加入40μL10%的冰高氯酸终止反应,离心后用HPLC-荧光检测。
2.L-DOPA体外温孵酶浓度的优化
200μL总反应体系中包括160μL磷酸盐缓冲液(5mM,pH 7.8)、分别加入10μL终浓度分别为0.05、0.1、0.2、0.5、1和2mg/ml的肝胞浆COMT酶,10μL终浓度分别为5mM和5μM的氯化镁和L-DOPA,在37℃水浴中预温孵5min后加入10μL终浓度为300μM的SAM启动反应,反应30min后加入40μL10%的冰高氯酸终止反应,离心后用HPLC-荧光检测。
实施例3.L-DOPA的酶动力学研究
实验材料:同实施例2。
实验方法:200μL总反应体系中包括160μL磷酸盐缓冲液(5mM,pH 7.8)、10μL终浓度分别为0.5mg/ml和5mM的肝胞浆COMT酶和氯化镁,然后分别加入10μL浓度为0.5、1、2、5、10、20μM的L-DOPA,在37℃水浴中预温孵5min后加入10μL终浓度为300μM的SAM启动反应,反应30min后加入40μL10%的冰高氯酸终止反应,离心后用HPLC-荧光检测。代谢速率用单位酶浓度单位时间内生成的代谢产物3-0MD的量表示。Km由Prism 5 software(GraphPad Software Inc.,San Diego,CA)计算得到。
实施例3.SAB对L-DOPA体外甲基化代谢的抑制
实验材料:SAB由上海医工院提供。
试验方法:温孵体系、酶浓度和氯化镁的浓度如上,L-DOPA的浓度为20μM,加入一系列浓度的SAB:0、0.5、1、2、5、10μM,在37℃水浴中预温孵5min后加入SAM启动反应,反应30min后加入40μL10%的冰高氯酸终止反应,离心后用HPLC-荧光检测。IC50值由Prism5software(GraphPad Software Inc.,San Diego,CA)计算得到。
实施例4.SAB对L-DOPA体内甲基化代谢的抑制
实验材料:同实施例1。
试验方法:雄性SD大鼠随机分为两组,SAB组和对照组分别尾静脉注射100mg/kg SAB和生理盐水,10min后统一灌胃给予20/5mg/kgL-DOPA/Carbidopa,然后分别于0.08,0.17,0.5,0.75,1,2,4,6,8,12h从大鼠眼眶静脉丛采血,离心取血浆,保存在-20℃,同时,在采血后1、4和8h,将经过相同处理的SD大鼠通过股动脉放血处死,迅速取脑中的纹状体,称重后加入一定体积的0.1M磷酸盐缓冲液,于冰水浴中匀浆,保存在-20℃,处理时,取70μl血浆或100μl纹状体匀浆液,加入20μL10%的冰高氯酸沉淀蛋白,离心后取上清用HPLC-荧光检测。

Claims (2)

1.丹酚酸B作为儿茶酚-O-甲基转移酶抑制剂在帕金森病治疗中的应用。
2.丹酚酸B作为儿茶酚-O-甲基转移酶抑制剂在帕金森病治疗中的应用,其特征在于:丹酚酸B可以浓度依赖性的抑制帕金森病经典治疗用药左旋多巴的体外甲基化代谢,也能有效降低其在大鼠血浆和脑中甲基化代谢产物的浓度。
CN201310000005XA 2013-01-04 2013-01-04 丹酚酸b作为儿茶酚-o-甲基转移酶抑制剂在帕金森病治疗中的应用 Pending CN103054847A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310000005XA CN103054847A (zh) 2013-01-04 2013-01-04 丹酚酸b作为儿茶酚-o-甲基转移酶抑制剂在帕金森病治疗中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310000005XA CN103054847A (zh) 2013-01-04 2013-01-04 丹酚酸b作为儿茶酚-o-甲基转移酶抑制剂在帕金森病治疗中的应用

Publications (1)

Publication Number Publication Date
CN103054847A true CN103054847A (zh) 2013-04-24

Family

ID=48097945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310000005XA Pending CN103054847A (zh) 2013-01-04 2013-01-04 丹酚酸b作为儿茶酚-o-甲基转移酶抑制剂在帕金森病治疗中的应用

Country Status (1)

Country Link
CN (1) CN103054847A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20153076A1 (it) * 2015-08-11 2017-02-11 Sp Walker S R L Composti farmaceuticamente attivi per l?impiego nel trattamento terapeutico di disturbi del movimento.
EP3218721A4 (en) * 2014-11-14 2018-11-21 United Arab Emirates University Compounds for use as imaging agents
CN111920823A (zh) * 2020-09-11 2020-11-13 兰州大学 丹参内酯在制备治疗帕金森病的药物中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1985836A (zh) * 2006-12-18 2007-06-27 贵州信邦远东药业有限公司 一种抗脑缺血作用的药物组合物
CN101239057A (zh) * 2007-02-06 2008-08-13 中国人民解放军军事医学科学院放射与辐射医学研究所 丹酚酸b及其盐类在治疗帕金森病中的用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1985836A (zh) * 2006-12-18 2007-06-27 贵州信邦远东药业有限公司 一种抗脑缺血作用的药物组合物
CN101239057A (zh) * 2007-02-06 2008-08-13 中国人民解放军军事医学科学院放射与辐射医学研究所 丹酚酸b及其盐类在治疗帕金森病中的用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张均田: "丹酚酸B防治神经退行性疾病的研究进展", 《医药导报》, vol. 26, no. 2, 28 February 2007 (2007-02-28), pages 107 - 110 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3218721A4 (en) * 2014-11-14 2018-11-21 United Arab Emirates University Compounds for use as imaging agents
US10488417B2 (en) 2014-11-14 2019-11-26 United Arab Emirates University Compounds for use as imaging agents
ITUB20153076A1 (it) * 2015-08-11 2017-02-11 Sp Walker S R L Composti farmaceuticamente attivi per l?impiego nel trattamento terapeutico di disturbi del movimento.
CN111920823A (zh) * 2020-09-11 2020-11-13 兰州大学 丹参内酯在制备治疗帕金森病的药物中的应用
CN111920823B (zh) * 2020-09-11 2022-09-06 兰州大学 丹参内酯在制备治疗帕金森病的药物中的应用

Similar Documents

Publication Publication Date Title
Dinda et al. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders
Dong et al. ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes
Nassir et al. Role of mitochondria in alcoholic liver disease
Shi et al. Chlorogenic acid protects against liver fibrosis in vivo and in vitro through inhibition of oxidative stress
Mattaveewong et al. Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling
Chen et al. Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors: an overview
Ji et al. Betaine decreases hyperhomocysteinemia, endoplasmic reticulum stress, and liver injury in alcohol-fed mice
Murase et al. Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK
Wu et al. Hepatoprotective effect of ganoderma triterpenoids against oxidative damage induced by tert-butyl hydroperoxide in human hepatic HepG2 cells
Zhang et al. Berberine protects against palmitate‐induced endothelial dysfunction: Involvements of upregulation of AMPK and eNOS and downregulation of NOX4
Xiao et al. Old wine in new bottles: Kaempferol is a promising agent for treating the trilogy of liver diseases
US20180071273A1 (en) Nutritional compositions to enhance mitochondrial energy production
Gebhardt et al. N-carbamylglutamate enhances ammonia detoxification in a patient with decompensated methylmalonic aciduria
Chang et al. Effects of antrosterol from Antrodia camphorata submerged whole broth on lipid homeostasis, antioxidation, alcohol clearance, and anti-inflammation in livers of chronic-alcohol fed mice
Du et al. Astragaloside IV inhibits adipose lipolysis and reduces hepatic glucose production via Akt dependent PDE3B expression in HFD-fed mice
Ma et al. Hypouricemic actions of exopolysaccharide produced by Cordyceps militaris in potassium oxonate-induced hyperuricemic mice
Liu et al. BCG-induced trained immunity in macrophage: reprograming of glucose metabolism: BCG-induced trained immunity by enhanced glycolysis and glutamine-driven tricarboxylic acid cycle in macrophage
Zhu et al. Astragaloside IV facilitates glucose transport in C2C12 myotubes through the IRS1/AKT pathway and suppresses the palmitate-induced activation of the IKK/IκBα pathway
Liu et al. Sea cucumber cerebrosides and long-chain bases from Acaudina molpadioides protect against high fat diet-induced metabolic disorders in mice
CN103054847A (zh) 丹酚酸b作为儿茶酚-o-甲基转移酶抑制剂在帕金森病治疗中的应用
Liang et al. Metabolic reprogramming: strategy for ischemic stroke treatment by ischemic preconditioning
Kim et al. Ginsenoside F2 induces cellular toxicity to glioblastoma through the impairment of mitochondrial function
Zhu et al. Berberine ameliorates abnormal lipid metabolism via the adenosine monophosphate–activated protein kinase/sirtuin 1 pathway in alcohol-related liver disease
Zhao et al. An overview of the mechanism of Penthorum chinense Pursh on alcoholic fatty liver
CHOU et al. Effect of silymarin on lipid and alcohol metabolism in mice following long‐term alcohol consumption

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130424