CN103051016A - 可变输出电流电池充电器和操作所述充电器的方法 - Google Patents

可变输出电流电池充电器和操作所述充电器的方法 Download PDF

Info

Publication number
CN103051016A
CN103051016A CN2012103805817A CN201210380581A CN103051016A CN 103051016 A CN103051016 A CN 103051016A CN 2012103805817 A CN2012103805817 A CN 2012103805817A CN 201210380581 A CN201210380581 A CN 201210380581A CN 103051016 A CN103051016 A CN 103051016A
Authority
CN
China
Prior art keywords
battery
battery charger
distribution
traction battery
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103805817A
Other languages
English (en)
Other versions
CN103051016B (zh
Inventor
艾伦·罗伊·盖尔
保罗·西欧多尔·莫姆西罗维琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Publication of CN103051016A publication Critical patent/CN103051016A/zh
Application granted granted Critical
Publication of CN103051016B publication Critical patent/CN103051016B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种可变输出电流电池充电器和操作所述充电器的方法。一种车辆包括被布置为对牵引电池充电的电池充电器系统。电池充电器系统从远离车辆的配电系统接收电流,并以多个幅值将电流输出到牵引电池以表现电池充电器和配电系统的充电效率曲线。电池充电器系统然后根据充电效率曲线对牵引电池进行充电。

Description

可变输出电流电池充电器和操作所述充电器的方法
技术领域
本公开涉及用于对自动车辆电池充电的处理、方法、算法和系统。
背景技术
一种动力可变的车辆(诸如电池电动车辆、插电式混合动力电动车辆等)通常包括用于存储使车辆移动的能量的电能存储单元(例如,牵引电池)。可通过将与该电能存储单元相关联的充电系统电连接到远离车辆的配电回路(例如,插入车辆中),来补充电能存储单元存储的能量。对电能存储单元进行充电的成本可取决于一天中执行充电的时间以及充电操作的效率。
发明内容
一种车辆可包括牵引电池和电池充电器系统。电池充电器系统可从远离车辆的配电系统接收电流,并以多个幅值将电流输出到牵引电池以表现电池充电器和配电系统的充电效率曲线,并基于充电效率曲线对牵引电池进行充电。
一种电池充电器系统可包括控制器装置,控制器装置从通过将远离车辆的电源与所述控制器装置进行配线连接而限定的配电回路接收能量,并且输出充电电流,充电电流的幅值取决于配线的电阻。
一种电池充电器系统可从远离车辆的配电系统接收电流,以多个幅值将电流输出到牵引电池以表现电池充电器和配电系统的充电效率曲线,并基于充电效率曲线对牵引电池进行充电。
附图说明
图1是动力可变的车辆的框图。
图2是示出用于对车辆电池充电的算法的流程图。
图3是充电电流与充电操作效率的关系的曲线图。
具体实施方式
在此描述本公开的实施例;然而,应该理解的是,公开的实施例仅仅是示例,并且其他实施例可采用多种和替代的形式。附图未必按比例绘制;一些特征可能会被夸大或最小化,以显示特定组件的细节。因此,在此公开的具体结构和功能上的细节不应该被解释为限制,而仅仅被解释为用于教导本领域技术人员以各种方式使用本发明的代表性基础。本领域普通技术人员将理解的是,参照任何一张附图示出和描述的各种特征可与一个或多个其它附图中示出的特征组合,以产生没有被明确地示出或描述的实施例。示出的特征的组合提供用于一般应用的代表性实施例。然而,可期望与本公开的教导一致的特征的各种组合的修改用于特定应用或实施方式。
电动车辆的充电器在从外部源向电池传送能量时具有峰值效率。虽然该峰值效率可根据充电器的设计而不同,但是一般为大约90%。然而,充电器只是在充电期间启用的子系统之一。其它车辆子系统(诸如制冷子系统等)会根据特定设计使得峰值效率变得更高或更低。此外,向车辆提供电能的电供应系统具有影响峰值效率的损耗。在系统峰值效率处或在系统峰值效率附近执行充电操作可将与对电池进行充电相关联的成本最小化。
参照图1,自动车辆10可包括电池充电器系统12、牵引电池14和辅助电池16。车辆10还可包括电机18、变速器20和车轮22。电池充电器系统12与牵引电池14和辅助电池16电连接(如细线所示)。牵引电池14还与电机18电连接(如细线所示)。变速器20与电机18和车轮22机械地连接。还考虑其它车辆布置,诸如插电式混合动力电动车辆等。
电池充电器系统12可通过保险丝盒/功率表26与电网/发电装置24电连接。也就是说,可将车辆10插接到住宅建筑或商业建筑的壁装电源插座(未示出)。电源线由火线28表示,将电池充电器系统12与壁装电源插座电连接的相关配线由零线30表示,将壁装电源插座和保险丝盒26电连接的配线由地线32表示。因此,来自电网24的电能可通过保险丝盒26到达电池充电器系统12。
电池充电器系统12可对牵引电池14和辅助电池16中的一个或两者进行充电。在图1的示例中,电池充电器系统12具有与牵引电池14电连接的高电压输出以及与辅助电池16电连接的低电压输出。然而,在其它示例中,电池充电器系统12可仅对牵引电池14充电。作为示例,插电式混合电动车辆可包括电池充电器系统和内燃机,电池充电器系统具有与牵引电池电连接的高电压输出,内燃机被布置为驱动与辅助电池电连接的交流发电机。
电机18被布置为从牵引电池14接收电能,并将该电能转换为机械能。机械能用于驱动变速器20和车轮22,以使车辆10移动。在其它示例中,变速器20还可通过内燃机、燃料电池等被驱动。
影响充电操作的系统/子系统的净效率ηcharge可由下面的等式给出
η ch arg e = P HVbattery P ACline + Δ P loss _ ACline - - - ( 1 )
其中,PHVbattery是由电池充电器系统12输出到牵引电池14的功率,PACline是输入到电池充电器系统12的功率,ΔPloss_ACline是火线28和零线30中的I2R损耗。以另一种形式(假设单位功率因数(unity power factor)),
PHVbattery=IHVbattery×VHVbattery                (2)
Pacline=IACline_input×VACline_input             (3)
Δ P loss _ ACline = I ACline _ input 2 × R ACline - - - ( 4 )
R ACline = Δ V ACline _ input I ACline _ input _ test - - - ( 5 )
其中,IHVbattery是由电池充电器系统12提供到牵引电池14的充电电流,VHVbattery是牵引电池14的电压,IACline_input是输入到电池充电器系统12的电流,VACline_input是输入到电池充电器系统12的电压,ΔVACline_input是在电池充电器系统12获得恒定电流IACline_input_test之前和之后的火线28和零线30之间的电压的差。IACline_input_test可以是能够由电池充电器系统12获得的任何合适的电流。因此,RACline表示视为来自电网24的在电池充电器系统12的输入处的电阻,RACline是火线28和零线30的电阻的主要因子。可通过在电池充电器系统12上设置的已知传感器测量这些参数中的每个参数。例如,电池充电器系统12可包括可操作地布置在高电压输出34处的电流传感器和电压传感器(未示出)、可操作地布置在火线28处的电流传感器(未示出)等。(可按照本领域已知的那样修改等式(2)-(5),以考虑除了单位功率因数之外的功率因数。)
如上所述,电池充电器系统12的效率会被在电池充电期间可操作的其它系统/子系统影响。因此,电池充电器系统12可根据等式(1),在电池充电器系统12所电连接的系统/子系统的环境中估计电池充电器系统12的效率,并选择用于牵引电池14的充电电流,所述充电电流在满足诸如充电持续时间等的其它强制约束的同时使充电效率最大化。
