CN103009685B - 一种新型轻质抗冲击夹层结构 - Google Patents

一种新型轻质抗冲击夹层结构 Download PDF

Info

Publication number
CN103009685B
CN103009685B CN201210575890.XA CN201210575890A CN103009685B CN 103009685 B CN103009685 B CN 103009685B CN 201210575890 A CN201210575890 A CN 201210575890A CN 103009685 B CN103009685 B CN 103009685B
Authority
CN
China
Prior art keywords
sigma
carbon fiber
foam
epsiv
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210575890.XA
Other languages
English (en)
Other versions
CN103009685A (zh
Inventor
官宇寰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Fiber Super New Materials Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201210575890.XA priority Critical patent/CN103009685B/zh
Publication of CN103009685A publication Critical patent/CN103009685A/zh
Application granted granted Critical
Publication of CN103009685B publication Critical patent/CN103009685B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

本发明公开了一种新型轻质抗冲击夹层结构。它包括两侧的面板和两面板中间的夹心材料,面板和夹心材料之间通过树脂层粘结,在夹心材料中具有若干个复合管,复合管的形状以及管径与管壁厚度,安排方式通过三维非线性有限元方程模拟获得,碳纤维管要被模拟成各向异性材料,其破坏受破坏准则控制,泡沫夹心被模拟成有塑性硬化的可压碎的泡沫,复合材料面板的模拟与碳纤维管相同,选择规则是用最少最轻的材料,通过对结构的优化使夹心结构达到最佳的吸能─重量比。

Description

一种新型轻质抗冲击夹层结构
技术领域:
本发明涉及一种夹层结构,具体涉及一种新型轻质抗冲击夹层结构。
背景技术:
现有夹层结构由于在夹心结构上存在缺陷,其性能远远不能达到用户的要求。如夹层结构太重才能抵抗潜在的巨大冲击,这使其附在危险品槽车的尾板后没有什么经济效益(太重,耗能),或使其它车辆减少机动性。
发明内容:
本发明的目的是提供一种具有较佳的能量吸收-重量比,抗冲击性能好的新型轻质抗冲击夹层结构。
本发明的新型轻质抗冲击夹层结构,其特征在于,包括两侧的面板和两面板中间的夹心材料,面板和夹心材料之间通过树脂层粘结,在夹心材料中具有若干个复合管,复合管的形状以及管径与管壁厚度,最佳安排方式通过三维非线性有限元方程模拟获得,碳纤维管要被模拟成各向异性材料,其破坏受破坏准则控制,泡沫夹心被模拟成有塑性硬化的可压碎的泡沫,复合材料面板的模拟与碳纤维管相同,选择规则是用最少最轻的材料,通过对结构的优化使夹心结构达到最佳的吸能─重量比。
所述的三维非线性有限元方程如下:
1.碳纤维面板和夹心管的本构关系及破坏准则
在开始破坏前,碳纤维被模拟成各向异性线弹性材料,其本构关系为
σ 11 σ 22 σ 33 σ 12 σ 23 σ 31 ≡ C 11 0 C 12 0 C 13 0 0 0 0 C 12 0 C 22 0 C 23 0 0 0 0 C 13 0 C 23 0 C 33 0 0 0 0 0 0 0 C 44 0 0 0 0 0 0 0 C 05 0 0 0 0 0 0 0 C 66 0 ϵ 11 ϵ 22 ϵ 33 ϵ 12 ϵ 23 ϵ 31 - - - ( 1 )
九个用来表示未破坏材料的独立弹性常数为
C 11 0 = E 1 ( 1 - v 23 v 32 ) Γ
C 22 0 = E 2 ( 1 - v 13 v 31 ) Γ
C 33 0 = E 3 ( 1 - v 12 v 21 ) Γ
C 12 0 = E 1 ( v 21 + v 31 v 23 ) Γ
C 23 0 = E 2 ( v 32 + v 12 v 31 ) Γ (2)
C 13 0 = ( v 31 + v 21 v 32 ) Γ
C 44 0 = G 12
C 55 0 = G 23
C 66 0 = G 13
Г=1/(1-v12v21-v23v32-v13v31-2v21v32v13)
如碳纤维一旦满足下面的破坏准则,则破坏开始:
(1)纤维拉伸模式,σ11>0
( σ 11 X 1 t ) 2 + ( σ 12 S 12 ) 2 + ( σ 13 S 13 ) 2 = 1 , d ft = 1 - - - ( 3 a )
(2)纤维压缩模式,σ11<0
| &sigma; 11 | X 1 c = 1 , d fc = 1 - - - ( 3 d )
(3)基底拉伸模式,σ2233>0
( &sigma; 22 + &sigma; 33 ) 2 X 2 t 2 + &sigma; 23 2 - &sigma; 22 &sigma; 33 S 23 2 + &sigma; 12 2 + &sigma; 13 2 S 12 2 = 1 , d mt = 1 - - - ( 3 c )
(4)基底压缩模式,σ2233<0
[ ( X 2 c 2 S 23 ) 2 - 1 ] ( &sigma; 22 + &sigma; 33 ) X 2 c + ( &sigma; 22 + &sigma; 33 ) 2 4 S 23 2 + ( &sigma; 23 2 - &sigma; 22 &sigma; 33 ) S 23 2 + &sigma; 12 2 + &sigma; 13 2 S 12 2 = 1 , d mc = 1 - - - ( 3 d )
这里,dft和dfc是对应于纤维拉伸和压缩的破坏变量,而dmt和dmc是对应于基底拉伸和压缩的破坏变量。X1t,X1c,X2t和X2c是碳纤维面内两个方向的拉伸和压缩极限应力,S12,S13和S23是剪切极限应力。
一旦破坏开始,刚度矩阵里的元素就会退化,并满足下面的关系:
C 11 = ( 1 - d f ) C 11 0
C 22 = ( 1 - d f ) ( 1 - d m ) C 22 0
C 33 = ( 1 - d f ) ( 1 - d m ) C 33 0
C 12 = ( 1 - d f ) ( 1 - d m ) C 12 0
C 23 = ( 1 - d f ) ( 1 - d m ) C 23 0 - - - ( 4 )
C 13 = ( 1 - d f ) ( 1 - d m ) C 13 0
C 44 = ( 1 - d f ) ( 1 - s mt d mt ) ( 1 - s mc d mc ) C 44 0
C 55 = ( 1 - d f ) ( 1 - s mt d mt ) ( 1 - s mc d mc ) C 55 0
C 66 = ( 1 - d f ) ( 1 - s mt d mt ) ( 1 - s mc d mc ) C 66 0
这里,总体纤维和基底破坏的变量定义为:
df=1-(1-dft)(1-dfc)  (5)
dm=1-(1-dmt)(1-dmc)
取smt=0.9和smc=0.5。
上面的方程通过图5的有限元子程序流程图编出子程序,并入商用住程序中。此外,材料的破坏还与应变率有关。
2.PVC泡沫的本构关系及破坏准则
PVC泡沫在受压达到屈服前,遵循线弹性本构关系。屈服后满足有塑性硬化的可压碎的泡沫模式,其屈服面为:
&phi; &equiv; 1 [ 1 + ( &alpha; 3 ) 2 ] [ q 2 + &alpha; 2 &sigma; m 2 ] - &sigma; y 2 &le; 0 - - - ( 6 )
这里,σy是泡沫的拉伸或压缩屈服应力,q是Von Mises应力,σm是平均应力,α用来表述屈服面的形状。
优选,所述的面板是高强度合金、玻璃纤维增强塑料、碳纤维增强塑料、压缩木材等。
优选,所述的夹心材料是PVC泡沫或增强塑胶。
优选,所述的复合管为竹管、玻璃钢管、碳纤维管和金属管。
优选,复合管内具有金属泡沫或弹簧或自然纤维材料的填充物。
本发明的新型轻质抗冲击夹层结构采用非常新颖可实用的设计理念,最大限度的利用材料的抗压特性,以及复合管与泡沫的相互作用,经过设计,使新型轻质抗冲击夹层结构能够最大限度的发挥抗爆抗撞的优良性能,并同时减轻重量和节省材料,使得本发明的新型轻质夹层结构达到最佳能量吸收-重量比。
附图说明:
图1是实施例1的新型轻质抗冲击夹层结构的剖视图;
1、面板;2、树脂层;3、复合管;4、泡沫;
图2是实施例1的新型轻质抗冲击夹层结构的立体透视图;
图3是实施例1的新型轻质抗冲击夹层结构的特别能量吸收-管径/壁厚图;
图4是冲击测试前后的新型轻质抗冲击夹层结构的局部图;
图5是有限元子程序流程图。
具体实施方式:
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
面板;2、树脂层;3、复合管;4、泡沫;
如图1和图2所示,本实施例的新型轻质抗冲击夹层结构包括两侧的碳纤维面板1(密度:1400kg/m3,厚度:0.3mm,尺寸:150x150mm2,弹性模量:55GPa,拉伸极限应力:850MPa,拉伸极限应变:0.05,泊松比:0.07),在两碳纤维面板1之间具有PVC泡沫4(密度:80kg/m3,厚度:10mm,弹性模量:70MPa,屈服应力:2MPa,压缩极限应力:3MPa,压缩极限应变:0.7,泊松比:0.35)作为夹心材料,PVC泡沫4和碳纤维面板1通过树脂层2粘结,在PVC泡沫4之间襄嵌有碳纤维管(直径/管壁厚之比:7-43,数量:16,材料参数与面板相同)作为复合管3。夹层结构承受38gPE4炸药的爆炸。如图3所示,试验后,夹层结构的能量吸收与重量之比超过100KJ/kg。如减少直径/管壁厚之比,其夹层结构的能量吸收与重量之比趋于150KJ/kg。图4左是泡沫嵌入碳纤维管在测试前的局部图,而图4又是爆炸后的局部图,破坏的碳纤维管已成粉末状。
上列详细说明是针对本发明可行实施例的具体说明,该实施例并非用以限制本发明的专利范围,凡未脱离本发明所为的等效实施或变更,均应包含于本案的专利范围中。

Claims (2)

1.一种新型轻质抗冲击夹层结构,其特征在于,包括两侧的碳纤维面板和两碳纤维面板中间的PVC泡沫,碳纤维面板和PVC泡沫之间通过树脂层粘结,在PVC泡沫中具有若干个碳纤维管,碳纤维管的形状以及管径与管壁厚度,安排方式通过三维非线性有限元方程模拟获得,碳纤维管要被模拟成各向异性材料,其破坏受破坏准则控制,PVC泡沫被模拟成有塑性硬化的可压碎的泡沫,碳纤维面板的模拟与碳纤维管相同,选择规则是用最少最轻的材料,通过对结构的优化使夹心结构达到最佳的吸能─重量比;所述的三维非线性有限元方程和破坏准则如下:
1.碳纤维面板和碳纤维管的本构关系及破坏准则
在开始破坏前,碳纤维被模拟成各向异性线弹性材料,其本构关系为
&sigma; 11 &sigma; 22 &sigma; 33 &sigma; 12 &sigma; 23 &sigma; 31 = C 11 0 C 12 0 C 13 0 0 0 0 C 12 0 C 22 0 C 23 0 0 0 0 C 13 0 C 23 0 C 33 0 0 0 0 0 0 0 C 44 0 0 0 0 0 0 0 C 55 0 0 0 0 0 0 0 C 66 0 &epsiv; 11 &epsiv; 22 &epsiv; 33 &epsiv; 12 &epsiv; 23 &epsiv; 31 - - - ( 1 )
九个用来表示未破坏材料的独立弹性常数为
C 11 0 = E 1 ( 1 - v 23 v 32 ) &Gamma;
C 22 0 = E 2 ( 1 - v 13 v 31 ) &Gamma;
C 33 0 = E 3 ( 1 - v 12 v 21 ) &Gamma;
C 12 0 = E 1 ( v 21 + v 31 v 23 ) &Gamma;
C 23 0 = E 2 ( v 32 + v 12 v 31 ) &Gamma; - - - ( 2 )
C 13 0 = E 1 ( v 31 + v 21 v 32 ) &Gamma;
C 44 0 = G 12
C 55 0 = G 23
C 66 0 = G 13
Γ=1/(1-ν12ν2123ν3213ν31-2ν21ν32ν13)
如碳纤维一旦满足下面的破坏准则,则破坏开始:
(1)纤维拉伸模式,σ11>0
( &sigma; 11 X 1 t ) 2 + ( &sigma; 12 S 12 ) 2 + ( &sigma; 13 S 13 ) 2 = 1 , d ft = 1 - - - ( 3 a )
(2)纤维压缩模式,σ11<0
| &sigma; 11 | X 1 c = 1 , d fc = 1 - - - ( 3 b )
(3)基底拉伸模式,σ2233>0
( &sigma; 22 + &sigma; 33 ) 2 X 2 t 2 + &sigma; 23 2 - &sigma; 22 &sigma; 33 S 23 2 + &sigma; 12 2 + &sigma; 13 2 S 12 2 = 1 , d mt = 1 - - - ( 3 c )
(4)基底压缩模式,σ2233<0
[ ( X 2 c 2 S 23 ) 2 - 1 ] ( &sigma; 22 + &sigma; 33 ) X 2 c + ( &sigma; 22 + &sigma; 33 ) 2 4 S 23 2 + ( &sigma; 23 2 - &sigma; 22 &sigma; 33 ) S 23 2 + &sigma; 12 2 + &sigma; 13 2 S 12 2 = 1 , d mc = 1 - - - ( 3 d )
这里,dft和dfc是对应于纤维拉伸和压缩的破坏变量,而dmt和dmc是对应于基底拉伸和压缩的破坏变量。X1t,X1c,X2t和X2c是碳纤维面内两个方向的拉伸和压缩极限应力,S12,S13和S23是剪切极限应力;
一旦破坏开始,刚度矩阵里的元素就会退化,并满足下面的关系:
C 11 = ( 1 - d f ) C 11 0
C 22 = ( 1 - d f ) ( 1 - d m ) C 22 0
C 33 = ( 1 - d f ) ( 1 - d m ) C 33 0
C 12 = ( 1 - d f ) ( 1 - d m ) C 12 0
C 23 = ( 1 - d f ) ( 1 - d m ) C 23 0 - - - ( 4 )
C 13 = ( 1 - d f ) ( 1 - d m ) C 13 0
C 44 = ( 1 - d f ) ( 1 - s mt d mt ) ( 1 - s mc d mc ) C 44 0
C 55 = ( 1 - d f ) ( 1 - s mt d mt ) ( 1 - s mc d mc ) C 55 0
C 66 = ( 1 - d f ) ( 1 - s mt d mt ) ( 1 - s mc d mc ) C 66 0
这里,总体纤维和基底破坏的变量定义为:
df=1-(1-dft)(1-dfc)            (5)
dm=1-(1-dmt)(1-dmc)
取smt=0.9和smc=0.5;
PVC泡沫的本构关系及破坏准则
PVC泡沫在受压达到屈服前,遵循线弹性本构关系,屈服后满足有塑性硬化的可压碎的泡沫模式,其屈服面为:
&phi; &equiv; 1 [ 1 + ( &alpha; 3 ) 2 ] [ q 2 + &alpha; 2 &sigma; m 2 ] = &sigma; y 2 &le; 0 - - - ( 6 )
这里,σy是泡沫的拉伸或压缩屈服应力,q是Von Mises应力,σm是平均应力,α用来表述屈服面的形状。
2.权利要求1所述的新型轻质抗冲击夹层结构,其特征在于,在所述的碳纤维管内还具有金属泡沫或弹簧或自然纤维材料的填充物。
CN201210575890.XA 2012-12-26 2012-12-26 一种新型轻质抗冲击夹层结构 Expired - Fee Related CN103009685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210575890.XA CN103009685B (zh) 2012-12-26 2012-12-26 一种新型轻质抗冲击夹层结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210575890.XA CN103009685B (zh) 2012-12-26 2012-12-26 一种新型轻质抗冲击夹层结构

Publications (2)

Publication Number Publication Date
CN103009685A CN103009685A (zh) 2013-04-03
CN103009685B true CN103009685B (zh) 2015-04-08

Family

ID=47959046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210575890.XA Expired - Fee Related CN103009685B (zh) 2012-12-26 2012-12-26 一种新型轻质抗冲击夹层结构

Country Status (1)

Country Link
CN (1) CN103009685B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104071313B (zh) * 2014-06-23 2016-09-07 上海交通大学 可弹性弯曲的抗冲吸能覆盖层
CN104290406A (zh) * 2014-10-08 2015-01-21 苏州市相城区阳澄湖镇工耕堂家具工作室 一种弹性红木板材
CN104553143B (zh) * 2015-01-22 2016-11-09 中国人民解放军装甲兵工程学院 一种基于超材料的防爆复合结构
CN106881563A (zh) * 2015-12-16 2017-06-23 中国人民解放军空军工程大学 一种泡沫铝-金属管件复合材料的制备方法
CN105644065A (zh) * 2015-12-31 2016-06-08 深圳市飞博超强新材料有限公司 一种超强吸收能量的轻质复合材料结构及应用
CN106142727A (zh) * 2016-07-04 2016-11-23 东北林业大学 一种木质基保温、吸能多层点阵夹芯结构及其制备方法
CN109139766A (zh) * 2017-06-15 2019-01-04 湖南尚成新材料科技有限责任公司 一种含气凝胶的缓冲结构
CN108000968A (zh) * 2017-11-20 2018-05-08 中国科学院紫金山天文台 一种新型的太赫兹碳纤维复合材料面板结构
CN109460607B (zh) * 2018-11-09 2023-03-10 福州大学 一种超塑性锌铝合金管材拉拔成型模拟方法
CN115871315A (zh) * 2022-11-10 2023-03-31 惠州市耐斯运动器材有限公司 高强度滑板生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028469A (en) * 1987-10-08 1991-07-02 Hellmuth Costard Lightweight constructional element of sandwich structure
US6704693B1 (en) * 1999-10-15 2004-03-09 Moldflow Pty Ltd Apparatus and method for structural analysis
CN101513781A (zh) * 2009-02-20 2009-08-26 东莞市格羚塑胶有限公司 一种具有柱状支撑体的复合金属板
CN101633405A (zh) * 2009-09-02 2010-01-27 北京航空航天大学 一种圆管夹芯防热结构件
US20100260967A1 (en) * 2007-09-14 2010-10-14 Societe De Technologie Michelin Composite Laminated Product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028469A (en) * 1987-10-08 1991-07-02 Hellmuth Costard Lightweight constructional element of sandwich structure
US6704693B1 (en) * 1999-10-15 2004-03-09 Moldflow Pty Ltd Apparatus and method for structural analysis
US20100260967A1 (en) * 2007-09-14 2010-10-14 Societe De Technologie Michelin Composite Laminated Product
CN101513781A (zh) * 2009-02-20 2009-08-26 东莞市格羚塑胶有限公司 一种具有柱状支撑体的复合金属板
CN101633405A (zh) * 2009-09-02 2010-01-27 北京航空航天大学 一种圆管夹芯防热结构件

Also Published As

Publication number Publication date
CN103009685A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
CN103009685B (zh) 一种新型轻质抗冲击夹层结构
Thomas et al. Crushing behavior of honeycomb structure: a review
Wu et al. Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels
Wei et al. Three-dimensional numerical modeling of composite panels subjected to underwater blast
Hou et al. Experimental and numerical studies on multi-layered corrugated sandwich panels under crushing loading
Li et al. Crushing analysis and design optimization for foam-filled aluminum/CFRP hybrid tube against transverse impact
Abada et al. Hybrid multi-cell thin-walled tubes for energy absorption applications: Blast shielding and crashworthiness
Mahbod et al. Energy absorption analysis of a novel foam-filled corrugated composite tube under axial and oblique loadings
Zhou et al. The low velocity impact response of foam-based sandwich panels
Liu et al. Energy absorption characteristics of sandwich structures with composite sheets and bio coconut core
Wu et al. Theoretical and experimental study of foam-filled lattice composite panels under quasi-static compression loading
Zuhri et al. The mechanical properties of natural fibre based honeycomb core materials
Mostafa et al. Influence of shear keys orientation on the shear performance of composite sandwich panel with PVC foam core: numerical study
Liu et al. Parameter optimization of L-joint of composite sandwich structure based on BP-GA algorithm
Boria Lightweight design and crash analysis of composites
He et al. Dynamic response of CFRP-lattice sandwich structures subjected to underwater shock wave loading
Han et al. The energy absorption behavior of novel composite sandwich structures reinforced with trapezoidal latticed webs
Taheri-Behrooz et al. Experimental and numerical analysis of sandwich composite beams under four-point bending
Betts et al. Impact behaviour of sandwich panels made of flax fiber-reinforced bio-based polymer face sheets and foam cores
Çalışkan FEM analyses of low velocity impact behaviour of sandwich panels with eps foam core
Goswami et al. Stress and failure analysis of inter-ply hybrid laminated composite using finite element method
Khondabi et al. Experimental and numerical study of core and face-sheet thickness effects in sandwich panels with foam core and aluminum face-sheets subjected to blast loading
Tuwair Development, testing, and analytical modeling of fiber reinforced polymer bridge deck panels
Tran et al. Underwater impulsive loading-induced dynamic failures of monolithic composite panel
Luo et al. Experimental analysis and numerical simulation on impact response of sand-filled aluminium honeycomb sandwich structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180309

Address after: 518063 Guangdong province Shenzhen city Nanshan District high tech park, South Road No. 9 High Technology Park Incubator Building 603

Patentee after: SHENZHEN FIBER SUPER NEW MATERIALS Co.,Ltd.

Address before: 518034 Guangdong city of Shenzhen province Futian District new daily Road, building 706 garden C

Patentee before: Guan Yu Wan

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150408

Termination date: 20211226