CN103050421A - 刻蚀控制方法 - Google Patents

刻蚀控制方法 Download PDF

Info

Publication number
CN103050421A
CN103050421A CN2011103154987A CN201110315498A CN103050421A CN 103050421 A CN103050421 A CN 103050421A CN 2011103154987 A CN2011103154987 A CN 2011103154987A CN 201110315498 A CN201110315498 A CN 201110315498A CN 103050421 A CN103050421 A CN 103050421A
Authority
CN
China
Prior art keywords
etching
control method
apc
wafer
etching technics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103154987A
Other languages
English (en)
Inventor
张海洋
王新鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN2011103154987A priority Critical patent/CN103050421A/zh
Publication of CN103050421A publication Critical patent/CN103050421A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

本发明提供了一种刻蚀控制方法,其中,刻蚀工艺通过APC工艺进行控制,所述APC工艺使用神经网络模型,神经网络模型能够很好地逼近晶圆上各点的特征尺寸,通过精确的特征尺寸对刻蚀工艺进行调整,提高刻蚀工艺的可靠性,进一步的提高器件的可靠性。

Description

刻蚀控制方法
技术领域
本发明涉及集成电路制造工艺,特别涉及一种刻蚀控制方法。
背景技术
先进的半导体过程控制技术(Advanced Process Control,APC)研究的目的就是有效的监控工艺过程与机台,以提高良率和总体设备效能。
APC技术在半导体业的应用研究已近十年。然而真正引起人们注意还是在最近这几年,随着半导体工艺技术进入90纳米,半导体器件加工时的工艺窗口非常狭小,这就对集成电路设备和检测设备制造商提出了比以往严格得多的工艺控制要求,以往的统计过程控制(SPC)和单独对某一参数的控制方法已经不能适应当前的工艺技术要求,因而APC成为一种必不可少的关键技术。APC技术作为一种主要的解决方案逐渐得到了包括半导体设备供应商、测量设备供应商以及制造厂商(Fab)等的认同,目前已经在CMP、CVD、光刻和刻蚀等工艺中逐步推广应用。APC的目的是解决工艺过程中各项参数和性能指标漂移的问题、减短测量所需时间、及时纠正误差,它的实施有助于提高生产率、降低能耗、改善产品质量和连续性、以及改善工艺的安全性等。使得工艺设备能够实现更加严格的工艺窗口,满足未来65纳米技术节点或以下工艺技术的要求。
现有的通过APC工艺对刻蚀工艺进行控制的技术中,该APC工艺使用线性模型,其输出的参数为整个晶圆上的平均值,由此,当晶圆上各点的差别较大时,通过APC工艺输出的平均值对刻蚀工艺进行调整将降低刻蚀工艺的可靠性,从而降低了器件的可靠性。
发明内容
本发明的目的在于提供一种刻蚀控制方法,以解决现有的通过APC工艺调整刻蚀工艺可靠性不高的问题。
为解决上述技术问题,本发明提供一种刻蚀控制方法,包括:成膜工艺,在晶圆上形成制造器件结构的膜层;刻蚀工艺,刻蚀所述膜层以形成器件结构;其中,所述刻蚀工艺通过APC工艺进行控制,所述APC工艺使用神经网络模型。
可选的,在所述的刻蚀控制方法中,所述APC工艺的输出为压缩数据,通过所述压缩数据可得到晶圆上多个点的特征尺寸。
可选的,在所述的刻蚀控制方法中,所述压缩数据为PCA压缩数据或小波压缩数据。
可选的,在所述的刻蚀控制方法中,所述压缩数据的数量小于等于4个。
可选的,在所述的刻蚀控制方法中,所述神经网络的训练参数为DOE数据。
可选的,在所述的刻蚀控制方法中,利用前馈控制或者反馈控制对所述APC工艺进行调整。
可选的,在所述的刻蚀控制方法中,在一片或者多片晶圆完成刻蚀工艺之后对所述APC工艺进行调整。
可选的,在所述的刻蚀控制方法中,所述前馈控制的控制参数包括成膜工艺的工艺结果。
可选的,在所述的刻蚀控制方法中,所述成膜工艺包括:化学气相沉积工艺、物理气相沉积工艺、化学机械研磨工艺及光刻工艺中的一种或者多种。
可选的,在所述的刻蚀控制方法中,所述反馈控制的控制参数包括刻蚀工艺的工艺参数和/或刻蚀工艺的工艺结果。
可选的,在所述的刻蚀控制方法中,所述刻蚀工艺的工艺参数包括:刻蚀气体的流量、刻蚀气体的速率、功率、工艺腔室的压力中的一种或者多种。
在本发明提供的刻蚀控制方法中,刻蚀工艺通过APC工艺进行控制,所述APC工艺使用神经网络模型,神经网络模型能够很好地逼近晶圆上各点的特征尺寸,通过精确的特征尺寸对刻蚀工艺进行调整,提高刻蚀工艺的可靠性,进一步的提高器件的可靠性。
附图说明
图1是本发明实施例的刻蚀控制方法的流程示意图;
图2是本发明实施例中APC工艺使用的神经网络模型的流程示意图;
具体实施方式
以下结合附图和具体实施例对本发明提出的刻蚀控制方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明的核心思想在于,刻蚀工艺通过APC工艺进行控制,所述APC工艺使用神经网络模型,神经网络模型能够很好地逼近晶圆上各点的特征尺寸,通过精确的特征尺寸对刻蚀工艺进行调整,提高刻蚀工艺的可靠性,进一步的提高器件的可靠性。
请参考图1,其为本发明实施例的刻蚀控制方法的流程示意图。在本实施例中,通过刻蚀工艺将形成晶体管的栅极,所述刻蚀控制方法的具体步骤如下:
执行步骤S10:通过化学气相沉积工艺形成二氧化硅层;
执行步骤S20:对所述二氧化硅层进行化学机械研磨工艺;
执行步骤S30:通过化学气相沉积工艺形成多晶硅层;
执行步骤S40:对所述多晶硅层进行光刻工艺;
执行步骤S50:刻蚀所述多晶硅层形成栅极;
其中,在执行步骤S50之前,通过步骤S100:APC工艺对所述步骤S50(刻蚀形成栅极)的工艺条件进行控制,具体的,可调整所述刻蚀工艺的工艺时间、刻蚀气体的流量、刻蚀气体的速率、工艺腔室的功率及工艺腔室的压力等各种工艺参数中的一种或者多种。若当APC工艺估计接下去的刻蚀工艺将导致晶圆刻蚀不足的时候,APC工艺可调整刻蚀工艺,延长工艺时间、加大刻蚀气体的流量等,从而可防止接下去的刻蚀工艺所产生的不足。
所述APC工艺使用神经网络模型。请参考图2,其为本发明实施例中APC工艺使用的神经网络模型的流程示意图。如图2所示,所述神经网络模型包括输入层、隐藏层及输出层,所述输入层可输入多个参数(x1、x2……xn),通过所述隐藏层中的多个节点(Q1、Q2……Qn)的运算,可输出多个参数(Y1、Y2)。在本实施例中,所述隐藏层为一层,在本发明的其他实施例中,为了更好地逼近晶圆上各点的特征尺寸,所述隐藏层也可以为多层。
在本实施例中,所述神经网络的初始输入、输出参数为DOE(Design OfExperiments,实验设计)数据,通过所述DOE数据对所述神经网络进行训练,通过DOE数据,使得神经网络有效逼近晶圆上各点的特征尺寸,从而确定神经网络模型中的系数(W11、W12、W1n、W21、W22、W2n......Wn1、Wn2、Wnn),即确定神经网络模型。作为输入的DOE数据可包括刻蚀工艺的工艺参数,例如:刻蚀气体的速率、工艺腔室的功率及工艺腔室的压力等,还可包括可影响刻蚀工艺的其他工艺的工艺结果,例如光刻工艺等。作为输出的DOE数据可包括膜层的厚度、侧墙角度等表征晶圆刻蚀结果的特征尺寸。
在本实施例中,使用神经网络模型的APC工艺的输出参数为两个(Y1、Y2),优选的,所述输出参数通过PCA(Principal Component Analysis,主成分分析)或者小波进行数据压缩,即通过输出压缩数据减少APC工艺数据输出的量,从而简化APC工艺的复杂度。优选地,所述APC工艺的输入参数小于等于四个,所述四个输出参数为压缩参数,即通过该四个参数可得到关于晶圆的更多个参数。通过所述压缩数据可得到晶圆上多个点的特征尺寸,优选的,可得到晶圆上5~200个点的特征尺寸,从而可全面反映晶圆经过刻蚀工艺后的情况,由此,根据这些点的特征尺寸可对刻蚀工艺进行精确地调整,从而提高刻蚀工艺的可靠性,进一步的,提高所形成的器件的可靠性。
在本实施例中,在利用APC工艺对晶圆的刻蚀工艺进行调整的过程中,利用前馈控制或者反馈控制对所述APC工艺进行调整,从而提高APC工艺的可靠性,进一步的提高刻蚀工艺的可靠性。
请继续参考图1,在本实施例中,在完成步骤S10(化学气相沉积工艺)、步骤S20(化学机械研磨工艺)、步骤S30(化学气相沉积工艺)、步骤S40(光刻工艺)每一工艺步骤之后,将该工艺步骤的工艺结果作为前馈控制的控制参数提供给APC工艺。在本发明的其他实施例中,还可包括物理气相沉积工艺等工艺,同样的,可在该工艺步骤之后,将该工艺步骤的工艺结果作为前馈控制的控制参数提供给APC工艺。所述工艺结果可包括所形成的膜层厚度等。所述APC工艺可根据该控制参数进行调整,具体的,调整神经网络,使得APC工艺的输出更逼近晶圆的特征尺寸,从而提高对刻蚀工艺调整的可靠性。
在本实施例中,还将所述步骤S50(刻蚀工艺)的工艺条件或者工艺结果作为反馈控制的控制参数提供给APC工艺,以进一步对APC工艺进行调整,提高APC工艺的可靠性。所述刻蚀工艺的工艺条件包括:刻蚀气体的速率、工艺腔室的功率及工艺腔室的压力等;所述刻蚀工艺的工艺结果包括:刻蚀后晶圆上膜层的厚度以及侧墙角度等。
在本实施例中,对所述APC工艺的调整可在一片晶圆完成刻蚀工艺之后,从而提高对每片晶圆的刻蚀精度;也可在多片晶圆完成刻蚀工艺之后,从而在提高对晶圆的刻蚀精度的情况下,简化工艺的复杂度。
在本发明提供的刻蚀控制方法中,刻蚀工艺通过APC工艺进行控制,所述APC工艺使用神经网络模型,神经网络模型能够很好地逼近晶圆上各点的特征尺寸,通过精确的特征尺寸对刻蚀工艺进行调整,提高刻蚀工艺的可靠性,进一步的提高器件的可靠性。
进一步的,又利用前馈控制或者反馈控制对所述APC工艺进行调整,以提高APC工艺的可靠性,进而提高刻蚀工艺的可靠性,提高利用刻蚀工艺所形成的器件的可靠性。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (11)

1.一种刻蚀控制方法,其特征在于,包括:
成膜工艺,在晶圆上形成制造器件结构的膜层;
刻蚀工艺,刻蚀所述膜层以形成器件结构;
其中,所述刻蚀工艺通过APC工艺进行控制,所述APC工艺使用神经网络模型。
2.如权利要求1所述的刻蚀控制方法,其特征在于,所述APC工艺的输出为压缩数据,通过所述压缩数据可得到晶圆上多个点的特征尺寸。
3.如权利要求2所述的刻蚀控制方法,其特征在于,所述压缩数据为PCA压缩数据或小波压缩数据。
4.如权利要求2所述的刻蚀控制方法,其特征在于,所述压缩数据的数量小于等于4个。
5.如权利要求1至4中的任一项所述的刻蚀控制方法,其特征在于,所述神经网络的训练参数为DOE数据。
6.如权利要求1至4中的任一项所述的刻蚀控制方法,其特征在于,利用前馈控制或者反馈控制对所述APC工艺进行调整。
7.如权利要求6所述的刻蚀控制方法,其特征在于,在一片或者多片晶圆完成刻蚀工艺之后对所述APC工艺进行调整。
8.如权利要求6所述的刻蚀控制方法,其特征在于,所述前馈控制的控制参数包括成膜工艺的工艺结果。
9.如权利要求8所述的刻蚀控制方法,其特征在于,所述成膜工艺包括:化学气相沉积工艺、物理气相沉积工艺、化学机械研磨工艺及光刻工艺中的一种或者多种。
10.如权利要求6所述的刻蚀控制方法,其特征在于,所述反馈控制的控制参数包括刻蚀工艺的工艺参数和/或刻蚀工艺的工艺结果。
11.如权利要求10所述的刻蚀控制方法,其特征在于,所述刻蚀工艺的工艺参数包括:刻蚀气体的流量、刻蚀气体的速率、功率、工艺腔室的压力中的一种或者多种。
CN2011103154987A 2011-10-17 2011-10-17 刻蚀控制方法 Pending CN103050421A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103154987A CN103050421A (zh) 2011-10-17 2011-10-17 刻蚀控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103154987A CN103050421A (zh) 2011-10-17 2011-10-17 刻蚀控制方法

Publications (1)

Publication Number Publication Date
CN103050421A true CN103050421A (zh) 2013-04-17

Family

ID=48063020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103154987A Pending CN103050421A (zh) 2011-10-17 2011-10-17 刻蚀控制方法

Country Status (1)

Country Link
CN (1) CN103050421A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106444365A (zh) * 2015-08-12 2017-02-22 中芯国际集成电路制造(上海)有限公司 晶圆刻蚀的控制方法及晶圆制造方法
CN107369635A (zh) * 2017-06-06 2017-11-21 上海集成电路研发中心有限公司 一种基于深度学习的智能半导体装备系统
WO2022104699A1 (en) * 2020-11-20 2022-05-27 Yangtze Memory Technologies Co., Ltd. Feed-forward run-to-run wafer production control system based on real-time virtual metrology

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848373A (zh) * 2005-12-09 2006-10-18 北京北方微电子基地设备工艺研究中心有限责任公司 一种晶片刻蚀工艺中的故障检测方法
CN101425448A (zh) * 2007-11-01 2009-05-06 北京北方微电子基地设备工艺研究中心有限责任公司 一种工艺控制方法及装置
CN101446804A (zh) * 2007-11-26 2009-06-03 北京北方微电子基地设备工艺研究中心有限责任公司 一种工艺控制方法和装置
WO2010071101A1 (ja) * 2008-12-15 2010-06-24 東京エレクトロン株式会社 基板処理システム、基板処理方法およびプログラムを記憶した記憶媒体
CN102136418A (zh) * 2010-01-27 2011-07-27 中芯国际集成电路制造(上海)有限公司 栅极刻蚀的方法
CN102194676A (zh) * 2010-03-11 2011-09-21 中芯国际集成电路制造(上海)有限公司 制作半导体器件栅极的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1848373A (zh) * 2005-12-09 2006-10-18 北京北方微电子基地设备工艺研究中心有限责任公司 一种晶片刻蚀工艺中的故障检测方法
CN101425448A (zh) * 2007-11-01 2009-05-06 北京北方微电子基地设备工艺研究中心有限责任公司 一种工艺控制方法及装置
CN101446804A (zh) * 2007-11-26 2009-06-03 北京北方微电子基地设备工艺研究中心有限责任公司 一种工艺控制方法和装置
WO2010071101A1 (ja) * 2008-12-15 2010-06-24 東京エレクトロン株式会社 基板処理システム、基板処理方法およびプログラムを記憶した記憶媒体
CN102136418A (zh) * 2010-01-27 2011-07-27 中芯国际集成电路制造(上海)有限公司 栅极刻蚀的方法
CN102194676A (zh) * 2010-03-11 2011-09-21 中芯国际集成电路制造(上海)有限公司 制作半导体器件栅极的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106444365A (zh) * 2015-08-12 2017-02-22 中芯国际集成电路制造(上海)有限公司 晶圆刻蚀的控制方法及晶圆制造方法
CN106444365B (zh) * 2015-08-12 2020-03-10 中芯国际集成电路制造(上海)有限公司 晶圆刻蚀的控制方法及晶圆制造方法
CN107369635A (zh) * 2017-06-06 2017-11-21 上海集成电路研发中心有限公司 一种基于深度学习的智能半导体装备系统
WO2022104699A1 (en) * 2020-11-20 2022-05-27 Yangtze Memory Technologies Co., Ltd. Feed-forward run-to-run wafer production control system based on real-time virtual metrology

Similar Documents

Publication Publication Date Title
US20050221514A1 (en) Adaptive sampling method for improved control in semiconductor manufacturing
Qin et al. Semiconductor manufacturing process control and monitoring: A fab-wide framework
CN1258811C (zh) 控制蚀刻选择性的方法和装置
CN106444365B (zh) 晶圆刻蚀的控制方法及晶圆制造方法
US8108060B2 (en) System and method for implementing a wafer acceptance test (“WAT”) advanced process control (“APC”) with novel sampling policy and architecture
US20020107604A1 (en) Run-to-run control method for proportional-integral-derivative (PID) controller tuning for rapid thermal processing (RTP)
WO2006041543A1 (en) Method and system for dynamically adjusting metrology sampling based upon available metrology capacity
US11056405B2 (en) Methods and systems for controlling wafer fabrication process
US9087793B2 (en) Method for etching target layer of semiconductor device in etching apparatus
CN103050421A (zh) 刻蚀控制方法
WO2009067952A1 (fr) Procédé de commande de technique et son dispositif
US8394719B2 (en) System and method for implementing multi-resolution advanced process control
CN116053164A (zh) 一种关键尺寸控制方法及系统
US7324865B1 (en) Run-to-run control method for automated control of metal deposition processes
Tai et al. Measuring the manufacturing yield for processes with multiple manufacturing lines
CN107316810A (zh) 一种改善刻蚀关键尺寸稳定性的方法
CN101572216B (zh) 控制刻蚀方法及刻蚀装置的控制装置
CN105097435B (zh) 一种调节hrp电阻值的方法
KR20100048186A (ko) 공정-소자-회로 통합 시뮬레이션 시스템
CN104538286A (zh) 降低以及调节薄膜表面能的方法
CN101425448A (zh) 一种工艺控制方法及装置
CN106024758A (zh) 多晶硅栅极关键尺寸的先进控制方法
Subramany et al. CPE run-to-run overlay control for high volume manufacturing
林建華 et al. A Study of Feedforward and Feedback EWMA Controller for Multistage Processes
CN105843990A (zh) 一种基于最速下降法与二分法的概率电路仿真方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130417