参照图2,在操作38,可在某个预定范围内对用于高电压电池的充电电流进行扫描(sweep),并且可测量与充电电流相关联的电气系统参数。例如,电池充电器系统12可进行操作以输出用于牵引电池14的多个充电电流。对于每个充电电流,电池充电器系统12可测量在等式(2)-(5)中详细描述的相关参数。在操作40,系统效率可被确定为充电电流的函数。例如,电池充电器系统12可使用在操作38测量的参数根据等式(1)确定与每个充电电流相关联的效率。参照图3,电池充电器系统12可在短时间内进行操作以向牵引电池14输出13个不同的充电电流,以表现与充电操作相关联的效率曲线(profile)。然而,可使用任意数量的测试电流/电流扫描方案。然后,可报告系统效率作为充电电流的函数。
再次参照图2,在操作42,可选择与峰值系统效率相关联的充电电流。例如,电池充电器系统12可识别与最大系统效率对应的充电电流。参照图3,已经对最优充电电流进行了标记。也就是说,产生峰值系统效率的充电电流已经被识别。
再次参照图2,在操作44,确定使用识别的电池充电电流进行充电是否超过可用的充电时间。例如,假设在操作42识别的充电电流为4A(相关系统峰值效率为90%),可导致充电速率为4安-小时。如果牵引电池14需要接收16安-小时的容量以达到目标电荷状态,则在峰值效率处的相关充电时间是4小时。然而,如果可用充电时间是3小时,则在可用充电时间终止时牵引电池将不能达到其目标电荷状态。
可使用任何已知/合适的技术来确定将电池的电荷状态从给定值提高至目标值所需要的容量。例如,假设电荷状态与电池的容量成比例,如果初始电荷状态为50%并且电池的最大容量为32安-小时,则需要16安-小时来将电荷状态从50%提高至100%的目标值。
可使用任何已知/合适的技术来确定可用充电时间。例如,车辆10的驾驶员可提供指定可用充电时间的输入。可选择地,可由车辆10的制造商设置固定的可用充电时间。在给定车辆10的使用模式等的情况下,还可使用学习算法来估计可用充电时间。
返回操作44,如果是,则在操作46,可将充电电流设置为满足可用充电时间。再次参照图3,已经对在可用充电时间内将牵引电池16充电至目标电荷状态所必须的最小充电电流进行了标记。在一个示例中,可通过将达到目标电荷状态所必须的安-小时除以可用充电时间来找到最小电流值。然而,也可以考虑其他方法。在该示例中,在能够满足可用充电时间的充电电流中,最小充电电流是最有效的。因此,牵引电池14的充电电流可被设置为识别的最小值。还可选择比最小值大的值。然而,根据该示例,以比最小值大的值进行充电将导致较低效率的充电循环。在其它示例中,比最小值大的充电电流可以是最有效的。
在操作48,使用选择的充电电流对电池充电。例如,电池充电器系统12可使用如图3中示出的满足充电时间所必须的最小充电电流对牵引电池进行充电。
返回操作44,如果否,则充电电流保持在最优充电电流。在这些情况下,最优充电电流的幅值足以在分配的时间内将牵引电池的电荷状态提高至目标值。然后算法进行到操作48。当然,在其它示例中可以省略操作44和46。
再次参照图1,未示出DC/DC转换器、交流发电机等,所述DC/DC转换器、交流发电机等可在正常车辆驱动操作期间将能量提供至辅助电池16以及与辅助电池16连接的电子子系统。在大多数充电情况下,辅助电池16将已经被DC/DC转换器完全充电并且可能不需要附加能量。然而,如果需要对辅助电池16进行充电,则可使用已知技术修改等式(1)以考虑对辅助电池16提供电能。考虑到辅助电池16接近完全充电或处于完全充电的最常见情形,供应给辅助电池16的电能是由与辅助电池16连接的负载使用的电能。这些负载减少可用于对牵引电池14充电的电能的量并可被视为充电系统损耗。所写的等式(1)考虑这些损耗。
可在对牵引电池14的充电期间改变条件,导致系统峰值效率的改变。由于这些改变,可期望在充电期间周期性地重复图2的算法。由于牵引电池电压在充电期间增加,因此例如AC火线电压、电阻等会改变,这会使最优效率点移动。结果,如果实现这里详细描述的处理、方法等,则外行的观察者也可观察到在AC火线电阻增加时充电系统改变其充电速率。
当在车辆上实现时,相对于功率电平成指数增加的损耗显著地影响系统的理想的较低成本操作点。充电器内的指数损耗相比于其它充电器损耗可能较小。基于来自AC火线的可用功率的最大充电速率可以是对于操作的可接受的选择。充电与电池制冷系统的累加可对成指数增加的功率损耗添加不断增加的充电功率电平,导致选择比最大充电速率小的充电速率。由于还增加了火线28和零线30中的配线I2R损耗,因此将进一步减小理想的充电速率。因此,如果充电系统在选择其充电速率时考虑配线I2R损耗,则增加配线的长度(电阻)将导致充电系统选择较低的充电速率(假设充电时间足以以该较低充电速率完成充电操作)。
这里公开的处理、方法或算法可传送到处理装置、控制器或计算机,或者可通过处理装置、控制器或计算机来实现这里公开的处理、方法或算法,所述处理装置、控制器、计算机可包括任何现有的可编程电子控制单元或专用电子控制单元。类似地,所述处理、方法或算法可被存储为可由控制器或计算机执行的多种形式的数据和指令,所述数据和指令包括但不限于:永久存储在不可写存储介质(诸如ROM装置)上的信息和可变地存储在可写存储介质(诸如软盘、磁带、CD、RAM装置和其它磁光介质)上的信息。所述处理、方法或算法还可实现为软件可执行对象。可选择地,可使用合适的硬件组件(诸如专用集成电路(ASIC)、现场可编程门阵列(FPGA)、状态机、控制器或其它硬件组件或装置)或硬件组件、软件组件和固件组件的组合来全部或部分地实现算法。
虽然以上描述了示例性实施例,但是意图不在于这些实施例描述由权利要求包含的所有可能形式。例如,在美国普遍的120V的AC分配系统的环境中描述火线28和零线30。然而,还考虑这里的公开应用于其它AC电压系统。说明书中使用的词语是描述的词语而非限制的词语,并且应理解,在不脱离本公开和权利要求的精神和范围的情况下,可以进行各种改变。如前所述,可以对各种实施例的特征进行组合以形成没有明确描述或示出的本发明的进一步的实施例。虽然针对一个或多个期望的特性,可能已经描述了各种实施例以提供优点或者比其它实施例或现有技术的实施方式更优选,但是本领域的普通技术人员应认识到可根据特定应用和实施方式对一个或多个特征或特性进行折中以实现期望的整体系统属性。这些属性可包括但不限于:成本、强度、耐久性、生命周期成本、市场性、外观、包装、尺寸、适用性、重量、可制造性、装配的容易等。因此,被描述为对于一个或多个特性比其它实施例或现有技术的实施方式不太令人满意的实施例没有落入本公开的范围之外,并且可被期望用于特定应用。

Claims (10)

1.一种电池充电器系统,包括:
控制器装置,被配置为从通过将远离车辆的电源与所述控制器装置进行配线连接而限定的配电回路接收能量,并且输出充电电流,充电电流的幅值取决于配线的电阻。
2.如权利要求1所述的系统,其中,控制器装置还被配置为以多个幅值输出电流,以测量与配电回路相关联的电气系统参数,并基于所述参数产生充电效率曲线,其中,所述参数指示所述多个幅值中的每个幅值处的配线的电阻。
3.如权利要求2所述的系统,其中,取决于配线的电阻的幅值与充电效率曲线的最大值对应。
4.如权利要求1所述的系统,其中,所述幅值还取决于可用充电时间。
5.一种操作车辆的电池充电器系统的方法,包括:
从远离车辆的配电系统接收电流;
以多个幅值将电流输出到牵引电池,以表现电池充电器和配电系统的充电效率曲线;
基于充电效率曲线对牵引电池进行充电。
6.如权利要求5所述的方法,其中,表现电池充电器和配电系统的充电效率曲线的步骤包括:测量与配电系统相关联的电气系统参数。
7.如权利要求6所述的方法,其中,所述参数指示与配电系统相关联的电阻。
8.如权利要求5所述的方法,其中,基于充电效率曲线对牵引电池进行充电的步骤包括:根据充电效率曲线,以所述多个幅值中的产生最大效率的一个幅值来输出电流。
9.如权利要求5所述的方法,其中,对牵引电池的充电还基于牵引电池的可用充电时间。
10.一种车辆,包括:
牵引电池;
电池充电器系统,被配置为从远离车辆的配电系统接收电流,以多个幅值将电流输出到牵引电池以表现电池充电器和配电系统的充电效率曲线,并且基于充电效率曲线对牵引电池进行充电。
CN201210380581.7A 2011-10-13 2012-10-09 可变输出电流电池充电器和操作所述充电器的方法 Active CN103051016B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/272,669 2011-10-13
US13/272,669 US8872471B2 (en) 2011-10-13 2011-10-13 Variable output current battery charger and method of operating same

Publications (2)

Publication Number Publication Date
CN103051016A true CN103051016A (zh) 2013-04-17
CN103051016B CN103051016B (zh) 2016-04-13

Family

ID=47990882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210380581.7A Active CN103051016B (zh) 2011-10-13 2012-10-09 可变输出电流电池充电器和操作所述充电器的方法

Country Status (3)

Country Link
US (1) US8872471B2 (zh)
CN (1) CN103051016B (zh)
DE (1) DE102012217580A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106058345A (zh) * 2015-04-15 2016-10-26 通用汽车环球科技运作有限责任公司 监控车载电池充电器的方法和设备
CN107112790A (zh) * 2014-10-28 2017-08-29 株式会社Gbs 充电装置、充电程序、充电方法
CN107769295A (zh) * 2016-08-22 2018-03-06 三星Sdi株式会社 电池充电方法和采用其的电池充电设备
CN110383621A (zh) * 2017-03-14 2019-10-25 罗伯特·博世有限公司 用于运行充电器的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8534400B2 (en) * 2011-02-14 2013-09-17 Ford Global Technologies, Llc Electric vehicle and method of control for active auxiliary battery depletion
US20140239879A1 (en) * 2013-02-22 2014-08-28 Electro-Motive Diesel, Inc. Battery charging system
US10457155B2 (en) * 2016-09-09 2019-10-29 Ford Global Technologies, Llc System and method for charging electrified vehicle low-voltage battery
US10903665B2 (en) 2016-11-01 2021-01-26 Microsoft Technology Licensing, Llc Usage data based battery charge or discharge time determination
US11656666B2 (en) 2016-11-16 2023-05-23 Microsoft Technology Licensing, Llc Dynamic power source selection, charging, and discharging
US20180136709A1 (en) * 2016-11-16 2018-05-17 Microsoft Technology Licensing, Llc Dynamic External Power Resource Selection
US10488905B2 (en) 2016-11-16 2019-11-26 Microsoft Technology Licensing, Llc Dynamic energy storage device discharging
DE102017209128B4 (de) 2017-05-31 2019-09-26 Audi Ag Verfahren zum Betreiben einer Fahrzeugladevorrichtung, Fahrzeugladevorrichtung sowie System aus einer Sensorvorrichtung und einer Fahrzeugladevorrichtung
US10725529B2 (en) 2017-06-26 2020-07-28 Microsoft Technology Licensing, Llc Target based power management
DE102019211085A1 (de) * 2019-07-25 2021-01-28 Audi Ag Verfahren zum Betreiben eines elektrischen Ladegeräts für ein Kraftfahrzeug sowie Ladegerät und Kraftfahrzeug
DE102020205865B4 (de) 2020-05-11 2022-03-24 Volkswagen Aktiengesellschaft Fahrerassistenz-System eines batterieelektrischen Kraftfahrzeugs als Informationsanzeige

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1426151A (zh) * 2001-12-13 2003-06-25 广达电脑股份有限公司 可动态调整充电功率的充电装置
CN101106283A (zh) * 2007-07-25 2008-01-16 中兴通讯股份有限公司 为便携式手持设备的电池充电的方法
CN101924383A (zh) * 2010-08-17 2010-12-22 惠州Tcl移动通信有限公司 一种自动设置充电电流的移动终端及其实现方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3031931C2 (de) * 1980-06-28 1984-09-20 Lucas Industries Ltd., Birmingham, West Midlands Verfahren zum Überwachen der Antriebsbatterie eines Elektrofahrzeuges
GB2080642A (en) * 1980-07-23 1982-02-03 Lucas Industries Ltd Battery charging system
GB2105065B (en) * 1981-05-30 1985-02-27 Lucas Ind Plc Battery charging system
US5345761A (en) * 1993-12-02 1994-09-13 Ford Motor Company Energy management system for hybrid vehicle
US6331762B1 (en) * 1997-11-03 2001-12-18 Midtronics, Inc. Energy management system for automotive vehicle
US6215281B1 (en) 2000-03-16 2001-04-10 General Motors Corporation Method and apparatus for reducing battery charge time and energy consumption, as in a nickel metal hydride battery pack
JP2003169425A (ja) 2001-11-30 2003-06-13 Matsushita Electric Ind Co Ltd 充電制御方法及び充電制御装置
SE0200546D0 (sv) * 2002-02-22 2002-02-22 Creator Teknisk Utveckling Ab Device for a battery charger
JP3904489B2 (ja) 2002-07-04 2007-04-11 富士通株式会社 充電制御回路、充電器、電源回路、及び情報処理装置、並びに電池パック
DE10342129A1 (de) 2003-09-12 2005-04-07 Robert Bosch Gmbh Ladegerät zum Aufladen einer Batterie und Verfahren zu seinem Betrieb
US20090040029A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. Transceiver and charging component for a power aggregation system
US20080180058A1 (en) * 2007-01-30 2008-07-31 Bijal Patel Plug-in battery charging booster for electric vehicle
JP2010041891A (ja) 2008-08-08 2010-02-18 Yamaha Motor Electronics Co Ltd 充電器
US8253376B2 (en) * 2009-04-14 2012-08-28 Ford Global Technologies, Llc Reactive power battery charging apparatus and method of operating same
US8731752B2 (en) * 2010-01-06 2014-05-20 Ford Global Technologies, Llc Distance based battery charge depletion control for PHEV energy management
US20110218698A1 (en) * 2010-03-04 2011-09-08 International Truck Intellectual Property Company, Llc Hybrid high voltage isolation contactor control
US8478452B2 (en) * 2010-04-06 2013-07-02 Battelle Memorial Institute Grid regulation services for energy storage devices based on grid frequency
US8359132B2 (en) * 2010-06-16 2013-01-22 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for optimizing use of a battery
US20130073113A1 (en) * 2011-09-16 2013-03-21 Ford Global Technologies, Llc Vehicle and method for estimating a range for the vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1426151A (zh) * 2001-12-13 2003-06-25 广达电脑股份有限公司 可动态调整充电功率的充电装置
CN101106283A (zh) * 2007-07-25 2008-01-16 中兴通讯股份有限公司 为便携式手持设备的电池充电的方法
CN101924383A (zh) * 2010-08-17 2010-12-22 惠州Tcl移动通信有限公司 一种自动设置充电电流的移动终端及其实现方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107112790A (zh) * 2014-10-28 2017-08-29 株式会社Gbs 充电装置、充电程序、充电方法
CN106058345A (zh) * 2015-04-15 2016-10-26 通用汽车环球科技运作有限责任公司 监控车载电池充电器的方法和设备
CN106058345B (zh) * 2015-04-15 2019-02-26 通用汽车环球科技运作有限责任公司 监控车载电池充电器的方法和设备
CN107769295A (zh) * 2016-08-22 2018-03-06 三星Sdi株式会社 电池充电方法和采用其的电池充电设备
CN107769295B (zh) * 2016-08-22 2021-01-15 三星Sdi株式会社 电池充电方法和采用其的电池充电设备
CN110383621A (zh) * 2017-03-14 2019-10-25 罗伯特·博世有限公司 用于运行充电器的方法
CN110383621B (zh) * 2017-03-14 2024-02-13 罗伯特·博世有限公司 用于运行充电器的方法

Also Published As

Publication number Publication date
DE102012217580A1 (de) 2013-04-18
CN103051016B (zh) 2016-04-13
US20130093391A1 (en) 2013-04-18
US8872471B2 (en) 2014-10-28

Similar Documents

Publication Publication Date Title
CN103051016B (zh) 可变输出电流电池充电器和操作所述充电器的方法
CN102832658B (zh) 管理电池健康状态差异的成比例主动充电状态平衡方法
Gunter et al. Optimal design of grid-connected PEV charging systems with integrated distributed resources
CN104773083A (zh) 混合动力传动系统及车辆
Lee et al. Modelling and simulation of vehicle electric power system
KR102274076B1 (ko) 독립형 마이크로그리드 및 그 엔진 발전 제어 방법
CN102640345A (zh) 充电方法和用于确定镍基电池充电结束标准的方法
Caruso et al. Economic evaluation of PV system for EV charging stations: Comparison between matching maximum orientation and storage system employment
CN105391104A (zh) 车辆电池充电系统通知
Kanapady et al. Battery life estimation model and analysis for electronic buses with auxiliary energy storage systems
Chaudhari et al. Energy storage management for EV charging stations: Comparison between uncoordinated and statistical charging loads
Ahmed et al. Impact of Electric Vehicle Charging on the Performance of Distribution Grid
Kumar et al. Efficiency evaluation of coordinated charging methods used for charging electric vehicles
Saberbari et al. Utilizing PHEVs for peak-shaving, loss reduction and voltage profile improvement via v2b mode
Pea-da et al. Impact of fast charging station to voltage profile in distribution system
Gunter et al. Optimal design of grid-interfaced EV chargers with integrated generation
Tong et al. Intelligent charging strategy for PHEVs in a parking station based on Multi-objective optimization in smart grid
Brissette et al. Study on the effect of solar irradiance intermittency mitigation on electric vehicle battery lifetime
Wager et al. Battery cell balance of electric vehicles under fast-DC charging
Eskander et al. Role of stationary energy storage systems in large-scale bus depots in the case of atypical grid usage
Mastny et al. Concept of fast charging stations with integrated accumulators—Assessment of the impact for operation
KR101113098B1 (ko) 차량 설치용 배터리의 수명 향상을 위한 충방전 제어시스템
Nirukkanaporn et al. A Modified Dynamic Programing for Generation Scheduling–Environmental Impact Analysis for EV Penetration
Karn et al. Energy Management Strategy for Prosumers under Time of Use Pricing
Balal Sustainable Solar-Powered EV Charging System Design Using Machine Learning, DC Fast Charging, and an Intelligent DMPPT Optimization Technique

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant