CN102999907A - 一种用于小球藻自动计数的图像调色板阈值分割方法 - Google Patents
一种用于小球藻自动计数的图像调色板阈值分割方法 Download PDFInfo
- Publication number
- CN102999907A CN102999907A CN2012104669877A CN201210466987A CN102999907A CN 102999907 A CN102999907 A CN 102999907A CN 2012104669877 A CN2012104669877 A CN 2012104669877A CN 201210466987 A CN201210466987 A CN 201210466987A CN 102999907 A CN102999907 A CN 102999907A
- Authority
- CN
- China
- Prior art keywords
- palette
- image
- color
- chlorella
- original image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Image Processing (AREA)
- Facsimile Image Signal Circuits (AREA)
Abstract
本发明公开了一种用于小球藻自动计数的图像调色板阈值分割方法,以小球藻显微荧光图像各颜色占调色板总颜色的概率的累积分布函数作为变换函数,其中累积分布函数表示为:式中,rj为原图像归一化调色板颜色所占比重,nj为原图像中出现第k级颜色的像素个数,n为图像调色板颜色的总数,Sk为HE(直方图均衡)后图像归一化后的颜色比重,T(rk)为变换关系式,pr(rj)为原图像取第k级颜色的概率,即原图像的调色板直方图,处理后得到的第一图像的调色板分布为k=0,1,.....,N一1,则变换关系为r′k=round((N-1)sk),r′k为均衡后所显示的颜色,统计颜色在调色板中的直方图分布情况,找到小球藻颜色在调色板中的阈值分割。
Description
技术领域
本发明属于水产养殖技术领域,特别涉及一种用于小球藻自动计数的图像调色板阈值分割方法。
背景技术
小球藻,俗称绿藻,作为一种具有保健食品作用的藻类,人工培养的生产已经由来已久。在人工培养中,对于小球藻个数的计数是一项重要的环节。但是,在现有技术中,藻类的个数的计数工作主要依靠人工,劳动强度大,观测时间长,容易引起疲劳误差。目前,还没有一种有效的方法解决上述问题。
发明内容
本发明的目的是提供一种用于小球藻自动计数的图像调色板阈值分割方法,用于对于小球藻自动计数,该方法利用了藻类荧光激发效应,藻类受一定波长的光波照射后发射出特定范围波长的光的一种现象。
本发明的技术方案是,一种用于小球藻自动计数的图像调色板阈值分割方法,包括以下步骤:
将图像格式为24位真彩色图像的小球藻显微荧光图像作为原图像,以小球藻显微荧光图像各颜色占调色板总颜色的概率的累积分布函数作为变换函数,将原图像映射为一幅调色板颜色级分布较均匀的图像,其中累积分布函数表示为:
0≤rj≤1;k=0,1,...,I (1)
式中,rj为原图像归一化调色板颜色所占比重,nj为原图像中出现第k级颜色的像素个数,n为图像调色板颜色的总数,Sk为HE(直方图均衡)后图像归一化后的颜色比重,T(rk)为变换关系式,pr(rj )为原图像取第k级颜色的概率,即原图像的调色板直方图,
假设处理后得到的第一图像的调色板分布为k=0,1,.....,N一1,则变换关系为,
r′k=round((N-1)sk) (2)
k=0,1,....,N一1(round为四舍五人取整运算),r′k为均衡后所显示的颜色,
利用经过调色板均衡化后的第一图像,统计第一图像颜色在调色板中的直方图分布情况,找到小球藻颜色在调色板中的阈值,选取离此阈值正负相差各5个调色板距离的两个点作为区域分割阈值,对第一图像进行分割。
本发明基于256色图像调色板的阈值分割算法,利用经过调色板均衡化后的图像,统计图像颜色在调色板中的直方图分布情况,找到目标物体颜色在调色板中的阈值,由于原始图像中目标与背景颜色非常接近,调色板均衡化后目标与背景各颜色间的在调色板中距离变大,比较目标藻类在图像中颜色,以此颜色在调色板中的位置设定上下分割阈值,
附图说明
图1是本发明的小球藻自动计数方法流程图。
图2是本发明实施例中256色小球藻荧光图像。
图3是本发明实施例中调色板直方图均衡后图像。
图4是本发明实施例中颜色阈值分割后图像。
具体实施方式
对于小球藻自动计数实验选用实验室培养的小球藻实验液,小球藻密度为500~600万个/ml。将小球藻培养液压片后,至于奥林巴斯BX51荧光显微镜下观察,显微镜目镜放大倍数为10倍,选择物镜放大倍数为40倍。实验利用显微镜自带的DP71彩色显微摄像机拍摄藻类荧光激发图像,相机CCD大小为2/3英寸,1250万有效像素,采集图像尺寸为1360×1024,以tif格式存储。
试验中分别利用450~480nm波长的光束和510~550nm波长的光束照射小球藻样品,发现在510~550nm波长的光束照射下小球藻具有明显的红色荧光,其激发光波长处于590nm附近。实验利用红色滤光片滤除其它干扰光线,得到小球藻荧光激发图片。
对于小球藻图像处理流程如图1所示,将得到小球藻藻类荧光激发图像,转换成256色图像如图2所示。
以提高藻类计数精度为目标,提出一种基于调色板直方图均衡化彩色图像分割方法。在RGB颜色空间中以256色图像调色板中颜色分布坐标为外部激励输入,以相同颜色像素占总图像总像素的比重为均衡化密度,用改进灰度直方图均衡化算法对藻类图像进行增强(图3为增强后图像),再根据增强后图像颜色直方图特点选取颜色阈值进行图像分割(图4为分割后图像)。
对于小球藻荧光激发图像进行藻类计数,由于上述的处理过程能够很好的滤除液体中杂质的影响,因此图像分割后我们认为图像中黑像素点,不论关联像素面积大小皆可认为是一个小球藻个体。按照BMP图像格式从左到右,从下到上扫描图像,如果遇到找到一个黑像素点,假设为A点,把A点做种子点.将其标记值设为1.并向外寻找与其八邻域相连的其他黑色像素点.将找到的每个这样点的标记值都设为1。再分别以每个这样的点为种子点继续寻找.直到找不到未标记过的相连的黑色像索点为止.这样一个连通区域就标记完毕。继续从A点处按照扫描顺序寻找下一个未标记过的黑色像素点做种子点.将其标记值设为2.寻找与其八邻域相连的未标记过的黑色像索点,如此反复,直到整幅图像扫描完毕,最大的区域标记值即为所计的藻类个数。
所述的图像处理算法包括灰度均衡算法,该算法的原理如下。
小球藻显微荧光图像图像格式为24位真彩色图像,针对24位真彩色图像的处理程序,现在还不能将小球藻个体与背景分割开来,因此必须要将图像进行变换。
传统的直方图均衡化方法是以图像各灰度级概率的累积分布函数作为变换函数,将原图像映射为一幅灰度级分布较均匀的图像。其中累积分布函数表示为:
0≤rj≤1;k=0,1,...,I (1)
式中,rj为原图像归一化灰度级;nj为原图像中出现第k级灰度级的像素个数;n为图像中像素的总数;sk为HE后图像归一化灰度级;T为变换关系式;
pr(rj)为原图像取第k级灰度值的概率(即原图像的灰度直方图)。
假设新图像的灰度级为k=0,1,.....,N一1,则变换关系为,
r′k=round((N-1)sk) (2)
k=0,1,....,N一1(round为四舍五人取整运算)。
则原图像的两个灰度级r’i2和r’i1变换后的灰度值差为:
由上式可知,当其值小于1时,原图像中灰度范围在[r’i2,r’i1]内的各灰度级在新图像中将被合并为一个灰度级,导致图像边缘等细节部分灰度级概率较小,所以根据式(3)可知图像在进行直方图均衡化处理时容易造成图像细节的丢失。
在本发明的图像处理中包括的调色板均衡算法。以256色图像调色板作为均衡目标,将在调色板中颜色相近的图像均衡到整个256色调色板范围。
利用式(1)中公式,统计调色板中各颜色在图像中的累积分布函数。利用式(2)对256色图像中的颜色在调色板中进行均衡。使图像中的颜色均匀的分布在调色板的各个颜色区间。
经过调色板均衡的图像目标物体与背景差异明显如图3所示。调色板均衡后图像的优点有:
相比于灰度图像,目标物体与背景差异更明显,如果采用人工计数,很容易将目标藻类识别出来;为藻类自动计数提高图像质量做了有益增强。
相比于单色图像,增强了目标与背景之间的差别,简化了图像分割阈值的选取过程。
针对其它行业,如医疗设备中拍摄的彩色人体组织图像,如果使用本方法,通过适当选取阈值,可将目标更加清晰的显示出来。
本发明图像处理方法中基于256色图像调色板的阈值分割算法,利用经过调色板均衡化后的图像,统计图像颜色在调色板中的直方图分布情况,找到目标物体颜色在调色板中的阈值,由于原始图像中目标与背景颜色非常接近,调色板均衡化后目标与背景各颜色间的在调色板中距离变大,比较目标藻类在图像中颜色,以此颜色在调色板中的位置设定上下分割阈值,本实验中选取离此阈值正负相差各5个调色板距离的两个点作为区域分割阈值,对图像进行分割。
本发明中的调色板阈值分割算法基于的调色板均衡化方法,是以图像各颜色占调色板总颜色的概率的累积分布函数作为变换函数,将原图像映射为一幅调色板颜色级分布较均匀的图像。其中累积分布函数表示为:
0≤rj≤1;k=0,1,...,I (1)
式中,rj为原图像归一化调色板颜色所占比重;nj为原图像中出现第k级颜色的像素个数;n为图像调色板颜色的总数;sk为HE后图像归一化后的颜色比重;
T为变换关系式;pr(rj)为原图像取第k级颜色的概率(即原图像的调色板直方图)。
假设新图像的调色板分布为k=0,1,.....,N一1,则变换关系为,
r′k=round((N-1)sk) (2)
k=0,1,....,N一1(round为四舍五人取整运算),r′k为均衡后所显示的颜色。
Claims (1)
1.一种用于小球藻自动计数的图像调色板阈值分割方法,其特征在于,包括以下步骤:
将图像格式为24位真彩色图像的小球藻显微荧光图像作为原图像,以小球藻显微荧光图像各颜色占调色板总颜色的概率的累积分布函数作为变换函数,将原图像映射为一幅调色板颜色级分布较均匀的图像,其中累积分布函数表示为:
0≤rj≤1;k=0,1,...,I (1)
式中,rj为原图像归一化调色板颜色所占比重,nj为原图像中出现第k级颜色的像素个数,n为图像调色板颜色的总数,Sk为直方图均衡后图像归一化后的颜色比重,T(rk)为变换关系式,pr(rj)为原图像取第k级颜色的概率,即原图像的调色板直方图,
假设处理后得到的第一图像的调色板分布为k=0,1,.....,N一1,则变换关系为,
r′k=round((N-1)sk) (2)
k=0,1,....,N一1,round为四舍五人取整运算,r′k为均衡后所显示的颜色,
利用经过调色板均衡化后的第一图像,统计第一图像颜色在调色板中的直方图分布情况,找到小球藻颜色在调色板中的阈值,选取离此阈值正负相差各5个调色板距离的两个点作为区域分割阈值,对第一图像进行分割。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012104669877A CN102999907A (zh) | 2012-11-17 | 2012-11-17 | 一种用于小球藻自动计数的图像调色板阈值分割方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012104669877A CN102999907A (zh) | 2012-11-17 | 2012-11-17 | 一种用于小球藻自动计数的图像调色板阈值分割方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102999907A true CN102999907A (zh) | 2013-03-27 |
Family
ID=47928441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012104669877A Pending CN102999907A (zh) | 2012-11-17 | 2012-11-17 | 一种用于小球藻自动计数的图像调色板阈值分割方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102999907A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105787942B (zh) * | 2016-03-01 | 2019-01-25 | 佛山华芯微特科技有限公司 | 一种用于瓷砖分拣的图像分割方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5596654A (en) * | 1987-04-20 | 1997-01-21 | Fuji Photo Film Co., Ltd. | Method of determining desired image signal range based on histogram data |
CN101114340A (zh) * | 2007-09-06 | 2008-01-30 | 成都方程式电子有限公司 | 直方图均衡化图像处理的vlsi实现系统及方法 |
CN102694981A (zh) * | 2012-05-11 | 2012-09-26 | 中国科学院西安光学精密机械研究所 | 基于自适应阈值分割的直方图均衡化的自动曝光方法 |
-
2012
- 2012-11-17 CN CN2012104669877A patent/CN102999907A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5596654A (en) * | 1987-04-20 | 1997-01-21 | Fuji Photo Film Co., Ltd. | Method of determining desired image signal range based on histogram data |
CN101114340A (zh) * | 2007-09-06 | 2008-01-30 | 成都方程式电子有限公司 | 直方图均衡化图像处理的vlsi实现系统及方法 |
CN102694981A (zh) * | 2012-05-11 | 2012-09-26 | 中国科学院西安光学精密机械研究所 | 基于自适应阈值分割的直方图均衡化的自动曝光方法 |
Non-Patent Citations (2)
Title |
---|
XIANJIU GUO等: "Research on the Segmentation Method of Micro Algae Image", 《MATHEMATICAL AND PHYSICAL FISHERIES SCIENCE》, vol. 8, 31 December 2010 (2010-12-31) * |
刘世晶等: "基于图像处理技术的小球藻荧光图像自动计数方法研究", 《渔业现代化》, vol. 39, no. 5, 20 October 2012 (2012-10-20) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105787942B (zh) * | 2016-03-01 | 2019-01-25 | 佛山华芯微特科技有限公司 | 一种用于瓷砖分拣的图像分割方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102945505A (zh) | 一种小球藻自动计数方法 | |
CN104903914B (zh) | 用于定义细胞培养皿中感兴趣的对象周围的隔离区的方法 | |
Psenner | Determination of size and morphology of aquatic bacteria by automated image analysis | |
JP6576921B2 (ja) | マルチスペクトル撮像のための自動焦点方法およびシステム | |
JP6278519B2 (ja) | 細胞観察装置、細胞観察方法及びそのプログラム | |
CN103748452B (zh) | 生物成像方法和系统 | |
CN101477630A (zh) | 智能化水处理微生物机器视觉辨识系统和方法 | |
CN104034710B (zh) | 基于叶绿素荧光及成像技术的植物病害检测方法 | |
EP3477586A1 (en) | Image processing device, image processing method, and image processing program | |
CN106127709A (zh) | 一种低照度彩色眼底图像判断方法与增强方法 | |
US10511820B2 (en) | Pseudo HandE image producing method and optical system using same | |
CN106971141A (zh) | 细胞区域确定方法、细胞拍摄系统及细胞图像处理装置 | |
JP6345001B2 (ja) | 画像処理方法および画像処理装置 | |
CN107818559A (zh) | 晶体接种状态检测方法和晶体接种状态图像的采集装置 | |
CN102999907A (zh) | 一种用于小球藻自动计数的图像调色板阈值分割方法 | |
CN110702615B (zh) | 一种彩色数码透射显微镜颜色校正方法 | |
JP2017003475A (ja) | 微細藻類成分量測定方法およびその装置 | |
WINATA et al. | Prediction of microalgae total solid concentration by using image pattern technique | |
ES2928631T3 (es) | Proceso implementado por ordenador sobre una imagen de una muestra biológica | |
CN117007575A (zh) | 基于拉曼光谱的水稻白叶枯及水稻细菌性条斑病病原检测方法 | |
Song et al. | Adaptive retinex algorithm based on genetic algorithm and human visual system | |
CN108918398A (zh) | 一种循环肿瘤细胞检测方法 | |
WO2022050109A1 (ja) | 画像処理装置、画像処理方法及び画像処理システム | |
CN115458151A (zh) | 一种基于图像识别技术的海水鱼刺激隐核虫病的诊断方法 | |
CN115587961A (zh) | 一种基于多曝光图像融合技术的细胞成像方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130327 |
|
RJ01 | Rejection of invention patent application after publication |