CN103001589B - 一种光电信号转换放大器件 - Google Patents

一种光电信号转换放大器件 Download PDF

Info

Publication number
CN103001589B
CN103001589B CN201210350151.0A CN201210350151A CN103001589B CN 103001589 B CN103001589 B CN 103001589B CN 201210350151 A CN201210350151 A CN 201210350151A CN 103001589 B CN103001589 B CN 103001589B
Authority
CN
China
Prior art keywords
segmentation
audion
transmission line
electric current
connects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210350151.0A
Other languages
English (en)
Other versions
CN103001589A (zh
Inventor
李冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI GUITONG SEMICONDUCTOR TECHNOLOGY CO LTD
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN103001589A publication Critical patent/CN103001589A/zh
Application granted granted Critical
Publication of CN103001589B publication Critical patent/CN103001589B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Amplifiers (AREA)
  • Optical Communication System (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种光电信号转换放大器件,包括一个波导光电探测器,其沿波导方向被分割为至少一个分段,每个分段的长度远小于在其内传输的电信号波长,且其在沿波导方向上有一个长度分布;以及至少一个与所述分段成对连接的分段内的三极管;以及至少一个与所述分段内的三极管成对连接的传输线,所述传输线之间有传输延迟差;以及与所述传输线另一端相连的用以电流加和的三极管,其集电极为总光电流输出端口。以这种电路构架单片集成PD和TIA电路后,消除了因为电气连接产生的寄生电容和寄生电感,以及PD自身的寄生电容对增益和噪声性能的影响。而且,由于通过电路来实现了对雪崩效应的模拟,即使采用PIN的PD,在灵敏度上也能媲美雪崩式光电二极管。

Description

一种光电信号转换放大器件
技术领域
本发明涉及一种光电集成器件,尤其是一种光电信号转换放大器件。
背景技术
光电接收机的前端部分通常由一个光电二极管(光电探测器,Photodiode或PD)和一个跨阻放大器(Trans-impedance Amplifier或TIA)构成。PD将入射光波信号转换成电流信号,这种电流信号称为光电流。接着TIA将光电流放大并转换输出为电压信号。跨阻(trans-impedance)意味着它的功能就是将电流转换为电压。
能够在光电通信中响应长波长(1310nm和1550nm)的PD是由三五族的半导体制成的;而TIA的材料采用三五族的晶体管或者硅基的MOSFET亦或者SiGe-HBT。
因为光电二极管和跨阻放大器是两块不同的芯片(不同材料),所以它们之间通常必须用普通键合线(wire bond)或者带状键合线(ribbon bond)连接。这些电气连接不仅减少了带宽,更是降低了噪声性能。因此,人们希望将PD和TIA直接集成到同一块芯片上(单片集成电路),这样不仅可以省去这些电气连接,还能大大提高器件的带宽和噪声性能。
发明内容
本发明的目的在于克服现有技术的不足,提供一种光电信号转换放大器件,可以充分发挥单片集成光电二极管(PD)和TIA电路的优势。
本发明通过下述技术方案予以实现:
一种光电信号转换放大器件,包括一个波导光电探测器,其沿波导方向被分割为至少一个分段(D0-D5),所述波导光电探测器的每个分段的长度远小于在其内传输的电信号波长,且沿波导方向上,各分段存在一个长度分布,即前面的分段长度小于等于后面的分段长度,所述波导光电探测器的各分段的阴极以并联方式连接一电压源;以及至少一个与所述波导光电探测器的分段成对出现的分段内的三极管(Q0-Q5),所述分段内的三级管的射级分别接地;其中,所述分段内的三极管的基极各自连一个所述波导光电探测器的分段的阳极,即所述波导光电探测器的分段产生的光电流为所述分段内的三极管的基极电流;以及至少一个与所述分段内的三极管成对出现的传输线(dt0-dt5),一端分别与其对应的所述分段内的三极管的集电极相连,其中,所述传输线之间有传输延迟差,且延迟时间的差值应等于在对应所述波导光电探测器分段内传播的光波的传输延迟,所述传输线之间的传输延迟差使得所有所述传输线输出电流波的相位相同;用以电流加和的三极管(Q6),其射级与所述传输线的另一端相连,其基极连接一偏置电压,其集电极为总光电流输出端口。
如上所述的光电信号转换放大器件,在一些实施例中,所述用以电流加和的三极管(Q6)的基极不再连接一偏置电压,而是连接一个稳压三极管(Q13)的集电极,该连接点上还连接一反馈电阻(R2),所述反馈电阻(R2)的另一端连接所述电压源;所述稳压三极管(Q13)的射级接地,其基极连接所述用以电流加和的三极管(Q6)的射级。
另一种光电信号转换放大器件,包括,一个波导光电探测器,其沿波导方向被分割为至少一个分段(D0-D5),所述波导光电探测器的每个分段的长度远小于在其内传输的电信号波长,且沿波导方向上,各分段存在一个长度分布,即前面的分段长度小于后面的分段长度,所述波导光电探测器的各分段的阴极以并联方式连接一电压源;以及至少一个与所述波导光电探测器的分段成对出现的分段内的三极管(Q0-Q5),所述分段内的三级管的射级分别接地;其中,所述分段内的三极管的基极各自连一个所述波导光电探测器的分段的阳极,即所述波导光电探测器的分段产生的光电流为所述分段内的三极管的基极电流;以及至少一个与所述分段内的三极管成对出现的用以电流加和的三极管(Q7-Q12),所述用以电流加和的三极管的射级与其对应的所述分段内的三级管的集电极连接,所述用以电流加和的三极管的基极连接一偏置电压;至少一个与所述用以电流加和的三极管成对出现的传输线(dt0-dt5),一端分别与其对应的所述用以电流加和的三极管的集电极相连,其中,所述传输线之间有传输延迟差,且延迟时间的差值应等于在对应所述波导光电探测器的分段内传播的光波的传输延迟,所述传输线之间的传输延迟使得所有所述传输线输出电流波的相位相同;所述传输线的另一端以并联方式连接,且该连接点为总光电流输出端口。
由于采用上述技术方案,本发明提供的一种光电信号转换放大器件具有这样的有益效果:以这种电路构架单片集成PD和TIA电路后,不仅消除了因为电气连接产生的寄生电容和寄生电感,同时也消除了PD自身的寄生电容对增益和噪声性能的影响。而且,由于通过电路来实现了对雪崩效应的模拟,采用本发明公开的光电信号转换放大器件,集成PD和TIA的接收机即使采用PIN的PD,在灵敏度上面也能和APD(雪崩式光电二极管)平分秋色。
附图说明
图1是本发明公开的一种光电信号转换放大器件的电路架构图。
图2是图1所示的一种光电信号转换放大器件的另一实施例的电路架构图。
图3是本发明公开的另一种光电信号转换放大器件的电路架构图。
具体实施方式
下面通过具体实施例并结合附图对本发明进行详细地说明:
图1是本发明的一种光电信号转换放大器件的电路架构图。如图1所示,矩形长框内为波导光电探测器,沿波导方向被分割成六个分段,分别为D0,D1,D2,D3,D4和D5,其中,每个分段各包括一个光电二极管,输入光波信号依次流过分段D0-D5。请注意,在本实施例中,波导光电探测器的分段个数为六个,在不同的实施例中,可以根据实际应用需要采用不同数目的分段。每个分段都有一个分段内的三极管(Segment Transistor)与其对应,即分段内的三极管Q0,Q1,Q2,Q3,Q4和Q5。在本实施例中,分段内的三极管为NPN型晶体管。在其他实施例中,分段内的三级管也可为NMOS晶体管或其他可与PD单片集成的晶体管。如图1所示,各波导光电探测器的分段的阴极以并联方式连接电压源Vcc,阳极分别连接其对应的分段内的三极管的基极。例如,分段D2的阴极连接电压源,阳极连接分段内的三极管Q2的基极。关于波导光电探测器的分段方法会在后文中详细描述。
如图1所示,分段内的三极管(Q0,Q1,Q2,Q3,Q4和Q5)的射级分别接地,每个分段内的三极管都对应连接一个传输线(DTL,the transmission line)。在本实施例中,传输线为六个,即dt0,dt1,dt2,dt3,dt4和dt5,在不同的实施例中应根据波导光电探测器的分段的数目采用相同数目的传输线。分段内的三极管的集电极连接对应传输线的一端,例如分段三级管Q1连接传输线dt1的一端,分段内的三极管Q5连接传输线dt5的一端。传输线dt0,dt1,dt2,dt3,dt4和dt5的另一端连接用以电流加和的三极管Q6的射级,用以电流加和的三极管Q6的基极连接一偏置电压,用以电流加和的三极管Q6的集电极为总光电流的输出端口。为将总光电流信号转换为电压信号输出,用以电流加和的三极管Q6的集电极连接有一负载电阻R0,用以电流加和的三极管Q6与负载电阻R0的连接点亦即电压输出端口。负载电阻R0的另一端连接电压源Vcc。在其他实施例中,还可以采用其他方法将电流信号转换为电压信号,例如将集合三级管Q6的集电极输出电流输入到一个跨导放大电路。
传输线(dt0,dt1,dt2,dt3,dt4和dt5)的特征阻抗Zd应该等于分段三级管的输出阻抗,由于这里是开路的集电极输出,Zd值会非常的高。为了同相地汇集电流,各传输线的传输延迟之间有时间差,这种延迟差将使得由各分段内的三极管激发的光电流传输到电流汇集点(图1中用以电流加和的三极管Q6的射极)时,来自每个分段的电流信号的相位是相同的。下文中将会详细讨论如何确定传输线之间的传输延迟。
当图1所示的光电信号转换放大器件工作时,首先波导光电探测器将入射光波信号转换为电流信号,也就是光电流;然后,分段内的三极管对该电流信号进行初始放大;其次,通过传输线,分段内的三极管输出的电流信号同相地汇集到用以电流加和的三极管的射级,并通过用以电流加和的三极管流过负载电阻;从而,电流信号经过负载电阻转换为电压信号从电压输出端口输出。
除了图1所示的光电信号转换放大器件的基本电路架构以外,本发明还有几种不同的实施例。如图2所示,矩形长框内为波导光电探测器,被分割成六个分段,分别为D0,D1,D2,D3,D4和D5,其中,每个分段各包括一个光电二极管,输入光波信号依次流过分段D0-D5。请注意,在本实施例中,波导光电探测器的分段个数为六个,在不同的实施例中,可以根据实际应用需要采用不同数目的分段。每个波导光电探测器的分段都有两个三极管与之对应,一个是分段内的三极管,另一个是用以电流加和的三极管,即分段内的三极管Q0,Q1,Q2,Q3,Q4和Q5,用以电流加和的三极管Q7,Q8,Q9,Q10,Q11和Q12。这里,分段三级管和集合三级管为NPN型晶体管。在其他实施例中,分段三级管和集合三级管也可为NMOS晶体管或其他可与PD单片集成的晶体管。如图2所示,各波导光电探测器的分段的阴极以并联方式连接电压源Vcc,阳极分别连接其对应的分段内的三极管的基极。例如,分段D2的阴极连接电压源,阳极连接分段Q2的基极。
如图2所示,分段内的三极管Q0,Q1,Q2,Q3,Q4和Q5分别与用以电流加和的三极管Q7,Q8,Q9,Q10,Q11和Q12对应,各分段内的三极管的射级分别接地,且各分段内的三极管的集电极都连接其所对应的用以电流加和的三极管的射级,例如,分段内的三极管Q0的集电极连接用以电流加和的三极管的Q7的射级,分段内的三极管Q3的集电极连接用以电流加和的三极管Q10的射级。各用以电流加和的三极管的基极连接一偏置电压,集电极分别对应连接一个传输线(DTL,the transmission line)。在本实施例中,传输线为六个,即dt0,dt1,dt2,dt3,dt4和dt5,在不同的实施例中应根据波导光电探测器的分段的数目采用相同数目的传输线。用以电流加和的三极管的集电极连接对应传输线的输入端,例如集合三级管Q7连接传输线dt0的输入端,用以电流加和的三极管Q12连接传输线dt5的输入端。传输线dt0,dt1,dt2,dt3,dt4和dt5的输出端以并联方式连接,该连接点为总光电流输出端口。为将总光电流信号转换为电压信号输出,传输线dt0-dt5的输出端连接一负载电阻R0的一端,这个连接点即电压输出端口。负载电阻R0的另一端连接电压源Vcc。在其他实施例中,还可以采用其他方法将电流信号转换为电压信号,例如将集合三级管Q6的集电极输出电流输入到一个跨导放大电路。为了同相地汇集电流,各传输线的传输延迟之间有时间差,这种延迟差将使得各分段内的三极管激发的光电流传输到电流汇集点(图2中传输线的输出端)时,来自每个分段的电流信号的相位是相同的。
在图2所示的电路架构中,图1中的用以电流加和的三极管Q6被六个用以电流加和的三极管Q7,Q8,Q9,Q10,Q11和Q12代替,分别与分段内的三极管组合成cascade结构。如图2所示,每个分段内的三极管都自己带有一个级联三极管(Q7-Q12),同时电流在负载电阻R0处被集合。
图3是本发明公开的一种光电信号转换放大器件的另一电路架构图。如图3所示,矩形长框内为波导光电探测器沿波导方向被分割成六个分段段,分别为D0,D1,D2,D3,D4和D5,每个分段都可被视为一个独立的光电二极管,输入光波信号依次流过分段D0-D5。每个波导光电探测器的分段都有一个分段内的三极管(Segment Transistor)与其对应,即分段内的三极管Q0,Q1,Q2,Q3,Q4和Q5。在本实施例中,分段内的三极管为NPN型晶体管。在其他实施例中,也可为NMOS晶体管或其他可与PD单片集成的晶体管。各波导光电探测器的分段的阴极以并联方式连接电压源Vcc,阳极分别连接其对应的三极管的基极。例如,分段D2的阴极连接电压源,阳极连接分段内的三极管Q2的基极。
如图3所示,分段内的三极管(Q0,Q1,Q2,Q3,Q4和Q5)的射级分别接地,每个分段内的三极管都对应连接一个传输线(DTL,the transmission line)。在本实施例中,传输线为六个,即dt0,dt1,dt2,dt3,dt4和dt5,在不同的实施例中应根据波导光电探测器的分段的数目采用相同数目的传输线。分段内的三极管的集电极连接对应传输线的一端,例如分段三级管Q1连接传输线dt1的一端,分段内的三极管Q5连接传输线dt5的一端。传输线dt0,dt1,dt2,dt3,dt4和dt5的另一端连接用以电流加和的三极管Q6的射级,该连接点为电流汇集点。用以电流加和的三极管Q6的射级还连接稳压三极管Q13的基极,其基极连接稳压三极管Q13的集电极。稳压三极管Q13的集电极同时连接一反馈电阻R2,其射级接地,反馈电阻R2的另一端连接电压源Vcc;用以电流加和的三极管Q6的集电极为总光电流的输出端口,为将总光电流信号转换为电压信号输出,它连接有一负载电阻R0,用以电流加和的三极管Q6与负载电阻R0的连接点亦即电压输出端口。负载电阻R0的另一端连接电压源Vcc。在其他实施例中,还可以采用其他方法将电流信号转换为电压信号,例如将集合三级管Q6的集电极输出电流输入到一个跨导放大电路。为了同相地汇集电流,各传输线的传输延迟之间有时间差,这种延迟差将使各分段内的三极管激发的光电流通过传输线传输到电流汇集点时,来自每个分段的电流信号的相位是相同的。
图3所示的电路架构是在各分段内的三极管输出的电流汇集点使用了监管级联的方法(Regulated Cascade或RGC)。稳压三极管Q13和反馈电阻R2共同为用以电流加和的三极管Q6提供偏置点,能够大大降低电流汇集点的输入阻抗。这样波导光电探测器的各分段光电探测器以及分段内的三极管构成了一个能用模拟电路实现雪崩效应的电流放大器。而电路仿真雪崩效应的电流增益即为分段内的三极管(Q0-Q6)的β值。
现在来讨论前述波导光电探测器的分段方法。波导光电探测器是行波探测器,入射光波在波导光电探测器内部传输并被逐渐吸收。因此,在光波信号传播方向上(即波导光电探测器方向)光波将会越来越弱,同时在此方向上将会产生光电流。为了将每个分段中的光电探测器视作集总器件,和由入射光波携带的电信号的波长相比,每个分段都需要远小于输入光波携带的电波波长,即各分段的长度相对于电波波长可以被忽略。另外,设计时也需要考虑在波导方向上的各分段的具体长度分布。例如,为了使每个分段输出的光电流都相同,沿波导方向上,前面的分段长度可以小于等于后面的分段长度。
一旦波导探测器被分为多段以后,每个分段就剩下了很小的寄生电容,同时产生的光电流也变小了。单个的共射三极管(分段内的三极管Q0-Q5)可以用来将弱小的光电流放大。同时,因为寄生电容对光电探测器的影响已经很小,所以也无需使用反馈回基极的方法(feedback-to-its-base)减少输入阻抗了。
为了使本发明公开的光电转换放大器件工作良好,还必须解决各分段之间(传输线之间)的传输延迟问题。行波光电探测器的本身性质决定了由各个分段产生的光电流的时间将会不同:同一信号在光波传输方向上靠前的分段内将会更早地生成光电流,而在靠后的分段内产生光电流的时间会较迟一些。因此,当信号通过分段内的三极管放大以后,为了能够同相地汇集各分段的电流,这些电流在从各分段内的三极管传输到电流汇集点(图1和图3中用以电流加和的三极管Q6的射级或者图2中传输线的输出端)的路径上彼此之间必须要有合适的传输时间差异即传输延迟差。这种传输延迟差可以由图1-3所示的传输线(DTL)引入,图1-3中所示的dt0,dt1,dt2,dt3,dt4同时也是各传输线所对应的传输延迟,这些延迟时间之间的差值应等于光波通过相应的分段波导探测器的传输延迟。例如:dt4-dt5等于光波通过分段探测器D4的传输延迟,或者等于光波从D4的中点传播到D5的中点所需的时间延迟;dt0-dt1等于光波通过分段探测器D0的传输延迟,或者等于光波从D0的中点传播到D1的中点所需的时间延迟。
请注意,虽然在本发明公开的3个实施例中,波导光电探测器的分段个数均为六个,但是在不同的实施例中,可以根据实际应用需要采用不同分段数。同样地,与每个分段对应的分段内的三极管、传输线和cascade结构中的用以电流加和的三极管的数目也要随之变化。图1-3中的参数大小是为了方便说明,在实际设计过程中会视应用需求进行优化。
以上实施方式对本发明进行了详细说明,本领域中普通技术人员可根据上述说明对本发明做出种种变化例。因而,实施方式中的某些细节不应构成对本发明的限定,本发明将以所附权利要求书界定的范围作为本发明的保护范围。

Claims (3)

1.一种光电信号转换放大器件,包括,
一个波导光电探测器,其沿波导方向被分割为至少一个分段(D0-D5),所述波导光电探测器的每个分段的长度远小于在其内传输的电信号波长,且沿波导方向上,各分段存在一个长度分布,即前面的分段长度小于等于后面的分段长度,
所述波导光电探测器的各分段的阴极以并联方式连接一电压源;以及
至少一个与所述波导光电探测器的分段成对出现的分段内的三极管(Q0-Q5),所述分段内的三级管的射级分别接地;其中,所述分段内的三极管的基极各自连一个所述波导光电探测器的分段的阳极,即所述波导光电探测器的分段产生的光电流为所述分段内的三极管的基极电流;以及
至少一个与所述分段内的三极管成对出现的传输线(dt0-dt5),一端分别与其对应的所述分段内的三极管的集电极相连,其中,所述传输线之间有传输延迟差,且延迟时间的差值应等于在对应所述波导光电探测器分段内传播的光波的传输延迟,所述传输线之间的传输延迟差使得所有所述传输线输出电流波的相位相同;
用以电流加和的三极管(Q6),其射级与所述传输线的另一端相连,其基极连接一偏置电压,其集电极为总光电流输出端口。
2.如权利要求1所述的光电信号转换放大器件,其特征在于,
所述用以电流加和的三极管(Q6)的基极不再连接一偏置电压,而是连接一个稳压三极管(Q13)的集电极,该连接点上还连接一反馈电阻(R2),所述反馈电阻(R2)的另一端连接所述电压源;
所述稳压三极管(Q13)的射级接地,其基极连接所述用以电流加和的三极管(Q6)的射级。
3.一种光电信号转换放大器件,包括,
一个波导光电探测器,其沿波导方向被分割为至少一个分段(D0-D5),所述波导光电探测器的每个分段的长度远小于在其内传输的电信号波长,且沿波导方向上,各分段存在一个长度分布,即前面的分段长度小于后面的分段长度,
所述波导光电探测器的各分段的阴极以并联方式连接一电压源;以及
至少一个与所述波导光电探测器的分段成对出现的分段内的三极管(Q0-Q5),所述分段内的三级管的射级分别接地;其中,所述分段内的三极管的基极各自连一个所述波导光电探测器的分段的阳极,即所述波导光电探测器的分段产生的光电流为所述分段内的三极管的基极电流;以及
至少一个与所述分段内的三极管成对出现的用以电流加和的三极管(Q7-Q12),所述用以电流加和的三极管的射级与其对应的所述分段内的三级管的集电极连接,所述用以电流加和的三极管的基极连接一偏置电压;
至少一个与所述用以电流加和的三极管成对出现的传输线(dt0-dt5),一端分别与其对应的所述用以电流加和的三极管的集电极相连,其中,所述传输线之间有传输延迟差,且延迟时间的差值应等于在对应所述波导光电探测器的分段内传播的光波的传输延迟,所述传输线之间的传输延迟使得所有所述传输线输出电流波的相位相同;所述传输线的另一端以并联方式连接,且该连接点为总光电流输出端口。
CN201210350151.0A 2011-09-12 2012-09-06 一种光电信号转换放大器件 Active CN103001589B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161533741P 2011-09-12 2011-09-12
US61/533,741 2011-09-12
US61/533741 2011-09-12

Publications (2)

Publication Number Publication Date
CN103001589A CN103001589A (zh) 2013-03-27
CN103001589B true CN103001589B (zh) 2017-02-15

Family

ID=47929811

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201210350151.0A Active CN103001589B (zh) 2011-09-12 2012-09-06 一种光电信号转换放大器件
CN 201220473781 Expired - Lifetime CN202978824U (zh) 2011-09-12 2012-09-06 一种光电信号转换放大器件

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN 201220473781 Expired - Lifetime CN202978824U (zh) 2011-09-12 2012-09-06 一种光电信号转换放大器件

Country Status (1)

Country Link
CN (2) CN103001589B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001589B (zh) * 2011-09-12 2017-02-15 李冰 一种光电信号转换放大器件
CN104819736B (zh) * 2015-03-24 2018-02-27 宁波大学 一种高功率大带宽光电探测器
CN104836537B (zh) * 2015-05-21 2018-03-20 烽火通信科技股份有限公司 一种光接收次模块中滤波电容的替代方法及电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0384205T3 (da) * 1989-02-23 1996-05-28 Alcatel Nv Indgangstrin til en optisk bredbåndsmodtager
CN101197625A (zh) * 2007-12-18 2008-06-11 天津大学 带宽与灵敏度均倍增的标准cmos差分光电集成接收机
CN202978824U (zh) * 2011-09-12 2013-06-05 李冰 一种光电信号转换放大器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4036040B2 (ja) * 2002-06-21 2008-01-23 日本電気株式会社 光ファイバ誤接続検出システム、光ファイバ誤接続検出方法、およびそのプログラム
US7625775B2 (en) * 2006-11-06 2009-12-01 Truelight Corporation Multiple function thin-film resistor-capacitor array
JP5625918B2 (ja) * 2011-01-04 2014-11-19 富士通株式会社 光受信装置および光送信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0384205T3 (da) * 1989-02-23 1996-05-28 Alcatel Nv Indgangstrin til en optisk bredbåndsmodtager
CN101197625A (zh) * 2007-12-18 2008-06-11 天津大学 带宽与灵敏度均倍增的标准cmos差分光电集成接收机
CN202978824U (zh) * 2011-09-12 2013-06-05 李冰 一种光电信号转换放大器件

Also Published As

Publication number Publication date
CN202978824U (zh) 2013-06-05
CN103001589A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
CN101651449B (zh) 一种用于光通信接收机的光输入前置放大器
CN102820857A (zh) 宽带高增益跨阻放大器及设计方法和放大器芯片
CN102104431B (zh) 一种光收发模块中的双速率接收装置
CN104993876A (zh) 具有全带宽单端转差分的高速cmos单片集成光接收机
CN103746667B (zh) 一种低噪声宽带光纤跨阻放大器
CN107147448A (zh) 一种高灵敏度的宽带光接收机前端电路
CN103701533B (zh) 基于标准SiGe BiCMOS工艺的光电集成接收机
CN103001589B (zh) 一种光电信号转换放大器件
CN101197623B (zh) 一种差分光接收机及灵敏度和带宽同时倍增的方法
CN100477503C (zh) 光电放大器电路、光接收器和产生电信号的方法
CN105187017B (zh) 一种宽带放大电路
Dong et al. Analog front-end for a 3 Gb/s POF receiver
CN203691420U (zh) 基于标准SiGe BiCMOS工艺的光电集成接收机
CN111342907B (zh) 一种兼具无线光通信信号分集和入射光角度估计功能的电路
CN108599866A (zh) 一种传输速率25Gbps高速光接收机
CN102523043B (zh) 光探测器
CN112073012A (zh) 一种伪差分结构低噪声高线性跨阻放大器电路及芯片
CN204859189U (zh) 具有全带宽单端转差分的高速cmos单片集成光接收机
CN107846248B (zh) 一种用于微波光子系统的超宽带多通道光电一体化探测器
CN107786175A (zh) 一种用于光接收机的宽带跨阻放大电路
CN103900686B (zh) 一种用于高速光电探测器的前级放大电路
CN209676210U (zh) 一种用于中速通讯的光耦电路和光电耦合器
CN207968495U (zh) 一种远距离传输的100g小型化光模块
CN110504617A (zh) 激光器驱动电路
Das et al. All-Silicon Low Noise Photonic Frontend For LIDAR Applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230807

Address after: 200438 room 1011-4, building 2, No. 335, Guoding Road, Yangpu District, Shanghai

Patentee after: SHANGHAI GUITONG SEMICONDUCTOR TECHNOLOGY Co.,Ltd.

Address before: Room 1611, Building 2, No. 335 Guoding Road, Yangpu District, Shanghai, 200433

Patentee before: Li Bing

TR01 Transfer of patent right
DD01 Delivery of document by public notice

Addressee: Yuan Xiao

Document name: Notification of Qualified Procedures

DD01 Delivery of document by public notice