CN103052798A - 涡激共振风力涡轮机 - Google Patents

涡激共振风力涡轮机 Download PDF

Info

Publication number
CN103052798A
CN103052798A CN2011800380791A CN201180038079A CN103052798A CN 103052798 A CN103052798 A CN 103052798A CN 2011800380791 A CN2011800380791 A CN 2011800380791A CN 201180038079 A CN201180038079 A CN 201180038079A CN 103052798 A CN103052798 A CN 103052798A
Authority
CN
China
Prior art keywords
wind turbine
mast
vortex
energy
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800380791A
Other languages
English (en)
Other versions
CN103052798B (zh
Inventor
大卫·吉瑟斯·亚内斯·维拉里尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DEUTECNO S L
Original Assignee
DEUTECNO S L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DEUTECNO S L filed Critical DEUTECNO S L
Priority to CN201510846813.7A priority Critical patent/CN105443317A/zh
Publication of CN103052798A publication Critical patent/CN103052798A/zh
Application granted granted Critical
Publication of CN103052798B publication Critical patent/CN103052798B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • F03D5/06Other wind motors the wind-engaging parts swinging to-and-fro and not rotating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/08Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/185Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators using fluid streams
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • H02N2/186Vibration harvesters
    • H02N2/188Vibration harvesters adapted for resonant operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • F05B2240/122Vortex generators, turbulators, or the like, for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/407Transmission of power through piezoelectric conversion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

涡激共振风力涡轮机,包括:锚固或基座以及桅杆,调节所述桅杆的固有振荡频率以使其与层状稳定气流冲击桅杆表面后产生的气流旋涡或涡流的生成频率相适应。由此,通过使用高机电耦合材料,将吸收到的空气弹性形变能量转化成电能。

Description

涡激共振风力涡轮机
技术领域
本发明涉及一种新型发电设备。
本发明客体包括属于再生能源工业的将风能转化为可用电势的发电设备。其设计整合了三种已知物理原理:与振荡固有频率的结构耦合、流体旋涡的生成以及一些由诸如铁电效应或压电效应引起的某种材料的机电耦合。
本系统的新颖性在于在发电装置中协调整合这三种物理原理,使发电装置的固有振荡频率与整个结构中以同步方式生成的旋涡生成频率相一致。
背景技术
作为分布最广泛的再生能源之一的风能依赖于一次能源(primaryenergy)—风。
将风能转化为电能的最常见装置为多叶片式风力涡轮机。尽管该领域持续不断地实现了清晰、公认的技术改进,但这些系统仍受到四点根本缺陷的影响:
a)因为这些系统包含机械零件,例如齿轮、绕阻等,由于润滑剂的消耗、零件的磨损、绝缘树脂的热衰减以及其他由摩擦力引起的摩擦及热效应等,使这些系统需要一定的维护费用;
b)基于贝茨(Betz)于1927年完成的理论而进行工作的常规多叶片使风力涡轮机通过较高的转子旋转速度来提高其工作效率。结合下述事实,即,环形表面上的可用能量与叶片长度的平方成正比,这意味着叶片顶端的速度非常高,由此会对鸟群造成极大的威胁,显而易见地会带来许多意外事故;
c)叶片尺寸的蓄意增加会转化为系统总成复杂度的增加,以及初装成本的增加;
d)风力涡轮机的主观视觉影响可以用许多方法描述,但不管怎样,因其动作的宽度范围的增加,其所占空间也相应地变大。
为了使风力涡轮机的上述方面有所改善,本发明所创造的装置基于三种物理原理或理论。这些原理分别广泛地应用于工业领域。
第一种原理为机电耦合。当某些物质间被施加一定力时,会在其表面之间产生电势差,由此产生机电耦合效应。就任意一种发电机而言,其操作是可逆的,而且其表面间存在的电压会引起形变。其中,上述物质为铁电物质(例如锆钛酸铅及其衍生物)和压电物质(某种晶体,例如石英等)。
带有某种类型机电耦合特性的物质应用范围较广,例如应用于致动器(定位器、马达)、扬声器(导入电能获得机械能)、诸如压力、位置、接触、形变传感器以及各种类型的转换器(导入机械能以获得电能)。
这些物质于发电领域的应用并不广泛,但已存在将行人在人行道和地板上行走的脚步所产生的能量转化为可用电能的应用。目前,已存在利用从人体移动中获取的能量为便携式电子设备进行充电的服装、鞋类甚至硅酮植入物的设计方案。这些物质于电弧照明装置和键盘中的应用已有一段时间,其应用于电弧照明装置以在照明装置中产生瞬态放电,其应用于键盘中以通过用户的击键等操作为其所在设备进行充电。同样地,这些物质还应用于从波体或风的冲击中聚集脉冲和湍流能的发电机中。
第二种原理为非湍动层流中湍动旋涡的形成。“卡门涡街”(Karman vortex street)由匈牙利科学家希欧多尔·冯·卡门(Theodorevon Karman)于1911年提出,其最广泛的技术应用为被称作涡街流量计(vortex flowmeter)的特殊类型流量计。该流量计用于通过计算因具有已知几何形状的部件的存在而形成在导体中的旋涡的个数来测量经过该导体的流体量。这一理论的知识及模型同样应用于大气及海洋预报中。
第三种原理与物体的固有振荡频率有关。这种原理专门应用于乐器、扬声器和电子器件(谐振器)的制造以及与显微镜等(原子力显微镜、磁共振力显微镜等显微镜中的“轻敲”(tapping),原子力显微镜、磁共振力显微镜具有使振荡和谐进而提高探针读取能力的悬臂(cantilever))相关的应用中。另一方面,如果可能的话,在其他技术领域诸如自动化和机械学(结构声耦合控制)中需要无效掉这类原理产生的影响以降低发动机噪音,以及在与刹车片相关的应用中需要无效掉这类原理产生的影响。同样,这种原理在诸如烟囱或桥梁等建筑及大型结构中会带来一些不良影响(例如,塔科马海峡大桥或核电站冷却塔,在这些建筑中还产生了前文提到的卡门旋涡)。
至今还未有风力涡轮发电设备在其几何结构上设法同步遍及其整个结构的湍动旋涡的生成。
至今还未有发电机企图以物体固有振荡作为工作原理。以物体固有振荡频率及湍动旋涡生成频率之间的任意类型调谐或谐振为控制方式的发电机还未创造出来。
至今还未有基于机电耦合物质、把包含在稳定层状气流中的能源作为一次能源使用的发电机。
发明内容
本发明公开了一种涡激共振风力涡轮机,用以解决由上述常规多叶片式风力涡轮机带来的问题。
涡激共振风力涡轮机包括锚定在地面上的直立半刚性装置。明显可见的部分为直立的立方体或桅杆,因其不包含活动零件(减速器、齿轮、轴、转子等),所以其无需润滑或无需因磨损或者材料疲劳而更换零件。该涡激共振风力涡轮机部分或完全由高度机电耦合的材料制成。
在一定风况(速度、雷诺数等)下,入射在该涡激共振风力涡轮机表面的风会产生一系列将两种类型力传递至该涡激共振风力涡轮机结构的湍动旋涡或顺流而下的涡流。其中一种力被称作拖拽力,其与风同向,并且在层状稳定气流中会产生适时固定的扭矩(不可用力)。而另外一种力被称作提拉力,其垂直于风向而且其指向交替变化,但其方向维持恒定(可用力)。如果具有层状稳定流,具有某种频率的提拉力因新旋涡的生成而改变指向,该频率由卡门方程表示为:
F v = S · V h
其中,Fv是旋涡生成频率,V是风速,h是障碍物形状的特征长度(例如,圆截面直径),S是流体的非一元斯特鲁哈尔数(adimensionalStrouhal number)。
如同任意固体部件或结构一样,本发明的装置对象具有多种空间振荡方式。对于一端锚固于地面的桅杆而言,第一振荡方式在于其一端为静止,而位于最高点的另一端具有最大振幅。其频率表示为:
f n = 1 2 π · IE d l · K n 4 - a 2
其中,fn是第n个谐波的固有振荡频率,I是截面惯性矩,E是材料的杨氏模量(Young’s modulus),dl是每单位长度的杆密度,Kn是杆的第n种振荡方式,a是阻尼常数。
如果桅杆的固有振荡频率fn与在空中使其自身产生旋涡的频率fv相同,则结构和湍动状态(turbulent regime)将会合调(频率一致),而且总成会产生共振,由此最大化其能量吸收能力。该固有频率与旋涡生成频率的调谐在某些结构中是很危险的,诸如桥梁或烟囱,但上述调谐是本发明所期望实现的目标。
机电耦合材料在依赖于材料品质的能量转换过程中获得高易变性效能。目前,很难找到效能高于75%的材料,因为总有大部分能量会转化为弹性势能。在共振情况下(当材料以其固有频率振荡时),可恢复大量弹性势能,并使效能接近100%。这样,如果本发明中的桅杆或与连接于桅杆的物体具有明显的机电耦合特性(无论是铁电性还是压电性),则可使机械能向电能的转化得到优化。
如上所述,物体的固有频率取决于其自身密度、其截面惯性矩和弹性硬度常数(elastic rigidity constant)或杨氏模量。因为旋涡生成频率取决于风速(不可控且适时变化的),为了调谐或匹配这两种频率(固有频率和旋涡生成频率),可修改桅杆固有振荡频率所依赖的任何控制参数,优选地修改其他杨氏模量。可通过外部调节施加到机电耦合材料上的电压来实现上述目的。为此,涡激共振风力涡轮机具有用于管理控制回路的电子机构。该控制回路的输出为施加到机电耦合材料的电压值,其输入为风速。可利用标准风速计获取该值,或者较佳地利用由拖拽力产生的风力涡轮机桅杆的稳定扭矩求得该值。上述过程的另一目的是为了在将涡激共振风力涡轮机产生的能量提供给后续的逆变及滤波阶段之前,过滤、调整该能量使其满足向电网供应的条件。
电子控制及调节机构的最自然的安装位置是不干扰自然气流的位置。
地面锚固由诸如混凝土、水泥、灰泥或砂浆等标准粘合剂的实心基体或基座建立。该基座必须十分沉重,并可提供牢固稳定的地面锚固。
如上所述,涡激共振风力涡轮机的最佳工况需要层状稳定气流施加其上。众所周知,越接近地面,气流越容易产生湍动状态,因此设置高桅杆是可取的。此外,风中包含的能量与风速的三次方成正比。这样,就需要增加桅杆的高度。
显而易见地,为了实现涡激共振风力涡轮机的较佳工况,桅杆的(任意高度上的)所有部分必须以同步的方式承受提拉力并由此振荡。赫尔曼指数定律(Hellman’s exponential law)将速度的增加与距地面距离的关系表示为:
V z = V h · ( z h ) p
其中,z为需要知道风速的高度,h为风速已知的高度,Vz和Vh分别为未知风速和已知风速。
由于旋涡生成频率取决于风速,在涡激共振风力涡轮机的几何体中必须采用赫尔曼指数定律和卡门方程,根据预期风速增加其直径,即:随高度调整直径。
这种新型风力涡轮机可应用于能够由常规系统实施的区域,并且凭借其特性,其可应用于通常禁用传统风力涡轮机的区域(城市或工业区)。
考虑到这种新型风力涡轮机结构简洁,因此其运输、存放和安装非常简单,特别是在与常规风力涡轮机相比时。实际上,如果风力发电工业当前有能力安装大型涡轮机,则没有理由不安装同等体积或更大体积的带有相似或较少机构的涡激共振风力涡轮机。
附图说明
为完成本说明书并更好地帮助理解本发明的特征,根据本发明的较佳实施例,出于以非限制性方式进行解释说明的目的,附上构成本说明书一部分的一组附图,上述附图如下:
图1为涡激共振风力涡轮机的正视截面图;
图2为举例说明桅杆随其高度变化而产生的粗细变化(依据赫尔曼指数定律和卡门方程)的曲线图。因为在这种情况下桅杆截面为圆形,故指定以m为单位的半径R,与同样以m为单位的高度H;
图3为“卡门涡街”以及由“卡门涡街”作用于桅杆表面而产生的力的示意图。
具体实施方式
下面参照附图,详细介绍本发明的风力涡轮机的优选实施例。
涡激共振风力涡轮机不包含齿轮、轴承等,因此其总成包括那些物理连接在上述位置上的安置部件。这些部件彼此间为物理连接或电连接关系。
在地面(12)上开一个能够容纳水泥或混凝土基座(1)的洞,如任意建筑或结构的地基。桅杆(4)的底部在锚固区域(5)上与基座(1)连接,以使桅杆(4)的较高部位可以以仅受材料弹性而不受其他方面限制的方式自由振荡。从电学角度来看,由高机电耦合部件(13)构成的桅杆(4)与位于基座(1)中的密封室(2)内的电子控制及调节机构(3)连接。该连接由经过同样设置在基座(1)内的通道或管道(6)引入的电导体(7)建立。涡激共振风力涡轮机与电网设施(8)之间的连接通过布设在地面(12)沟渠且通过密封塞(10)离开基座(1)的连接电缆(9)建立。对于密封室(2)的使用由提供了进入密封室(2)内部的入口并允许实施装配及维护活动的封盖(11)实现。
为了进行空间尺寸方面的限定并考虑到桅杆(4)具有圆形截面(15)以避免依赖于风向,并且桅杆(4)具有根据高度H变化的半径R,图2示出了的高度为4m、预期固有振荡频率例如为8Hz(由桅杆材料的杨氏模量在其他因素中确定的)、截面(15)半径在距地面(12)1m的位置为82.9mm至距地面4m的位置为105.3mm的范围内变化的桅杆的曲线图。在由赫尔曼指数系数pH=0.16和高度10m处的平均风速6.5m/s控制下的风况中,这种几何形状可在桅杆(4)的整个长度上产生同步生成的旋涡。
关于流体,层状稳定风(14)入射在桅杆(4)上产生无法被利用的拖拽力(18)和带有方向以及随时间变化的量级的提拉力(19)。桅杆(4)的任意一种可行的、且带有垂直于其主轴的平面的圆形截面(15)将生成一些在稳定情况下彼此间保持恒定距离(17)运动的互斥旋涡(16)。这些互斥旋涡(16)产生了提拉力(19)。如果风向发生改变,控制及调节机构(3)将主动调节桅杆(4)的杨氏模量,改变影响杨氏模量的高机电耦合部件的电压,由此调节桅杆(4)的固有振荡频率,使其与旋涡(16)的生成频率相一致。
电网设施(8)接收由一个或多个涡激共振风力涡轮机提供且为等势(直流)的电能。由电网设施(8)负责向变电所传送这些电能。变电所转化这些电能使其满足接收这些电能的公共事业公司或车站的需要。
对于这种风力涡轮机于地面上的安装,几乎不需要满足任何必要条件。除需要正确锚固在地面上之外,必须最小化风力涡轮机间的空气动力干扰,将风力涡轮机间隔开以提供其效能。
为了减少风力涡轮机的视觉冲击,将涡激共振风力涡轮机涂上使其可以融入周围环境的任何颜色,尽管可优选地使用耐热涂料(白色、银色等)以减少由阳光照射引起的老化现象。
权利要求书(按照条约第19条的修改)
1.涡激共振风力涡轮机,包括:用于获取风能的部件,该部件锚固在地面上;所述用于获取风能的部件有多个机电耦合部件构成,从而使入射在所述用于获取风能的部件上的稳定层状气流转化为形成旋涡或涡流的湍流,所述涡激共振风力涡轮机还包括电子控制及调节机构,用于控制及调节所述风力涡轮机的不同操作参数其特征在于,由入射在所述用于获取风能的部件上的稳定层状气流转化而成的旋涡或涡流以同步的方式生成在所述用于获取风能的部件的整个长度范围上;以及,所述涡激共振风力涡轮机所包含的所述电子控制及调节机构主动调节所述用于获取风能的部件的固有振荡频率,使所述用于获取风能的部件的固有振荡频率与所述旋涡的生成频率相匹配或相一致。
2.根据权利要求1所述的涡激共振风力涡轮机,其特征在于,所述用于获取风能的部件包括桅杆,所述桅杆的组件具有能够将稳定层状气流转化为由旋涡或涡流构成的湍流的截面和几何形状。

Claims (2)

1.涡激共振风力涡轮机,包括:锚固或基座,用于将所述风力涡轮机固定在地面上;电子控制及调节机构,用于控制及调节所述风力涡轮机的多种操作参数;以及负责获取风能的部件,其特征在于,所述负责获取风能的部件为直立的立方体或由多个高机电耦合部件(13)构成的桅杆(4),所述桅杆(4)的截面(15)和几何结构(图2)将稳定的层状气流(14)转化为湍流,在所述湍流中,旋涡(17)或涡流(16)以同步的方式生成在所述桅杆(4)的整个长度范围上。
2.根据权利要求1所述的涡激共振风力涡轮机,其特征在于,所述电子控制及调节机构(3)主动调节所述桅杆(4)的固有振荡频率,使所述桅杆(4)的固有振荡频率与所述旋涡(17)的生成频率相匹配或相一致。
CN201180038079.1A 2010-08-02 2011-08-01 涡激共振风力涡轮机 Active CN103052798B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510846813.7A CN105443317A (zh) 2010-08-02 2011-08-01 涡激共振风力涡轮机

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ESP201001003 2010-08-02
ES201001003A ES2374233B8 (es) 2010-08-02 2010-08-02 Aerogenerador resonante por vorticidad.
PCT/ES2011/000252 WO2012017106A1 (es) 2010-08-02 2011-08-01 Agrogenerador resonante por vorticidad

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510846813.7A Division CN105443317A (zh) 2010-08-02 2011-08-01 涡激共振风力涡轮机

Publications (2)

Publication Number Publication Date
CN103052798A true CN103052798A (zh) 2013-04-17
CN103052798B CN103052798B (zh) 2016-03-16

Family

ID=45531642

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510846813.7A Pending CN105443317A (zh) 2010-08-02 2011-08-01 涡激共振风力涡轮机
CN201180038079.1A Active CN103052798B (zh) 2010-08-02 2011-08-01 涡激共振风力涡轮机

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510846813.7A Pending CN105443317A (zh) 2010-08-02 2011-08-01 涡激共振风力涡轮机

Country Status (11)

Country Link
US (2) US9444372B2 (zh)
EP (1) EP2602483A4 (zh)
JP (1) JP2013535613A (zh)
CN (2) CN105443317A (zh)
BR (1) BR112013002403A2 (zh)
CA (1) CA2807114A1 (zh)
CL (1) CL2013000272A1 (zh)
ES (1) ES2374233B8 (zh)
MX (1) MX337375B (zh)
RU (1) RU2013104631A (zh)
WO (1) WO2012017106A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673353A (zh) * 2016-03-10 2016-06-15 苏州科技学院 一种利用涡激共振发电的自立式高耸结构
CN105896874A (zh) * 2016-04-09 2016-08-24 哈尔滨工业大学 基于卡门涡街原理的风力发电装置
CN107061170A (zh) * 2017-02-21 2017-08-18 湘潭大学 无叶片风力发电机
CN107956650A (zh) * 2017-11-21 2018-04-24 北京金风科创风电设备有限公司 具有抑制振动功能的围护结构及抑制围护结构振动的方法
CN109312713A (zh) * 2016-04-07 2019-02-05 沃特克斯布莱德莱丝有限公司 发电机
CN109538416A (zh) * 2018-10-30 2019-03-29 北京临近空间飞行器系统工程研究所 一种基于椭圆截面杆涡激振动特性的风力发电装置
CN115788768A (zh) * 2022-12-26 2023-03-14 石家庄铁道大学 基于涡激振动的风力机受风体及无叶式垂直轴风力发电机

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2374233B8 (es) 2010-08-02 2013-02-27 Deutecno S.L. Aerogenerador resonante por vorticidad.
US20160013737A1 (en) * 2013-03-06 2016-01-14 Deutecno S.L. Electrical Energy Generator and Method of Generating Electrical Energy
EP3204635B1 (en) 2014-10-06 2020-05-06 Vortex Bladeless, S.L. An electrical power generator and an electrical power generation method
CN106089590A (zh) * 2016-07-26 2016-11-09 天津大学 一种利用桅杆振荡进行海上风能发电的装置
CN106230318B (zh) * 2016-09-14 2018-03-06 长春工业大学 用于低功耗传感器供能的涡流激振式压电俘能器
CN106385199B (zh) * 2016-10-12 2019-01-11 南京航空航天大学 一种用于胎压监测系统供电的风致振动能量采集装置
US20200049130A1 (en) 2017-02-17 2020-02-13 Vortex Bladeless, S.L. Electrical Power Generator
CN106870273B (zh) * 2017-03-30 2019-03-05 天津大学 一种折叠式四子涡激振动潮流能发电装置
DE102017131389B4 (de) * 2017-12-28 2022-05-05 fos4X GmbH Verfahren zum Kalibrieren von Nominalfrequenzen
US10975833B2 (en) 2018-02-07 2021-04-13 Timm Peddie Modular hydro-kinetic power source
CN108843516B (zh) * 2018-06-21 2019-07-02 北京金风科创风电设备有限公司 外表面设有减阻器的围护结构
CN108799010B (zh) * 2018-06-21 2020-10-09 北京金风科创风电设备有限公司 外表面设有混频吸收器的围护结构
CN109267668A (zh) * 2018-11-16 2019-01-25 郑州大学 一种抑制钢管高耸结构涡激振动的自旋破涡装置
US10982648B2 (en) * 2019-03-30 2021-04-20 Ehsan Azadi Yazdi Bladeless wind turbine with a telescoping natural frequency tuning mechanism
CN110932671B (zh) * 2019-12-18 2023-08-04 山东理工大学 微梁长度调谐的超谐波共振信号频率放大装置
TWI749526B (zh) 2020-04-16 2021-12-11 國立陽明交通大學 渦流誘發振動之風能收集裝置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132397A (ja) * 2004-11-04 2006-05-25 Akita Univ 流力振動を利用した圧電セラミックによる発電方法及び装置
JP2006226221A (ja) * 2005-02-18 2006-08-31 Univ Nagoya 発電装置
FR2922607A1 (fr) * 2007-10-22 2009-04-24 Thierry Vardon Generatrice d'electricite a partir du mouvement du vent au contact d'une structure agissant sur des elements piezoelectriques
US7633175B1 (en) * 2008-05-13 2009-12-15 Florida Turbine Technologies, Inc. Resonating blade for electric power generation

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1462359A (en) * 1973-08-31 1977-01-26 Russell M K Power generation in underground drilling operations
US3972232A (en) * 1974-04-24 1976-08-03 The Foxboro Company Vortex flow meter apparatus
JP2001157433A (ja) * 1999-11-26 2001-06-08 Fujitsu Ltd 流体による振動発電装置
JP2003164136A (ja) * 2001-11-22 2003-06-06 Kawasaki Heavy Ind Ltd 流体力発電装置
US7224077B2 (en) * 2004-01-14 2007-05-29 Ocean Power Technologies, Inc. Bluff body energy converter
US7199480B2 (en) 2004-04-15 2007-04-03 Halliburton Energy Services, Inc. Vibration based power generator
JP4259458B2 (ja) 2004-11-30 2009-04-30 パナソニック電工株式会社 圧電型発電機構
US20080048455A1 (en) * 2006-08-25 2008-02-28 Matthew Eli Carney Energy capture in flowing fluids
GB2464482A (en) * 2008-10-15 2010-04-21 D4 Technology Ltd Oscillating mass fluid energy converter
US20120017852A1 (en) * 2010-07-20 2012-01-26 Theodore Paul Geelhart Desuperheaters having vortex suppression
ES2374233B8 (es) 2010-08-02 2013-02-27 Deutecno S.L. Aerogenerador resonante por vorticidad.
CN201818437U (zh) 2010-10-26 2011-05-04 温州大学 一种利用风能的压电能量收集装置
US9841000B2 (en) 2010-11-16 2017-12-12 Technion Research And Development Foundation Ltd. Energy conversion from fluid flow
JP2012151985A (ja) 2011-01-18 2012-08-09 Onkyo Corp 振動発電機
JP2012151982A (ja) 2011-01-18 2012-08-09 Onkyo Corp 振動発電機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132397A (ja) * 2004-11-04 2006-05-25 Akita Univ 流力振動を利用した圧電セラミックによる発電方法及び装置
JP2006226221A (ja) * 2005-02-18 2006-08-31 Univ Nagoya 発電装置
FR2922607A1 (fr) * 2007-10-22 2009-04-24 Thierry Vardon Generatrice d'electricite a partir du mouvement du vent au contact d'une structure agissant sur des elements piezoelectriques
US7633175B1 (en) * 2008-05-13 2009-12-15 Florida Turbine Technologies, Inc. Resonating blade for electric power generation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673353A (zh) * 2016-03-10 2016-06-15 苏州科技学院 一种利用涡激共振发电的自立式高耸结构
CN105673353B (zh) * 2016-03-10 2018-05-04 苏州科技学院 一种利用涡激共振发电的自立式高耸结构
CN109312713A (zh) * 2016-04-07 2019-02-05 沃特克斯布莱德莱丝有限公司 发电机
CN109312713B (zh) * 2016-04-07 2022-03-01 沃特克斯布莱德莱丝有限公司 发电机
CN105896874A (zh) * 2016-04-09 2016-08-24 哈尔滨工业大学 基于卡门涡街原理的风力发电装置
CN105896874B (zh) * 2016-04-09 2018-02-23 哈尔滨工业大学 基于卡门涡街原理的风力发电装置
CN107061170A (zh) * 2017-02-21 2017-08-18 湘潭大学 无叶片风力发电机
CN107956650A (zh) * 2017-11-21 2018-04-24 北京金风科创风电设备有限公司 具有抑制振动功能的围护结构及抑制围护结构振动的方法
CN109538416A (zh) * 2018-10-30 2019-03-29 北京临近空间飞行器系统工程研究所 一种基于椭圆截面杆涡激振动特性的风力发电装置
CN115788768A (zh) * 2022-12-26 2023-03-14 石家庄铁道大学 基于涡激振动的风力机受风体及无叶式垂直轴风力发电机
CN115788768B (zh) * 2022-12-26 2023-12-01 石家庄铁道大学 基于涡激振动的风力机受风体及无叶式垂直轴风力发电机

Also Published As

Publication number Publication date
MX2013001446A (es) 2013-03-12
MX337375B (es) 2016-02-25
CL2013000272A1 (es) 2013-06-07
WO2012017106A1 (es) 2012-02-09
ES2374233B1 (es) 2012-12-13
WO2012017106A4 (es) 2012-04-12
RU2013104631A (ru) 2014-09-10
JP2013535613A (ja) 2013-09-12
US9856854B2 (en) 2018-01-02
CN103052798B (zh) 2016-03-16
BR112013002403A2 (pt) 2018-01-23
ES2374233B8 (es) 2013-02-27
US20160356264A1 (en) 2016-12-08
EP2602483A1 (en) 2013-06-12
ES2374233A1 (es) 2012-02-15
US20130119826A1 (en) 2013-05-16
US9444372B2 (en) 2016-09-13
CN105443317A (zh) 2016-03-30
EP2602483A4 (en) 2017-01-04
CA2807114A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
CN103052798B (zh) 涡激共振风力涡轮机
Zhang et al. Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters
Tao et al. Energy harvesting from wind by a piezoelectric harvester
Petrini et al. Piezoelectric energy harvesting from vortex shedding and galloping induced vibrations inside HVAC ducts
US8519554B2 (en) Device and method for harvesting energy from flow-induced oscillations
Chen et al. A hybrid flapping-blade wind energy harvester based on vortex shedding effect
Cao et al. A hybrid self-powered system based on wind energy harvesting for low-power sensors on canyon bridges
Lim et al. A self-tunable wind energy harvester utilising a piezoelectric cantilever beam with bluff body under transverse galloping for field deployment
Yu et al. Study on mirror-image rotating piezoelectric energy harvester
Cao et al. An electromagnetic energy harvester for applications in a high-speed rail pavement system
Kan et al. Design and characterization of wind energy harvesting from a trajectory-controllable piezoelectric vibrator
Cao et al. A hybrid wind and rainwater energy harvesting system for applications in sea-crossing bridges
He et al. Design and performance study of a rotating piezoelectric wind energy harvesting device with wind turbine structure
CN202395680U (zh) 一种新型的压电发电装置
Gatti Spatially-varying multi-degree-of-freedom electromagnetic energy harvesting
Zilani et al. Unconventional energy harvesting from wind velocity and viv resonance phenomenon by using bladeless wind turbine (blwt)
Fei et al. A fluttering-to-electrical energy transduction system for consumer electronics applications
Yadav et al. A review on piezoelectric energy harvesting system using vortex induced vibration
Bahri et al. Design Considerations of a Hybrid Piezoelectric-Electromagnetic Tuning System for Vortex Induced Vibration Bladeless Turbines: Morocco Case Study
CN107395061A (zh) 一种风致压电俘能器
Gao et al. Capturing energy from power transmission lines galloping and self-powered sensing of galloping state through a rotary structural electromagnetic energy harvester
Zhou et al. Performance analysis of wind-induced piezoelectric vibration bimorph cantilever for rotating machinery
Holmes Energy harvesting from fluid flows
Bhardwaj et al. Mathematical Modelling and Equivalent Circuit Representation of Bladeless Wind Turbines
CN107359818A (zh) 一种压电风车

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant