CN103048843A - Continuous variable quantum state frequency transformation device - Google Patents
Continuous variable quantum state frequency transformation device Download PDFInfo
- Publication number
- CN103048843A CN103048843A CN2012105536406A CN201210553640A CN103048843A CN 103048843 A CN103048843 A CN 103048843A CN 2012105536406 A CN2012105536406 A CN 2012105536406A CN 201210553640 A CN201210553640 A CN 201210553640A CN 103048843 A CN103048843 A CN 103048843A
- Authority
- CN
- China
- Prior art keywords
- light
- frequency
- pump light
- quantum state
- light field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000009466 transformation Effects 0.000 title claims description 6
- 230000003287 optical effect Effects 0.000 claims abstract description 34
- 230000008878 coupling Effects 0.000 claims abstract description 28
- 238000010168 coupling process Methods 0.000 claims abstract description 28
- 238000005859 coupling reaction Methods 0.000 claims abstract description 28
- 238000001914 filtration Methods 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 claims 5
- 230000003667 anti-reflective effect Effects 0.000 claims 4
- 238000001514 detection method Methods 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 52
- 238000005259 measurement Methods 0.000 abstract description 13
- 238000005086 pumping Methods 0.000 abstract description 8
- 238000001228 spectrum Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 230000001427 coherent effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Images
Landscapes
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
一种连续变量量子态频率变换装置,包括泵浦光源,泵浦光源输出的激光分为两束,一束激光依次经过光强控制系统和光束耦合系统后与输入的连续变量光场量子态耦合,经过模式匹配系统和非线性光学谐振器产生频率变换量子态,频率变换量子态经过光束准直系统和光场过滤系统进入平衡零拍测量系统;泵浦光源输出的另一束激光依次经过第二光强控制系统和第二光束耦合系统后与输入的本地光场耦合,经过第二模式匹配系统和第二非线性光学谐振器产生频率变换本地光场,频率变换本地光场经过第二光束准直系统和第二光场过滤系统进入平衡零拍测量系统;该装置可实现高效、高保真度的连续变量量子态的频率变换,且对泵浦光的额外噪声不敏感。A continuous variable quantum state frequency conversion device, including a pumping light source, the laser output from the pumping light source is divided into two beams, and one beam of laser light is coupled with the input continuous variable light field quantum state after passing through a light intensity control system and a beam coupling system in sequence , through the mode matching system and the nonlinear optical resonator to generate the frequency-transformed quantum state, the frequency-transformed quantum state enters the balanced zero-beat measurement system through the beam collimation system and the light field filtering system; the other laser beam output by the pump light source passes through the second After the light intensity control system and the second beam coupling system are coupled with the input local light field, the frequency-transformed local light field is generated through the second mode matching system and the second nonlinear optical resonator, and the frequency-transformed local light field passes through the second beam quasi- The direct system and the second optical field filter system enter the balanced zero-beat measurement system; the device can realize the frequency conversion of the continuous variable quantum state with high efficiency and high fidelity, and is insensitive to the additional noise of the pump light.
Description
技术领域technical field
本发明涉及连续变量量子光学和量子信息领域,具体是一种连续变量量子态频率变换装置。The invention relates to the fields of continuous variable quantum optics and quantum information, in particular to a continuous variable quantum state frequency conversion device.
背景技术Background technique
基于光场和原子系统的量子信息网络目前得到了人们的很大重视,并取得了令人振奋的研究进展。光场由于具有极快的传播速度及微弱的消相干特性等,适合于作为量子态的载体,进行长距离传输;而原子由于具有较长的相干时间适合于量子态的存储。对于未来基于光场和原子系统的量子信息网络,量子态需要在不同的物理载体之间进行高保真度的相互转移。在现实环境中,量子信息网络的各个节点通常由不同的物理体系构成,从而具有不同的光学特征频率。因此,能够实现光场量子态在不同光学频率之间进行高保真度转换功能的量子接口器件将是未来量子信息网络的重要基本组成部分。例如,在量子信息网络中,量子态需要在原子载体和光场载体之间进行转移;以及不同载波波长的光场之间进行转移。利用光场量子态的频率变换技术,就能够将不同工作波长的量子系统相互联系起来。光场的正交分量具有连续谱的结构,属于连续变量范畴,在量子光学及量子信息领域具有极重要的应用。Quantum information networks based on light fields and atomic systems have received great attention and exciting research progress. Due to its extremely fast propagation speed and weak decoherence characteristics, the light field is suitable for long-distance transmission as the carrier of quantum states; and atoms are suitable for the storage of quantum states due to their long coherence time. For future quantum information networks based on light fields and atomic systems, quantum states need to be transferred between different physical carriers with high fidelity. In a real environment, each node of a quantum information network is usually composed of different physical systems, thus having different optical characteristic frequencies. Therefore, quantum interface devices that can realize high-fidelity conversion of optical field quantum states between different optical frequencies will be an important basic component of future quantum information networks. For example, in quantum information networks, quantum states need to be transferred between atomic carriers and optical field carriers; and between optical fields with different carrier wavelengths. By using the frequency conversion technology of the quantum state of the light field, quantum systems with different operating wavelengths can be connected to each other. The orthogonal component of the light field has a continuous spectrum structure, which belongs to the category of continuous variables, and has extremely important applications in the fields of quantum optics and quantum information.
专利“Conversion of quantum information from one photonic representation to anotherphotonic representation,Patent No.:US 7,449,672 B2”提出了关于光子的量子信息频率变换的方法和装置,但在该专利中所涉及的量子信息的载体只限于:光子的偏振,光子数,时间区间,以及角动量,并不包括光场的正交分量。基于光学二阶非线性光学频率变换技术是实现连续变量光场量子态频率变换的最有效方案之一。文献“Observation of quantum frequencyconversion,Phys.Rev.Lett.68,2153(1992)”报道了通过脉冲光学和频过程将非经典孪生光束中的一束进行频率变换,实验上观察到频率变换后的光场和孪生光束中的剩余光束之间存在着非经典的强度关联。在上述实验方案中,泵浦光和信号光均单次穿过非线性介质发生相互作用,因此所需的抽运光场必须是具有高峰值功率的短脉冲光场,而对于抽运光场是连续波光场的情形并不适用。文献“Frequency conversion of an entangled state,Phys.Rev.A 73,033817(2006)”理论分析了利用和频过程实现连续变量纠缠态的量子态频率上转换。该文献引入了谐振腔,从而增强了非线性相互作用,适用于连续波情形下的量子态频率变换,不足之处是谐振腔对输入的信号光场和和频上转换光场均共振,由于腔线宽的限制,该方案只适合于窄带的量子态频率变换,具有很大局限性。文献“Frequency conversion of continuous variablequantum states,J.Opt.Soc.Am.B 25,269(2008)”理论分析了基于谐振腔的宽带连续波连续变量量子态频率变换,并研究了泵浦光额外起伏噪声对量子态频率变换的影响,但是该文献并没有提出如何有效克服泵浦光额外起伏噪声带来的不利影响。在实际中,作为强泵浦光的激光光源通常存在着较大的额外起伏噪声,这将会极大影响和降低连续变量光场量子态的频率变换保真度。The patent "Conversion of quantum information from one photonic representation to another photonic representation, Patent No.: US 7,449,672 B2" proposes a method and device for frequency conversion of quantum information on photons, but the carrier of quantum information involved in this patent is limited to : photon polarization, photon number, time interval, and angular momentum, excluding the orthogonal component of the light field. The second-order nonlinear optical frequency conversion technology based on optics is one of the most effective schemes to realize the frequency conversion of the continuous variable optical field quantum state. The literature "Observation of quantum frequency conversion, Phys. Rev. Lett. 68, 2153 (1992)" reported that the frequency of one of the non-classical twin beams was converted by the pulse optical sum frequency process, and the frequency converted light was observed experimentally. There is a nonclassical intensity correlation between the field and the remaining beams in the twin beams. In the above experimental scheme, the pump light and the signal light both pass through the nonlinear medium once to interact, so the required pumping light field must be a short pulse light field with high peak power, and for the pumping light field The case of continuous wave light field is not applicable. The literature "Frequency conversion of an entangled state, Phys. Rev. A 73, 033817 (2006)" theoretically analyzes the use of sum-frequency processes to realize the quantum state frequency up-conversion of continuous variable entangled states. This document introduces a resonant cavity, which enhances the nonlinear interaction and is suitable for the frequency conversion of quantum states in the case of continuous waves. The disadvantage is that the resonant cavity resonates with both the input signal light field and the sum-frequency up-conversion light field. Due to the limitation of cavity line width, this scheme is only suitable for narrowband quantum state frequency conversion, which has great limitations. The literature "Frequency conversion of continuous variable quantum states, J.Opt.Soc.Am.B 25,269(2008)" theoretically analyzes the frequency conversion of the broadband continuous wave continuous variable quantum state based on the resonant cavity, and studies the effect of the additional fluctuation noise of the pump light on However, this literature does not propose how to effectively overcome the adverse effects of the additional fluctuation noise of the pump light. In practice, the laser light source as a strong pump light usually has large additional fluctuation noise, which will greatly affect and reduce the fidelity of the frequency conversion of the continuous variable light field quantum state.
发明内容Contents of the invention
本发明的目的在于提供一种结构紧凑、稳定性好的连续变量量子态频率变换装置。该装置可以实现连续变量光场量子态的高效、高保真度频率上变换或者下变换,而且量子态频率变换的保真度对泵浦光场的额外起伏噪声不敏感。The object of the present invention is to provide a continuous variable quantum state frequency conversion device with compact structure and good stability. The device can realize high-efficiency and high-fidelity frequency up-conversion or down-conversion of the quantum state of the continuous variable light field, and the fidelity of the frequency conversion of the quantum state is insensitive to the extra fluctuation noise of the pumping light field.
本发明提供的一种连续变量量子态频率变换装置,包括泵浦光源,第一、第二光强控制系统,第一、第二光束耦合系统,第一、第二模式匹配系统,第一、第二非线性光学谐振器,第一、第二光束准直系统,第一、第二光场过滤系统,平衡零拍测量系统;所述的泵浦光源输出的一束激光依次经过第一光强控制系统和第一光束耦合系统后与输入的连续变量光场量子态耦合,经过第一模式匹配系统和第一非线性光学谐振器产生频率变换量子态,频率变换量子态经过第一光束准直系统和第一光场过滤系统进入平衡零拍测量系统;泵浦光源输出的另一束激光依次经过第二光强控制系统和第二光束耦合系统后与输入的本地光场耦合,经过第二模式匹配系统和第二非线性光学谐振器产生频率变换本地光场,频率变换本地光场经过第二光束准直系统和第二光场过滤系统进入平衡零拍测量系统;A continuous variable quantum state frequency conversion device provided by the present invention includes a pumping light source, first and second light intensity control systems, first and second beam coupling systems, first and second mode matching systems, first and second light intensity control systems, The second nonlinear optical resonator, the first and second beam collimation systems, the first and second light field filtering systems, and the balanced zero-beat measurement system; a beam of laser light output by the pumping light source passes through the first light successively After the strong control system and the first beam coupling system are coupled with the input continuous variable light field quantum state, the frequency conversion quantum state is generated through the first mode matching system and the first nonlinear optical resonator, and the frequency conversion quantum state is passed through the first beam quasi The direct system and the first light field filter system enter the balanced zero-beat measurement system; the other laser beam output by the pump light source passes through the second light intensity control system and the second beam coupling system in sequence, and then is coupled with the input local light field, and passes through the first The second mode matching system and the second nonlinear optical resonator generate a frequency-transformed local light field, and the frequency-transformed local light field enters the balanced zero-beat measurement system through the second beam collimation system and the second light field filter system;
所述的泵浦光源为单频连续波激光光源;The pumping light source is a single-frequency continuous wave laser light source;
所述的第一非线性光学谐振器和第二非线性光学谐振器均由非线性介质、腔长锁定系统和至少两个反射镜构成,其中一个反射镜固定在压电陶瓷上,作为输入耦合的反射镜外表面镀有对泵浦光和信号光的减反膜,内表面镀有信号光的高透膜、泵浦光的部分反射膜和频率转换光的高透膜;作为输出耦合的反射镜内表面镀有对信号光的高透膜、泵浦光的高反射膜和频率转换光的高透膜,外表面镀有对信号光和频率转换光的减反膜;其余的反射镜内表面镀有对信号光、泵浦光和频率转换光的高反射膜;非线性介质两个表面镀有对信号光、泵浦光和频率转换光的减反膜。Both the first nonlinear optical resonator and the second nonlinear optical resonator are composed of a nonlinear medium, a cavity length locking system and at least two mirrors, one of which is fixed on a piezoelectric ceramic as an input coupling The outer surface of the reflector is coated with an anti-reflection film for pump light and signal light, and the inner surface is coated with a high-transmission film for signal light, a partial reflection film for pump light, and a high-transmission film for frequency conversion light; as an output coupling The inner surface of the mirror is coated with a high-transparency film for signal light, a high-reflection film for pump light, and a high-transmission film for frequency-converted light, and the outer surface is coated with an anti-reflection film for signal light and frequency-converted light; the rest of the mirrors are The inner surface is coated with high reflection film for signal light, pump light and frequency conversion light; the two surfaces of the nonlinear medium are coated with antireflection film for signal light, pump light and frequency conversion light.
所述的第一光场过滤系统和第二光场过滤系统均由能实现对频率转换光高透射,且对泵浦光、信号光以及泵浦光的二次谐波高反射的至少一个平面反射镜构成。Both the first light field filter system and the second light field filter system have at least one plane that can achieve high transmission of frequency conversion light and high reflection of pump light, signal light and the second harmonic of pump light Mirror composition.
所述的第一光束耦合系统和第二光束耦合系统均由两面镀膜的45度平面反射镜构成,其中泵浦光对应的入射面镀有45度泵浦光减反膜,信号光对应的入射面镀有45度信号光高反射膜和泵浦光的高透膜。The first beam coupling system and the second beam coupling system are both composed of a 45-degree flat mirror coated on both sides, wherein the incident surface corresponding to the pump light is coated with a 45-degree pump light antireflection film, and the incident surface corresponding to the signal light The surface is coated with a 45-degree high-reflection film for signal light and a high-transmission film for pump light.
本发明装置中,第一光强控制系统和第二光强控制系统用来精确控制泵浦光的光强以实现最佳量子态频率变换;第一光束耦合系统和第二光束耦合系统用来耦合泵浦光和信号光,使得两光束的路径空间完全重合;第一模式匹配系统和第二模式匹配系统用来实现泵浦光和信号光的空间模式到第一非线性光学谐振器和第二非线性光学谐振器的模式匹配;第一非线性光学谐振器和第二非线性光学谐振器用来实现信号光场的高效、高保真度量子态频率变换及本地光场的频率变换;第一光束准直系统和第二光束准直系统用来将第一非线性光学谐振器和第二非线性光学谐振器出射的发散光场进行准直;第一光场过滤系统和第二光场过滤系统用来将第一光束准直系统和第二光束准直系统输出光场中剩余的泵浦光、信号光以及泵浦光的二次谐波光场完全过滤掉,只让频率变换光场无损耗通过;平衡零拍测量系统用来探测频率变换光场量子态的正交分量信息。In the device of the present invention, the first light intensity control system and the second light intensity control system are used to precisely control the light intensity of the pump light to achieve the best quantum state frequency conversion; the first beam coupling system and the second beam coupling system are used to Coupling pump light and signal light, so that the path space of the two light beams completely coincides; the first mode matching system and the second mode matching system are used to realize the spatial mode of pump light and signal light to the first nonlinear optical resonator and the second The mode matching of two nonlinear optical resonators; the first nonlinear optical resonator and the second nonlinear optical resonator are used to realize the efficient and high-fidelity quantum state frequency conversion of the signal light field and the frequency conversion of the local light field; the first The beam collimating system and the second beam collimating system are used to collimate the divergent light fields emitted by the first nonlinear optical resonator and the second nonlinear optical resonator; the first optical field filtering system and the second optical field filtering The system is used to completely filter out the remaining pump light, signal light and the second harmonic light field of the pump light in the output light fields of the first beam collimation system and the second beam collimation system, and only allow the frequency conversion light field Lossless pass-through; balanced zero-beat measurement system is used to detect the quadrature component information of the quantum state of the frequency-transformed light field.
与现有技术相比,本发明的优点和效果:Compared with prior art, advantage and effect of the present invention:
本发明连续变量量子态频率变换装置,信号光连续变量量子态及相应的本地光场入射该装置后,可以实现高效、高保真度的连续变量量子态的频率变换及频率变换量子态的平衡零拍测量,同时该装置对泵浦光场的额外起伏噪声不敏感。The continuous variable quantum state frequency conversion device of the present invention, after the signal light continuous variable quantum state and the corresponding local light field is incident on the device, can realize the frequency conversion of the continuous variable quantum state and the balance zero of the frequency conversion quantum state with high efficiency and high fidelity At the same time, the device is insensitive to the additional fluctuation noise of the pump light field.
本发明连续变量量子态频率变换装置,在获得信号光量子态频率变换的同时,可以实现本地光场的频率变换,有效解决了对频率变换量子态进行平衡零拍测量所需的本地光场问题。The continuous variable quantum state frequency conversion device of the present invention can realize the frequency conversion of the local light field while obtaining the frequency conversion of the light quantum state of the signal, effectively solving the problem of the local light field required for the balanced zero-beat measurement of the frequency conversion quantum state.
本发明连续变量量子态频率变换装置,信号光量子态和本地光场的频率变换过程的泵浦光源来自于同一激光器,从而泵浦光源的额外起伏噪声将同时转移到频率变换光场和相应的本地光场中,由于平衡零拍测量只与本地光场和信号光场的相对相位有关,来自于共同泵浦光源的额外起伏相位噪声将被抵消,因此该装置可以有效克服泵浦光场额外相位噪声对连续变量量子态频率变换过程的不利影响。In the continuous variable quantum state frequency conversion device of the present invention, the pump light source in the frequency conversion process of the signal light quantum state and the local light field comes from the same laser, so that the extra fluctuation noise of the pump light source will be transferred to the frequency conversion light field and the corresponding local light field at the same time. In the light field, since the balanced zero-beat measurement is only related to the relative phase of the local light field and the signal light field, the extra fluctuation phase noise from the common pump light source will be offset, so the device can effectively overcome the extra phase of the pump light field Detrimental effects of noise on the frequency transformation process of continuous variable quantum states.
附图说明Description of drawings
图1连续变量量子态频率变换装置示意图Figure 1 Schematic diagram of continuous variable quantum state frequency conversion device
图2输入信号光场量子态的噪声功率谱,A为正交振幅分量噪声功率谱,B为正交位相分量噪声功率谱Figure 2 The noise power spectrum of the quantum state of the input signal light field, A is the noise power spectrum of the quadrature amplitude component, B is the noise power spectrum of the quadrature phase component
图3频率变换光场量子态的噪声功率谱,A为正交振幅分量噪声功率谱,B为正交位相分量噪声功率谱Figure 3 The noise power spectrum of the quantum state of the frequency-transformed light field, A is the noise power spectrum of the quadrature amplitude component, B is the noise power spectrum of the quadrature phase component
具体实施方式Detailed ways
一种连续变量量子态频率变换装置,如图1所示:包括泵浦光源1、第一光强控制系统2、第一光束耦合系统3、第一模式匹配系统4、第一非线性光学谐振器5、第一光束准直系统6、第一光场过滤系统7、第二光强控制系统8、第二光束耦合系统9、第二模式匹配系统10、第二非线性光学谐振器11、第二光束准直系统12、第二光场过滤系统13和平衡零拍测量系统14;泵浦光源1采用1550纳米单频连续波光纤激光器,其输出激光分为两部分,其中一束激光依次经过第一光强控制系统2和第一光束耦合系统3后与输入的532纳米连续变量相干态光场S耦合,再经过第一模式匹配系统4和第一非线性光学谐振器5产生810纳米频率变换量子态,频率变换量子态经过第一光束准直系统6和第一光场过滤系统7进入平衡零拍测量系统14;泵浦光源1输出的另一束激光依次经过第二光强控制系统8和第二光束耦合系统9后与输入的532纳米本地光场L耦合,经过第二模式匹配系统10和第二非线性光学谐振器11产生810纳米频率变换本地光场,频率变换本地光场经过第二光束准直系统12和第二光场过滤系统13进入平衡零拍测量系统14;810纳米频率变换量子态经平衡零拍测量系统14进行测量;第一光强控制系统2和第二光强控制系统8均由半波片和偏振分束棱镜组成;第一光束耦合系统3和第二光束耦合系统9均由两面镀膜的平面反射镜构成,泵浦光入射面镀有1550纳米S偏振45度减反膜,信号光入射面镀有532纳米S偏振45度高反膜和1550纳米S偏振45度高透膜;第一非线性光学谐振器5和第二非线性光学谐振器11的谐振腔均由两镜驻波腔构成,输入耦合反射镜外表面镀有532、1550纳米减反膜,输入耦合反射镜内表面镀有532、810纳米的高透膜以及1550纳米的部分反射膜,输出耦合反射镜内表面镀有532、810纳米高透膜以及1550纳米的高反射膜,输出耦合反射镜外表面镀有810、532纳米的高透膜,非线性晶体的两个通光端面镀有对532、1550和810纳米激光的减反膜,腔长锁定系统的误差电信号反馈到反射镜上的压电陶瓷来实现非线性光学谐振器的腔长和泵浦光共振;第一光场过滤系统7和第二光场过滤系统13均由三个双面镀膜的平面滤波片构成,其中第一个滤波片的前表面镀有810纳米高透膜和532纳米高反膜,后表面镀有810纳米减反膜,第二个滤波片的前表面镀有810纳米高透膜和1550纳米高反膜,后表面镀有810纳米减反膜,第三个滤波片的前表面镀有810纳米高透膜和775纳米高反膜,后表面镀有810纳米减反膜。A continuous variable quantum state frequency conversion device, as shown in Figure 1: including a
图2是实验测量的入射本发明装置的532纳米相干态信号光场的正交振幅分量和正交位相分量的起伏噪声功率谱(归一化到相应的标准量子极限噪声)。可以看出,在分析频率大于6MHz以上时,532纳米信号光场的正交振幅分量和正交位相分量的起伏噪声都与相应的标准量子极限噪声重合,即为相干态。Fig. 2 is the experimentally measured fluctuation noise power spectrum (normalized to the corresponding standard quantum limit noise) of the quadrature amplitude component and quadrature phase component of the 532 nm coherent state signal light field incident on the device of the present invention. It can be seen that when the analysis frequency is greater than 6MHz, the fluctuation noise of the orthogonal amplitude component and the orthogonal phase component of the 532nm signal light field coincides with the corresponding standard quantum limit noise, which is a coherent state.
图3是本发明装置输出的频率变换810纳米光场量子态的正交振幅分量和正交位相分量的起伏噪声功率谱。可以看出在分析频率大于6MHz时,810纳米信号光场的正交振幅分量和正交位相分量的起伏噪声均和相应的标准量子极限噪声重合,即为相干态。实验中测量到相应的532纳米信号光场到810纳米频率变换光场的平均光子-光子转换效率为86%。因此利用本发明装置可以实现532纳米相干态到810纳米相干态的高效、高保真度频率变换。同时,在频率变换过程中,作为泵浦光的1550纳米光场在分析频率2MHz-20MHz处存在着远大于标准量子极限的经典起伏噪声(当测量功率为8毫瓦左右时,相应的噪声高于标准量子噪声极限10dB-20dB以上),从而证实了本发明装置对泵浦光场的额外起伏噪声不敏感。Fig. 3 is the fluctuating noise power spectrum of the quadrature amplitude component and quadrature phase component of the frequency-transformed 810 nanometer light field quantum state output by the device of the present invention. It can be seen that when the analysis frequency is greater than 6MHz, the fluctuation noise of the quadrature amplitude component and quadrature phase component of the 810nm signal light field coincides with the corresponding standard quantum limit noise, which is a coherent state. The average photon-to-photon conversion efficiency of the corresponding 532nm signal light field to the 810nm frequency conversion light field is measured in the experiment as 86%. Therefore, the device of the invention can realize efficient and high-fidelity frequency conversion from a coherent state at 532 nanometers to a coherent state at 810 nanometers. At the same time, in the process of frequency conversion, the 1550nm light field as the pump light has classical fluctuation noise far greater than the standard quantum limit at the analysis frequency of 2MHz-20MHz (when the measurement power is about 8 mW, the corresponding noise is high 10dB-20dB above the standard quantum noise limit), thus confirming that the device of the present invention is not sensitive to the additional fluctuation noise of the pump light field.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210553640.6A CN103048843B (en) | 2012-12-18 | 2012-12-18 | Continuous variable quantum state frequency transformation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210553640.6A CN103048843B (en) | 2012-12-18 | 2012-12-18 | Continuous variable quantum state frequency transformation device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103048843A true CN103048843A (en) | 2013-04-17 |
CN103048843B CN103048843B (en) | 2015-01-28 |
Family
ID=48061538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210553640.6A Expired - Fee Related CN103048843B (en) | 2012-12-18 | 2012-12-18 | Continuous variable quantum state frequency transformation device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103048843B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110658634A (en) * | 2019-08-28 | 2020-01-07 | 西安空间无线电技术研究所 | Processing system and method for hybrid entanglement of continuous variable polarization and orbital angular momentum |
CN111207667A (en) * | 2020-01-20 | 2020-05-29 | 山西大学 | Quantum interferometer device based on optical parametric amplifier |
CN114166359A (en) * | 2022-01-07 | 2022-03-11 | 中国科学技术大学 | Measurement device and quantum-enhanced phase measurement method based on stimulated parameter down-conversion |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030123516A1 (en) * | 2001-10-15 | 2003-07-03 | Steinberg Aephraim M. | Quantum-interferometrically enhanced optical nonlinearities for photon switches and logic gates |
US20080285115A1 (en) * | 2007-05-18 | 2008-11-20 | Saffman Mark E | Apparatus and method of producing quantum-entangled, up-converted light beams |
CN102436117A (en) * | 2011-10-14 | 2012-05-02 | 山西大学 | Generation device for continuous variable quantum entanglement source |
-
2012
- 2012-12-18 CN CN201210553640.6A patent/CN103048843B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030123516A1 (en) * | 2001-10-15 | 2003-07-03 | Steinberg Aephraim M. | Quantum-interferometrically enhanced optical nonlinearities for photon switches and logic gates |
US20080285115A1 (en) * | 2007-05-18 | 2008-11-20 | Saffman Mark E | Apparatus and method of producing quantum-entangled, up-converted light beams |
CN102436117A (en) * | 2011-10-14 | 2012-05-02 | 山西大学 | Generation device for continuous variable quantum entanglement source |
Non-Patent Citations (2)
Title |
---|
YONGMIN LI,ET AL.: "Frequency conversion of continuous variable quantum states", 《J. OPT. SOC. AM. B》 * |
彭堃墀: "连续变量量子态的光学操控", 《光学学报》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110658634A (en) * | 2019-08-28 | 2020-01-07 | 西安空间无线电技术研究所 | Processing system and method for hybrid entanglement of continuous variable polarization and orbital angular momentum |
CN110658634B (en) * | 2019-08-28 | 2021-10-01 | 西安空间无线电技术研究所 | Processing system and method for hybrid entanglement of continuous variable polarization and orbital angular momentum |
CN111207667A (en) * | 2020-01-20 | 2020-05-29 | 山西大学 | Quantum interferometer device based on optical parametric amplifier |
CN111207667B (en) * | 2020-01-20 | 2021-05-14 | 山西大学 | Quantum interferometer device based on optical parametric amplifier |
CN114166359A (en) * | 2022-01-07 | 2022-03-11 | 中国科学技术大学 | Measurement device and quantum-enhanced phase measurement method based on stimulated parameter down-conversion |
Also Published As
Publication number | Publication date |
---|---|
CN103048843B (en) | 2015-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4842378B2 (en) | Compact system for generating entangled photons | |
US8228507B2 (en) | Quantum entanglement generating system and method, and quantum entanglement generating and detecting system and method | |
WO2009035585A2 (en) | Hybrid integrated source of polarization-entangled photons | |
CN106814516A (en) | A kind of continuous wave optical parametric oscillator of pumping resonance | |
CN104702342A (en) | Multi-degree of freedom mixed entangled W-state photon producing system and method | |
WO2021043201A1 (en) | Multi-photon entangled light source | |
US7518784B2 (en) | Apparatus and method of producing quantum-entangled, up-converted light beams | |
CN110716365B (en) | Frequency decorrelation polarization entanglement source preparation device based on reverse phase matching | |
CN103078241B (en) | All-optical-fiber laser noise filtering device | |
Li et al. | Controlled transport of stored light | |
CN101483317A (en) | Pump mode for semiconductor laser | |
CN204539149U (en) | A kind of generation system of multiple degrees of freedom mixing entangled W state photon | |
CN107123926A (en) | The production method of super-narrow line width, tunable high power laser system and laser | |
CN111474802A (en) | Device for simultaneously generating compressed-state light field and entangled-state light field | |
CN111123614A (en) | Entanglement enhancement device and realization method of four-component bound entanglement source | |
JP6115189B2 (en) | Quantum entangled photon pair generator | |
CN103048843A (en) | Continuous variable quantum state frequency transformation device | |
CN101958505B (en) | Frequency locking device for dual wavelength external cavity resonance system | |
CN101588013A (en) | Polarization-maintaining photonic crystal fiber beam laser | |
US10228607B2 (en) | Second harmonic generation | |
CN107346086B (en) | The generation device of continuous variable quantum entanglement between quantum channel and quantum nodes | |
CN113904208A (en) | High-purity Laguerre Gaussian beam generation system and generation method thereof | |
CN110658634B (en) | Processing system and method for hybrid entanglement of continuous variable polarization and orbital angular momentum | |
CN111900598A (en) | Laser launcher | |
CN115683365B (en) | Tunable quantum beat frequency interference device based on quantum frequency up-conversion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150128 Termination date: 20171218 |
|
CF01 | Termination of patent right due to non-payment of annual fee |