CN103003060A - 模块式结构复合梁 - Google Patents

模块式结构复合梁 Download PDF

Info

Publication number
CN103003060A
CN103003060A CN201180028703XA CN201180028703A CN103003060A CN 103003060 A CN103003060 A CN 103003060A CN 201180028703X A CN201180028703X A CN 201180028703XA CN 201180028703 A CN201180028703 A CN 201180028703A CN 103003060 A CN103003060 A CN 103003060A
Authority
CN
China
Prior art keywords
elongated elements
flange
modular
skin members
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201180028703XA
Other languages
English (en)
Other versions
CN103003060B (zh
Inventor
P·T·海登
H·贝默
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LM Wind Power UK Ltd
Original Assignee
Blade Dynamics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blade Dynamics Ltd filed Critical Blade Dynamics Ltd
Publication of CN103003060A publication Critical patent/CN103003060A/zh
Application granted granted Critical
Publication of CN103003060B publication Critical patent/CN103003060B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0003Producing profiled members, e.g. beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/86Incorporated in coherent impregnated reinforcing layers, e.g. by winding
    • B29C70/865Incorporated in coherent impregnated reinforcing layers, e.g. by winding completely encapsulated
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • B29K2105/243Partially cured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/001Profiled members, e.g. beams, sections
    • B29L2031/003Profiled members, e.g. beams, sections having a profiled transverse cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6003Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6013Fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/70Treatments or modification of materials
    • F05B2280/702Reinforcements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/04Composite, e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/16Fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/22Reinforcements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Composite Materials (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Wind Motors (AREA)
  • Laminated Bodies (AREA)

Abstract

用于结构复合梁(10)的模块式纤维增强塑料凸缘(5),上述结构复合梁包括由多个长形元件(42)布置成阵列所形成的主体(40),其中主体的尺寸基本上由阵列中长形元件的数量和布置决定,且表皮构件(20、30)至少部分地围绕阵列。另外,结构复合梁包括模块式纤维增强塑料凸缘(5)和连接到模块式凸缘的表皮构件上的抗剪腹板(50)。还公开了制造模块式凸缘和梁的方法,以及用于制造模块式凸缘的成套部件。

Description

模块式结构复合梁
技术领域
本发明涉及模块式结构复合梁。具体地说,本发明涉及供在风轮机叶片中使用的模块式结构复合梁。
背景技术
大风轮机叶片(长度大于35米)的建造通常是通过在整流罩内部形成加强和加固的悬臂梁或盒形翼梁而进行。目前制造风轮机叶片的方法是将每个叶片或是生产成具有分开梁的两半壳体,或是生产成具有整体梁的两半壳体。在这两种情况下,都是把两半壳体沿着它们的边缘结合在一起以便形成完整的叶片。
结构梁在两端处包括凸缘,这些凸缘通过一个(或者更普遍地两个)抗剪腹板相互连接。凸缘用主要是单向纤维增强塑料制成,而抗剪腹板由主要是多轴向(+/-45°)纤维增强塑料组成。
在本技术领域中公知的是,通过把凸缘模塑在整流罩的各个半壳体内和然后整流罩接合在一起时用抗剪腹板把凸缘结合在一起来制造梁。可供选择地,通过将分开的梁模塑在分开的工具上并且然后当这些梁接合在一起时将它们结合到整流罩中而制成梁。
这些方法各都具有许多缺点。首先,如果把梁的单向凸缘模塑在整流罩内,则难以准确地控制凸缘材料的质量。这通常归因于凸缘材料引起不良的机械性能,该不良机械性能又导致为了工程安全而增加所需的物质并因此增大成本。
如果把梁通过模塑在分开的工具上分开制成,则可以避免一部分上述缺点。然而,分开工具的成本增大了部件的总成本。
在不论哪种情况下,如果需要新的设计或者在设计中稍微变化,则都必须制成全新的工具,因而增加了样机研制时间和成本,也增大了引入新模式的成本。类似地,如果考虑使用自动化,则自动化的成本将很高,因为那样的话必须要能够处理许多不同的梁设计和几何形状。
发明内容
用于模块式风轮机叶片的设计在本申请人的已公布的国际专利申请WO 2009/034291中有所描述。该申请公开了包括多个标准化的组成部件的风轮机叶片,上述标准化的组成部件对作为整体的叶片来说,可供提供比传统制造技术更大的设计灵活性。然而,它对结构梁设计的修改仅提供有限的方案。本发明的目的是提供模块式结构复合梁,该模块式结构复合梁提供改善的设计灵活性和质量,且能作为传统风轮机叶片的一部分、作为模块式风轮机叶片的一部分、或者在其它结构应用(如桥梁)中使用。
因此,在第一方面,本发明提供用于结构复合梁的模块式纤维增强塑料凸缘,该凸缘包括:由多个长形元件所形成的主体,所述多个长形元件布置成阵列以使各长形元件的纵向轴线基本上相互平行,其中,主体的尺寸基本上由阵列中长形元件的数量和布置决定;以及,至少部分地围绕阵列中的多个长形元件的表皮构件。
通过采用多个长形元件和外部表皮建造凸缘的主体,使得凸缘的设计能通过改变长形元件的阵列及表皮构件的大小和构造而很容易地改变。表皮构件的采用还提供了改善的抗剪载荷性能。
在一个优选实施例中,表皮构件完全围绕长形元件的阵列以便提供额外的支承和结构整体性。
表皮构件优选地包括第一表皮元件和第二表皮元件,第一表皮元件具有凹入形式,而第二表皮元件布置成装配在第一表皮元件内。这种布置使得可以在装配第二表皮元件完成表皮构件之前把主体放在第一表皮元件中。这样,主体的厚度可以变化,而表皮构件的尺寸变化非常小或者没有变化。
优选地,表皮构件包括插口,用以在使用中容纳抗剪腹板。这提供了将凸缘附接到抗剪腹板上并在凸缘和抗剪腹板之间传递载荷的简便方法。
在一个优选实施例中,至少两个长形元件包括不同的材料。这使得可以很容易地对凸缘的机械性能加以改变。
为了进一步改善抗剪载荷性能,优选地把至少一个增强层至少部分地设在长形元件的阵列内。
在第二方面,本发明提供结构复合梁,它包括:本发明第一方面所述的模块式凸缘;以及,连接到模块式凸缘的表皮构件上的抗剪腹板。以这种方式,提供了改善的和更通用的结构复合梁。
抗剪腹板优选地包括位于两个复合材料层之间的结构芯以便提供进一步的结构整体性。复合材料层优选地是多轴向复合材料。抗剪腹板是有利的,因为它能装配到凸缘中作为“敞开式的”夹层板,因为板末端是表皮构件的插口。这意味着,与不连续的模塑法(该模塑法要求“闭合”夹层板的端部)相反,能用连续生产法制成抗剪腹板(一个或更多个),因而降低了生产成本并且增大了灵活性。
在第三方面,本发明提供形成用于结构复合梁的模块式纤维增强塑料凸缘的方法,该方法包括:用多个长形元件形成主体,所述多个长形元件布置成阵列以使各长形元件的纵向轴线基本上相互平行,其中,主体的尺寸基本上由阵列中长形元件的数量和布置决定;以及,把表皮构件连接到主体上,以使表皮构件至少部分地围绕阵列中的多个长形元件。
方法优选地还包括:选择长形元件的数量和布置以便限定主体的尺寸;以及,选择表皮构件,该表皮构件加工成一定尺寸以便基本上配合主体的尺寸。以这样的方式,可以在不需要装备新工具的情况下很容易地用标准化的部件形成不同尺寸和机动性能的凸缘。
优选地,表皮构件包括第一表皮元件和第二表皮元件,第一表皮元件具有凹面形式,而第二表皮元件布置成装配在第一表皮元件内;方法还包括:将主体设在第一表皮元件内;以及,将第二表皮元件设在第一表皮元件内以便形成完全围绕主体的表皮构件。
在第四方面,本发明提供形成结构复合梁的方法,该方法包括:使用本发明的第三方面的方法;以及,把至少一个抗剪腹板连接到模块式凸缘的表皮构件上。
优选地,在本发明的第三方面的方法中,或者在本发明的第四方面的方法中,模块式凸缘或者结构复合梁的每个组成部分都用连续生产法制成。这降低了生产成本并改善了质量,因为连续生产法花较少的时间和劳动强度且可重复性更强,因而减少了浪费。
在实施本发明的第三方面和第四方面的方法之前,模块式凸缘的长形元件和表皮构件以及结构复合梁的至少一个抗剪腹板优选地是处于固化状态或半固化状态并呈现它们的最终形式。因此,在模块式凸缘或结构复合梁被组装之前,长形元件、表皮构件和抗剪腹板的形状和尺寸基本上固定。此外,在模块式凸缘或结构复合梁被组装之前,长形元件、表皮构件和抗剪腹板的主要机械性能基本上固定。
在第五方面,本发明提供用于形成模块式纤维增强塑料凸缘的成套部件,包括:适合于形成主体的多个长形元件,该主体包括布置成阵列的多个长形元件,其中,各长形元件的纵向轴线基本上相互平行;以及,多个表皮构件,其中,多个表皮构件加工成一定尺寸以便与长形元件的预定数量相对应。因而,成套部件提供了用于生产不同尺寸和机械性能的凸缘的手段。
成套部件的长形元件和表皮构件优选地是处于固化状态或半固化状态并呈现它们的最终形式。
附图说明
现在将参照下面附图说明本发明的例子,其中:
图1示出一种模块式结构复合梁部分的部件分解示意图;
图2示出一种模块式纤维增强塑料凸缘和分开的腹板的示意剖视图;
图3示出组装好的模块式结构复合梁部分的示意剖视图;
图4示出一种可供选择的组装好的模块式结构复合梁部分的示意剖视图;而
图5示出另一种可供选择的组装好的模块式结构复合梁部分的示意剖视图。
具体实施方式
图1示出模块式结构复合梁10一部分的部件分解示意图。梁10包括第一表皮元件20和第二表皮元件30及多个长形元件40。此外,梁10包括两个抗剪腹板50,每个抗剪腹板50都包括结构芯52和外部表皮层54。
结构芯52可以用任何合适的材料制成,所述材料包括PVC(聚氯乙烯)、PET(聚对苯二甲酸乙二醇酯)、轻木或STYROFOAM或在本技术领域中广泛公知和使用的其它结构芯材料。外部表皮层54主要包括多轴向(±45°)纤维增强塑料。外部表皮层54通过胶粘剂如结构胶粘剂(如环氧树脂、聚氨酯、丙烯酸、硅酮)或者用树脂如聚酯、乙烯基酯、环氧树脂或其它结构热固性或热塑性树脂附接到芯52上。
长形元件40主要包括单轴向纤维增强塑料。长形元件通常是“预成型的”单向复合材料,如挤拉件或半固化的预浸料坯或中间类型材料,使得它们在形成凸缘5(见图2)之前呈现它们的最终形状或形式。如图1中所示,长形元件40布置成阵列(在这种情况下是3×3阵列)以便形成主体42,该主体42形成凸缘5的主承重部件。长形元件40通过结构胶粘剂或是通过用一种方法如手工层压法、真空注入、真空固结或本技术领域中使用的类似叠层方法与结构树脂层压在一起而粘合在一起以便形成主体42。
第一和第二外部表皮元件20、30各都主要包括多轴向纤维增强塑料。第一表皮元件20具有U形凹入形式,而第二表皮元件30包括突起32,突起32在第二表皮元件30的每个外部边缘处限定插口34。插口34加工成一定尺寸以便容纳抗剪腹板50的边缘56。
如图2中所示,在组装好的凸缘5中,第二表皮元件30装配在第一表皮元件20内。两个表皮元件20、30一起形成完全围绕主体42的表皮构件60。在这个例子中,“完全围绕”意指表皮构件60包围主体42但不覆盖主体42的端部。
还如图2中所示,第一表皮元件和第二表皮元件20、30加工成一定尺寸以便与主体42相匹配。主体42的尺寸由阵列中长形元件的数量和布置限定。在图2所示的例子中,主体42包括3×3阵列,因此主体42的深度与长形元件40的三倍深度相同,而主体42的宽度基本上与长形元件40的三倍宽度相同。
图3示出与抗剪腹板50组装在一起的凸缘5。抗剪腹板装配到插口34中并通过胶粘剂如结构环氧树脂胶粘剂附接。如所示,抗剪腹板50在插口34中的部位“封闭”抗剪腹板50的端部。在图3中仅示出箱形梁10的上面部分。应该理解,另一个凸缘5可以附接到抗剪腹板50的下侧上以便形成完整的箱形梁10。此外,抗剪腹板50可以具有各种不同的深度以便改变箱形梁10的深度。该深度可以沿着梁的长度改变,以便例如形成风轮机叶片的锥度。
图4示出模块式结构复合梁100的上面部分的一种可供选择的构造。在这种情况下,梁100是一种工字梁,该工字梁包括位于第二表皮构件130的中心插口134中的仅仅一个抗剪腹板50。形成凸缘105的主体142的长形元件40、140包括不同的纤维增强塑料材料,因此长形元件40可以包括例如玻璃纤维增强塑料,而长形元件140可以包括括例如碳纤维增强塑料。图4中示出的不同材料长形元件40、140的布置仅是一个例子,且任何其它布置都可以根据所需的机械性能选定。
梁100还包括位于主体42中长形元件40、140的层之间的增强层144。这些增强层主要包括多轴向(±45°)纤维增强塑料并给凸缘105提供额外的抗剪强度。在本文所述的任何模块式结构复合梁构造中都可以包括增强层144。
图5示出模块式结构复合梁200的上面部分的另一种可供选择的构造。长形元件40和表皮构件260仅包括一个部分地围绕阵列的长形元件40a、40b和40c的表皮元件220。
应该理解,在形成主体42、142、242的阵列中可以包括任何数量的长形元件40、140,且在任何所需的布置中可以为长形元件选定任何数量的不同纤维增强材料。这样,可以按需要改变凸缘5、105、205的机械性能。
再参见图2,如果主体42的宽度保持相同(3个长形元件宽)但深度改变(例如,两个长形元件深),则可以使用相同的表皮元件20、30,则深度差异由下述事实调节:即第二表皮元件30装配到第一表皮元件20中直至到达主体42。如果需要,可以对第一表皮元件20的侧面22进行修整,以便除去与第二表皮元件30的突起32重叠部。可供选择地,更大深度主体42(例如,4个或更多个长形元件深)能通过第一表皮元件和第二表皮元件20、30的相互作用所提供的可变深度能力而被容纳。在这种情况下,第二表皮元件30的突起32可以随意地进行修整以便除去与第一表皮元件20的侧面22重叠部。
如果主体42的宽度变化(例如,两个长形元件宽),则理想的是提供合适尺寸的表皮元件20、30以便配合主体42的宽度。长形元件40优选地具有标准尺寸以便能提供一组表皮元件20、30的标准化尺寸来配合长形元件的各种不同的阵列。
上述纤维增强塑料部件通常是如本技术领域中公知的玻璃纤维增强塑料或碳纤维增强塑料。然而任何其它合适的纤维增强塑料材料都可以使用。

Claims (16)

1.一种用于结构复合梁的模块式纤维增强塑料凸缘,包括:
由多个长形元件形成主体,所述多个长形元件布置成阵列以使各长形元件的纵向轴线基本上相互平行,其中,所述主体的尺寸基本上由所述阵列中长形元件的数量和布置决定;以及
至少部分地围绕所述阵列中的多个长形元件的表皮构件。
2.如权利要求1所述的模块式凸缘,其中,所述表皮构件完全围绕所述长形元件的阵列。
3.如权利要求2所述的模块式纤凸缘,其中,所述表皮构件包括第一表皮元件和第二表皮元件,所述第一表皮元件具有凹入形式,所述第二表皮元件布置成装配在所述第一表皮元件内。
4.如上述权利要求中的任一项所述的模块式凸缘,其中,所述表皮构件包括插口以便在使用时容纳抗剪腹板。
5.如上述权利要求中的任一项所述的模块式凸缘,其中,所述多个长形元件中的至少两个长形元件包括不同的材料。
6.如上述权利要求中的任一项所述的模块式凸缘,还包括至少部分地位于所述长形元件的阵列内的至少一个增强层。
7.一种结构复合梁,包括:
如上述权利要求中的任一项所述的模块式凸缘;以及
连接到所述模块式凸缘的表皮构件上的抗剪腹板。
8.如权利要求7所述的结构复合梁,其中,所述抗剪腹板包括位于两个复合材料层之间的结构芯。
9.一种形成用于结构复合梁的模块式纤维增强塑料凸缘的方法,包括:
用多个长形元件形成主体,所述多个长形元件布置成阵列以使各长形元件的纵向轴线基本上相互平行,其中,所述主体的尺寸基本上由所述阵列中长形元件的数量和布置决定;以及
将表皮构件连接到所述主体上,使得所述表皮构件至少部分地围绕所述阵列中的多个长形元件。
10.如权利要求9中所述的形成模块式凸缘的方法,还包括:
选择长形元件的数量和布置以便限定所述主体的尺寸;以及
选择表皮构件,该表皮构件加工成一定尺寸以便基本上配合所述主体的尺寸。
11.如权利要求10中所述的形成模块式凸缘的方法,其中,所述表皮构件包括第一表皮元件和第二表皮元件,所述第一表皮元件具有凹入形式,所述第二表皮元件布置成装配在所述第一表皮元件内,所述方法还包括:
将所述主体设在所述第一表皮元件内;以及
将所述第二表皮元件设在所述第一表皮元件内以便形成完全围绕所述主体的表皮构件。
12.一种形成结构复合梁的方法,包括:
利用权利要求9至11中的任一项所述的方法形成模块式凸缘;以及
将至少一个抗剪腹板连接到所述模块式凸缘的表皮构件上。
13.如权利要求9至11中的任一项所述的形成模块式凸缘的方法,或者如权利要求12所述的形成结构复合梁的方法,其中,所述模块式凸缘或所述结构复合梁的每个组成部分都用连续生产法制成。
14.如权利要求9至13中的任一项所述的方法,其中,在实施所述方法之前,所述模块式凸缘的长形元件和表皮构件以及所述结构复合梁的所述至少一个抗剪腹板都处于固化状态或半固化状态并呈现它们的最终形式。
15.一种用于形成模块式纤维增强塑料凸缘的成套部件,包括:
适于形成主体的多个长形元件,所述主体包括布置成阵列的多个长形元件,其中,各长形元件的纵向轴线基本上相互平行;以及
多个表皮构件,其中,所述多个表皮构件加工成一定尺寸以便与长形元件的预定数量相对应。
16.如权利要求15所述的成套部件,其中,所述长形元件和所述表皮构件处于固化状态或半固化状态并呈现它们的最终形式。
CN201180028703.XA 2010-04-30 2011-04-28 模块式结构复合梁 Active CN103003060B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1007336.9A GB201007336D0 (en) 2010-04-30 2010-04-30 A modular structural composite beam
GB1007336.9 2010-04-30
PCT/GB2011/000661 WO2011135306A1 (en) 2010-04-30 2011-04-28 A modular structural composite beam

Publications (2)

Publication Number Publication Date
CN103003060A true CN103003060A (zh) 2013-03-27
CN103003060B CN103003060B (zh) 2016-12-07

Family

ID=42289971

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180028703.XA Active CN103003060B (zh) 2010-04-30 2011-04-28 模块式结构复合梁

Country Status (10)

Country Link
US (3) US8905718B2 (zh)
EP (3) EP2617558B1 (zh)
JP (1) JP5778758B2 (zh)
CN (1) CN103003060B (zh)
BR (1) BR112012027792A2 (zh)
DK (2) DK2617558T3 (zh)
ES (2) ES2766824T3 (zh)
GB (1) GB201007336D0 (zh)
PL (1) PL2617558T3 (zh)
WO (1) WO2011135306A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106696875A (zh) * 2015-11-09 2017-05-24 美国汽车研究协会有限公司 用于车辆的复合材料保险杠梁和复合材料溃缩盒的连接与加固
CN113544379A (zh) * 2020-02-18 2021-10-22 远景能源有限公司 用于风机叶片的主梁及其制造方法
CN113775496A (zh) * 2021-03-01 2021-12-10 陈晓彬 电磁流体旋涡动力装置
US20220341388A1 (en) * 2019-09-13 2022-10-27 Siemens Gamesa Renewable Energy Innovation & Technology S.L. Wind turbine blade
CN115355133A (zh) * 2022-09-23 2022-11-18 新创碳谷集团有限公司 一种模块化宽梁风电叶片结构

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8910455B2 (en) * 2010-03-19 2014-12-16 Weihong Yang Composite I-beam member
US8820033B2 (en) * 2010-03-19 2014-09-02 Weihong Yang Steel and wood composite structure with metal jacket wood studs and rods
US9493950B2 (en) * 2010-03-19 2016-11-15 Weihong Yang Composite I-beam member
GB201007336D0 (en) 2010-04-30 2010-06-16 Blade Dynamics Ltd A modular structural composite beam
GB201109412D0 (en) 2011-06-03 2011-07-20 Blade Dynamics Ltd A wind turbine rotor
GB2497578B (en) * 2011-12-16 2015-01-14 Vestas Wind Sys As Wind turbine blades
GB201215004D0 (en) 2012-08-23 2012-10-10 Blade Dynamics Ltd Wind turbine tower
GB201217210D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd A metod of forming a structural connection between a spar cap fairing for a wind turbine blade
GB201217212D0 (en) 2012-09-26 2012-11-07 Blade Dynamics Ltd Windturbine blade
RU2542294C2 (ru) * 2013-05-15 2015-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Длинномерный силовой конструкционный элемент типа строительной балки из полимерного композиционного материала
DE102014221966B4 (de) 2014-10-28 2018-07-12 Senvion Gmbh Verfahren zum Herstellen eines Rotorblatts einer Windenergieanlage
DE102014018498A1 (de) * 2014-12-16 2016-06-16 Senvion Gmbh Anordnung pultrudierter Stäbe
GB201509142D0 (en) 2015-05-28 2015-07-15 Blade Dynamics Ltd A wind turbine blade and a method of moulding a wind turbine blade tip section
US10337490B2 (en) 2015-06-29 2019-07-02 General Electric Company Structural component for a modular rotor blade
US9897065B2 (en) 2015-06-29 2018-02-20 General Electric Company Modular wind turbine rotor blades and methods of assembling same
DE102016009640A1 (de) 2016-08-10 2018-02-15 Senvion Gmbh Gurt aus vorgefertigten Elementen mit Gelege und ein Verfahren zu seiner Fertigung
US11572861B2 (en) 2017-01-31 2023-02-07 General Electric Company Method for forming a rotor blade for a wind turbine
US10527023B2 (en) 2017-02-09 2020-01-07 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades
US10738759B2 (en) 2017-02-09 2020-08-11 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades
US10828843B2 (en) 2017-03-16 2020-11-10 General Electric Company Shear webs for wind turbine rotor blades and methods for manufacturing same
US10465653B2 (en) 2017-06-21 2019-11-05 General Electric Company Wind turbine blade with hybrid spar cap and associated method for making
US10677216B2 (en) * 2017-10-24 2020-06-09 General Electric Company Wind turbine rotor blade components formed using pultruded rods
US11738530B2 (en) 2018-03-22 2023-08-29 General Electric Company Methods for manufacturing wind turbine rotor blade components
EP3787888A4 (en) * 2018-05-01 2021-11-24 General Electric Company METHOD OF MANUFACTURING BAR CAPS FOR WIND TURBINE ROTOR BLADES
EP3787887B1 (en) * 2018-05-01 2023-10-04 General Electric Company Methods for manufacturing spar caps for wind turbine rotor blades
US10895244B2 (en) * 2018-09-25 2021-01-19 General Electric Company Joint interface for wind turbine rotor blade components
CN113423948B (zh) * 2018-12-20 2023-10-20 维斯塔斯风力系统有限公司 与风力涡轮机叶片制造相关的改进
EP3719296B1 (en) * 2019-04-03 2022-06-08 Siemens Gamesa Renewable Energy A/S Spar cap for a wind turbine blade of a wind turbine, wind turbine blade, wind turbine and method for manufacturing a spar cap for a wind turbine blade of a wind turbine
US10745903B1 (en) * 2019-05-24 2020-08-18 Big Time Investment, Llc Building including horizontally-oriented reinforced transfer beams and a fabrication method therefor
EP3825544A1 (en) * 2019-11-25 2021-05-26 Siemens Gamesa Renewable Energy Innovation & Technology, S.L. Wind turbine blade
US20220333574A1 (en) * 2019-09-13 2022-10-20 Siemens Gamesa Renewable Energy Innovation & Technology S.L. Wind turbine blade

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752513A (en) * 1987-04-09 1988-06-21 Ppg Industries, Inc. Reinforcements for pultruding resin reinforced products and novel pultruded products
US5735486A (en) * 1995-08-11 1998-04-07 Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V. Aircraft wing
US20060070340A1 (en) * 2004-09-09 2006-04-06 Kazak Composites, Incorporated Hybrid beam and stanchion incorporating hybrid beam
CN1829596A (zh) * 2003-08-05 2006-09-06 艾劳埃斯·乌本 支承结构

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2410609A (en) * 1943-07-17 1946-11-05 Joseph S Pecker Aircraft rotor wing construction
US3487518A (en) * 1965-08-12 1970-01-06 Henry Hopfeld Method for making a reinforced structural member
US3531901A (en) * 1966-05-18 1970-10-06 Owens Corning Fiberglass Corp Heat insulating structural member
DE3113079C2 (de) * 1981-04-01 1985-11-21 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Aerodynamischer Groß-Flügel und Verfahren zu dessen Herstellung
US4662587A (en) * 1981-09-30 1987-05-05 The Boeing Company Composite for aircraft wing and method of making
US4580380A (en) * 1983-11-07 1986-04-08 Ballard Derryl R Composite filled interior structural box beams
EP0883380B1 (en) * 1996-02-22 2001-08-29 Depuy Orthopaedics, Inc. External fixation device with composite rings
US6341467B1 (en) * 1996-05-10 2002-01-29 Henkel Corporation Internal reinforcement for hollow structural elements
US6096403A (en) * 1997-07-21 2000-08-01 Henkel Corporation Reinforced structural members
US6295779B1 (en) * 1997-11-26 2001-10-02 Fred C. Canfield Composite frame member and method of making the same
US7681835B2 (en) * 1999-11-18 2010-03-23 Rocky Mountain Composites, Inc. Single piece co-cure composite wing
US6332301B1 (en) * 1999-12-02 2001-12-25 Jacob Goldzak Metal beam structure and building construction including same
US6945727B2 (en) * 2002-07-19 2005-09-20 The Boeing Company Apparatuses and methods for joining structural members, such as composite structural members
GB0306408D0 (en) * 2003-03-20 2003-04-23 Holloway Wynn P A composite beam
DE102005062347A1 (de) * 2005-12-23 2007-06-28 Eurocopter Deutschland Gmbh Hochdehnbares Energie- und/oder Signalübertragungskabel sowie Rotorblatt mit einem derartigen Kabel
US7810757B2 (en) * 2006-11-02 2010-10-12 The Boeing Company Mounting device for an aircraft
EP1925436B1 (en) * 2006-11-23 2012-08-29 Siemens Aktiengesellschaft Method for manufacturing of a fibre reinforced laminate, use of this laminate, wind turbine blade and wind turbine comprising this laminate
GB0717690D0 (en) 2007-09-11 2007-10-17 Blade Dynamics Ltd Wind turbine blade
CA2741479A1 (en) * 2008-10-22 2010-04-29 Vec Industries, L.L.C. Wind turbine blade and method for manufacturing thereof
EP2358998B1 (en) * 2008-12-05 2017-09-20 Vestas Wind Systems A/S Efficient wind turbine blades, wind turbine blade structures, and associated systems and methods of manufacture, assembly and use
DE102009031947A1 (de) * 2009-07-07 2011-01-13 Nordex Energy Gmbh Rotorblatt für eine Windenergieanlage und Verfahren zu dessen Herstellung
JP5308323B2 (ja) * 2009-12-22 2013-10-09 三菱重工業株式会社 風車翼及びそれを用いた風力発電装置
GB201007336D0 (en) 2010-04-30 2010-06-16 Blade Dynamics Ltd A modular structural composite beam
US7976275B2 (en) * 2010-08-30 2011-07-12 General Electric Company Wind turbine rotor blade assembly having an access window and related methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752513A (en) * 1987-04-09 1988-06-21 Ppg Industries, Inc. Reinforcements for pultruding resin reinforced products and novel pultruded products
US5735486A (en) * 1995-08-11 1998-04-07 Deutsche Forschungsanstalt Fur Luft-Und Raumfahrt E.V. Aircraft wing
CN1829596A (zh) * 2003-08-05 2006-09-06 艾劳埃斯·乌本 支承结构
US20060070340A1 (en) * 2004-09-09 2006-04-06 Kazak Composites, Incorporated Hybrid beam and stanchion incorporating hybrid beam

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106696875A (zh) * 2015-11-09 2017-05-24 美国汽车研究协会有限公司 用于车辆的复合材料保险杠梁和复合材料溃缩盒的连接与加固
CN106696875B (zh) * 2015-11-09 2021-10-22 美国汽车研究协会有限公司 用于车辆的复合材料保险杠梁和复合材料溃缩盒的连接与加固
CN106696875B8 (zh) * 2015-11-09 2021-12-31 美国汽车研究协会有限公司 用于车辆的复合材料保险杠梁和复合材料溃缩盒的连接与加固
US20220341388A1 (en) * 2019-09-13 2022-10-27 Siemens Gamesa Renewable Energy Innovation & Technology S.L. Wind turbine blade
CN113544379A (zh) * 2020-02-18 2021-10-22 远景能源有限公司 用于风机叶片的主梁及其制造方法
CN113775496A (zh) * 2021-03-01 2021-12-10 陈晓彬 电磁流体旋涡动力装置
CN115355133A (zh) * 2022-09-23 2022-11-18 新创碳谷集团有限公司 一种模块化宽梁风电叶片结构

Also Published As

Publication number Publication date
US8905718B2 (en) 2014-12-09
EP2617558B1 (en) 2018-04-18
GB201007336D0 (en) 2010-06-16
DK2617558T3 (en) 2018-05-28
US9290941B2 (en) 2016-03-22
EP2563573A1 (en) 2013-03-06
CN103003060B (zh) 2016-12-07
ES2668790T3 (es) 2018-05-22
EP2617558A1 (en) 2013-07-24
US9567749B2 (en) 2017-02-14
JP2013529145A (ja) 2013-07-18
PL2617558T3 (pl) 2018-07-31
BR112012027792A2 (pt) 2016-08-02
US20130340385A1 (en) 2013-12-26
DK2617557T3 (da) 2020-03-16
WO2011135306A1 (en) 2011-11-03
JP5778758B2 (ja) 2015-09-16
US20130340384A1 (en) 2013-12-26
ES2766824T3 (es) 2020-06-15
EP2617557A1 (en) 2013-07-24
US20130055677A1 (en) 2013-03-07
EP2617557B1 (en) 2019-12-11
EP2563573B1 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
CN103003060A (zh) 模块式结构复合梁
CN103518025B (zh) 具有能量吸收作用的外部拉伸结构构件
US20110244213A1 (en) Core for composite laminated article and manufacture thereof
KR101836726B1 (ko) 차량용 파티션 패널 및 그 제조방법
CA2809185A1 (en) Formation of a core structure of a wind turbine rotor blade by using a plurality of basic core components
CN106364025A (zh) 一种复合材料三明治夹层板及其生产方法
KR101473977B1 (ko) 개방 다각형 셀로 이루어진 격자형 섬유 복합구조물
KR101830014B1 (ko) 복합 구조 부품의 제조 방법, 복합 구조 부품, 그리고 풍력 발전 설비
CN201610516U (zh) 复合材料弓形结构梁
CN103482019A (zh) 复合材料上层建筑与钢质船体的连接结构
US20030196581A1 (en) Multi-beam panel structures
Cutajar et al. Towards modular natural fiber-reinforced polymer architecture
Khaliulin et al. Design and Technology of Composite Truss Cores for Sandwich Panels
CN111605256B (zh) 复合结构体及制造方法、叶片
Wit et al. Composite systems for lightweight architectures
Goldsworthy The future–beyond 2000

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant