CN102998742A - Anti-bending single mode fiber with small mode field - Google Patents

Anti-bending single mode fiber with small mode field Download PDF

Info

Publication number
CN102998742A
CN102998742A CN2012105382287A CN201210538228A CN102998742A CN 102998742 A CN102998742 A CN 102998742A CN 2012105382287 A CN2012105382287 A CN 2012105382287A CN 201210538228 A CN201210538228 A CN 201210538228A CN 102998742 A CN102998742 A CN 102998742A
Authority
CN
China
Prior art keywords
less
bending
optical fiber
radius
equal
Prior art date
Application number
CN2012105382287A
Other languages
Chinese (zh)
Other versions
CN102998742B (en
Inventor
汪松
王忠太
Original Assignee
长飞光纤光缆有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长飞光纤光缆有限公司 filed Critical 长飞光纤光缆有限公司
Priority to CN 201210538228 priority Critical patent/CN102998742B/en
Publication of CN102998742A publication Critical patent/CN102998742A/en
Application granted granted Critical
Publication of CN102998742B publication Critical patent/CN102998742B/en

Links

Abstract

The invention relates to an anti-bending single mode fiber with a small mode field. The single mode fiber comprises a core layer and cladding layers and is characterized in that a relative refractive index difference delta1 of the core layer ranges from 0.9% to 1.1%, and the core layer radius R1 ranges from 2.4mu m to 3.0mu m; inner and outer cladding layers are wound outside the core layer; and a relative refractive index difference delta2 of the inner cladding layer ranges from 0% to -0.1%, and the inner cladding layer radius R2 ranges from 9mu m to 12mu m; and the outer cladding layer is arranged outside the inner cladding layer. According to the anti-bending single mode fiber, optical signals can be effectively restrained in the core layer to be spread, and simultaneously, the optical signals are effectively prevented from spreading to outer layers in a bending state, so that the anti-bending performance of optical fibers is improved greatly, and the optical fibers can be used in the condition that a minimum bending radius reaches 3mm; the core layer and the cladding layers of the fiber is doped with fluorine, so that the viscosity mismatching problem of the core layer and the cladding layers is solved, residual stresses in the fiber is few after wiredrawing, and the attenuation property of the fiber can be improved; and the anti-bending single mode fiber with the small mode field is applicable to optical fiber devices, so that operation capacities of the optical fiber devices are enhanced.

Description

一种小模场抗弯曲单模光纤 A small, single-mode fiber mode field flexural

技术领域 FIELD

[0001] 本发明涉及一种用于光通信系统的小模场抗弯曲单模光纤,该光纤具有极小的弯曲附加损耗,可在光纤器件中使用,属于光通信技术领域。 [0001] The present invention relates to a small mode field against one curved optical communication system for single-mode optical fiber having minimal additional bending loss, the optical fiber may be used in the device belonging to the field of optical communication technology.

背景技术 Background technique

[0002] 随着光通信技术的快速发展,单模光纤取代铜线已经大量应用于中短距离的控制系统中,在系统集成过程中人们对于器件小型化提出越来越高的要求,因此光纤的弯曲半径也要求越来越小,在很小的弯曲半径下,极低的弯曲附加损耗是非常重要的要求。 [0002] With the rapid development of optical communication technology, a large number of single-mode fiber has been applied to replace copper in the control system in a short distance, it is proposed for downsizing the device ever-increasing demands on system integration process, and therefore the optical fiber the smaller bending radius requirement, at a small bending radius, the additional low bending loss is a very important requirement. 在已使用的器件中要求光纤最小弯曲半径达到3_。 Required minimum bend radius in the fiber reaches 3_ device already used.

[0003] 通常改善单模光纤的抗弯曲性能有两种方式,一是减小光纤模场直径而同时保证截止波长,即保持一定的MAC值(模场直径与截止波长之比),MAC值越小,则弯曲损耗对应越小。 [0003] generally improves the bending resistance of single-mode fiber, there are two ways, one is to reduce the mode field diameter of the optical fiber while ensuring that the cutoff wavelength, i.e., to maintain a certain MAC value (than the mode field diameter and the cutoff wavelength), the MAC value the smaller the bending loss is smaller counterparts. 二是采用双包层结构来改善弯曲性能;或者是将内包层变成下陷包层,或者在内包层之外增加下陷包层,以保证较大的模场直径的同时,改善光纤的抗弯曲特性。 Second, the double clad structure to improve the bending properties; or inner cladding becomes depressed cladding or outside of the inner cladding increases while depressed cladding, in order to ensure a larger mode field diameter, improve the resistance to bending of the optical fiber characteristic. 后一种方法在弯曲不敏感光纤(即G. 657光纤)中得到普遍应用。 The latter method widely used in bend-insensitive fibers (i.e., fibers G. 657) in the. 如中国专利CN101598834A,美国专利US7450807以及欧洲专利EP1978383等。 Chinese patent CN101598834A, US7450807 US patents and the European patent EP1978383 and so on. 在美国专利US7450807中,描述了一种通过加深下限环的低弯曲损耗光纤,但其抗弯曲性能仍属普通抗弯曲光纤的水平。 In U.S. Patent US7450807, there is described a method by deepening the lower limit of low bending loss of an optical fiber ring, but it is still common bending resistance against bending of the fiber level. 在专利TO2004/092794中,描述了一系列不同掺杂的低弯曲损耗单模光纤,但其大部分设计中IOmm直径的弯曲损耗已经大大增加,无法适应极小弯曲情况下的使用要求。 In Patent TO2004 / 092794, there is described a series of differently doped single mode optical fiber of low bending loss, but most of their design IOmm diameter bending loss has been greatly increased, can not meet the requirements in the case of a tight bend.

[0004] 在不要求与普通G. 652光纤进行连接的应用场合,模场直径的匹配并不作为首要考虑的问题之一,因此小模场直径设计可以采用。 [0004] In applications not required G. 652 connected to the ordinary optical fibers, the mode field diameter of not matching one of a primary consideration, and therefore the small mode field diameter designs may be employed.

发明内容 SUMMARY

[0005] 为方便介绍本发明内容,定义以下术语: [0005] For the convenience of description the present invention, the following terms are defined:

折射率剖面:光纤中玻璃折射率与光纤半径之间的关系。 Refractive index profile: the relationship between the refractive index of the glass fiber and the optical fiber radius.

[0006] 相 对折射 率差: [0006] The relative refractive index difference:

A = -^2)/ (2^)lx 100% ^xioo% '和分别为各对应部分的折射率和纯二L J «o »o A = - ^ 2) / (2 ^) lx 100% ^ xioo% 'respectively «o» o and the refractive index of the two corresponding portions of each pure L J

氧化硅的折射率。 Refractive index of silicon oxide.

[0007] 氟(F)的贡献量:掺氟(F)石英玻璃对于纯二氧化硅石英玻璃的相对折射率差(AF),以此表示掺氟(F)量。 [0007] The contribution of fluorine (F): The fluorine-doped (F) of quartz glass relative refractive index difference between pure silica quartz glass (AF), fluorine-doped as an expression (F) amount.

[0008] 本发明所要解决的技术问题是针对上述现有技术存在的不足提供一种小模场抗弯曲单模光纤,该光纤具有极小的弯曲附加损耗,能在极小弯曲半径情况下使用。 [0008] The present invention solves the technical problem is to provide a small mode for anti disadvantages of the above prior art single mode optical fiber is bent, the optical fiber having a minimal additional bending loss, can be used in extremely small bending radii .

[0009] 本发明为解决上述提出的问题所采用的技术方案为:包括芯层和包层,其特征在于所述芯层的相对折射率差Al为0.9%〜1. 1%,芯层半径Rl为2. 4〜3. Oiim;围绕在芯层外有内、外两个包层;内包层相对折射率差A2为0%〜-0. 1%,内包层半径R2为扩内包层外为外包层。 [0009] aspect of the present invention is to solve the problems set forth above is employed: a core and a cladding, wherein said core relative refractive index difference Al is 0.9% ~ 1 1%, core radius. Rl is 2. 4~3 Oiim;. in the outer core layer surrounding the inner, outer two cladding; an inner cladding relative refractive index difference A2 0% to -01% of the inner cladding radius R2 of the inner cladding outer diffuser. for the outer cladding. [0010] 按上述方案,所述的芯层由掺锗的石英玻璃、或锗氟共掺石英玻璃、或锗及其它掺杂剂共掺的石英玻璃组成;芯层中锗的贡献量AGe为0.9%〜1. 1%,氟(F)的贡献量AF等于或低于-0.1 %。 [0010] In the above-described embodiment, the core layer of germanium-doped quartz glass, fluorine or germanium co-doped quartz glass, germanium, and other dopant or co-doped quartz glass; of germanium in the core as the contribution of AGe 0.9% ~ 1 1%, the contribution of the amount of fluorine (F) is equal to or less than -0.1% AF.

[0011] 按上述方案,所述的内包层由掺氟或锗氟共掺的石英玻璃组成,内包层半径R2与芯层半径Rl的比值R2/R1为4〜4. 5,内包层相对折射率差A 2与芯层相对折射率差AI的差值(A1-A 2)为1. 0%至1. 16%。 [0011] In the above-described embodiment, the inner cladding of fluorine-doped with fluorine or germanium co-doped quartz glass, the inner cladding ratio of the core radius Rl and radius R2 of R2 / R1 is 4~4. 5, the inner cladding relative refractive a 2 difference index difference (A1-a 2) and the core relative refractive index difference of AI is 1.0 to 1.16%.

[0012] 按上述方案,所述的外包层由纯石英玻璃组成。 [0012] In the above-described embodiment, the outer layer is made of pure quartz glass.

[0013] 按上述方案,所述的单模光纤在1310nm波长处的衰减系数小于或等于0. 52dB/km ;在1310nm波长处的模场直径为4. 5〜5. 5 um ; [0013] In the above-described embodiment, the single mode optical fiber is smaller than the attenuation coefficient at the wavelength of 1310nm or equal to 0. 52dB / km; mode field diameter at a wavelength of 1310nm is 4. 5~5 5 um.;

按上述方案,所述的单模光纤在1550nm波长处的衰减系数小于或等于0. 30dB/km ;在1550nm波长处的模场直径为5. 5um至6. 5 ym。 According to the above embodiment, the single-mode fiber is equal to or less than 0. 30dB / km in the attenuation coefficient at a wavelength of 1550nm; mode field diameter at a wavelength of 1550nm is 5. 5um to 6. 5 ym.

[0014] 按上述方案,所述的单模光纤具有小于或等于1260nm的光缆截止波长。 [0014] The above-described embodiment, the single mode fiber has a cable cutoff wavelength less than or equal to 1260nm.

[0015] 按上述方案,所述的单模光纤在1550nm波长处,对于围绕3mm弯曲半径饶一圈弯曲附加损耗小于或等于0.1dB,对于围绕5mm弯曲半径饶一圈弯曲附加损耗小于或等于0. 05dB,对于围绕1. 5mm弯曲半径饶一圈弯曲附加损耗小于或等于0. OldB,对于围绕IOmm弯曲半径饶一圈弯曲附加损耗小于或等于0. 005dB,对于围绕15mm弯曲半径饶十圈弯曲附加损耗小于或等于0. 002dB。 [0015] In the above-described embodiment, the single mode fiber at a wavelength of 1550 nm, for additional bending Rao circle around 3mm radius bend losses less than or equal to 0.1dB, for additional bending Rao circle radius bending loss is less than about 5mm or equal to 0 . 05dB, about 1. 5mm to the bending radius of a circle Rao additional bending loss is less than or equal to 0. OldB, Rao circle for additional bending loss around IOmm bend radius equal to or less than 0. 005dB, Rao for bending around a bending radius of 15mm ten laps additional loss is equal to or less than 0. 002dB.

[0016] 按上述方案,所述的单模光纤在1625nm波长处,对于围绕3mm弯曲半径饶一圈弯曲附加损耗小于或等于0. 2dB,对于围绕5mm弯曲半径饶一圈弯曲附加损耗小于或等于0. ldB,对于围绕7. 5mm弯曲半径饶一圈弯曲附加损耗小于或等于0. 02dB,对于围绕IOmm弯曲半径饶一圈弯曲附加损耗小于或等于0. 005dB,对于围绕15mm弯曲半径饶十圈弯曲附加损耗小于或等于0. 005dB。 [0016] The above-described embodiment, the single mode optical fiber at the wavelength of 1625 nm, for additional bending Rao circle around 3mm radius bend losses less than or equal to 0. 2dB, Rao circle for additional bending loss around a bending radius of 5mm or less 0. ldB, for a bending radius of about 7. 5mm Rao circle additional bending loss is equal to or less than 0. 02dB, for additional bending around IOmm Rao circle radius bend losses less than or equal to 0. 005dB, Rao for ten turns around a bend radius 15mm additional bending loss is less than or equal to 0. 005dB.

[0017] 本发明的有益效果在于:1、芯层掺杂锗的贡献量大,能有效将光信号约束在芯层中进行传播,同时在弯曲状态下,有效阻止光信号向外层传播,使光纤的抗弯曲性能得到极大提高,能在最小弯曲半径达到3_的极小弯曲半径情况下使用;2、光纤的芯层和内包层掺杂有氟,使得芯层与包层材料的粘度失配问题得到改善,拉丝后光纤内部残余应力减少,可以改善光纤的衰减性能;3、可在光纤器件中使用,增强光纤器件的运行能力。 [0017] Advantageous effects of the present invention is: 1, germanium-doped core contribution amount, effective to convert an optical signal propagating in the core layer constraint, while in the bent state, to effectively prevent the optical signals propagating an outer layer, that the bending resistance of the optical fiber is greatly improved, can achieve a minimum bend radius 3_ in the case where the minimum bend radius; 2, the optical fiber core and inner cladding is doped with fluorine, so that the core material and the cladding viscosity mismatch improved after fiber drawing to reduce the residual internal stress, it can improve the performance of the fiber attenuation; 3, can be used in optical devices, the enhanced operational capabilities of optical devices.

附图说明 BRIEF DESCRIPTION

[0018] 图1是本发明的一个实施例的径向截面示意图。 [0018] FIG. 1 is a radial one embodiment of the present invention is a schematic sectional view.

[0019] 图2是本发明一个实施例的折射率剖面示意图。 [0019] FIG. 2 is a schematic cross-sectional view of the embodiment of the refractive index of embodiment of the present invention.

[0020] 图3是本发明一个实施例光纤折射率剖面图。 [0020] FIG. 3 is a cross-sectional view of the refractive index of an optical fiber embodiment of the present invention.

具体实施方式 Detailed ways

[0021 ] 下面将给出详细的实施例,对本发明做进一步的说明。 [0021] will be given below in detail of the embodiments, further explanation of the invention.

[0022] 包括有芯层和包层,芯层00由掺锗(Ge)和氟(F)的石英玻璃组成,或由掺锗及其它掺杂剂的石英玻璃组成;围绕在芯层外有两个包层,内包层10紧密围绕芯层,由掺氟或锗氟共掺的石英玻璃组成;外包层20紧密围绕内包层,由纯石英玻璃组成。 [0022] comprising a core and a cladding, the core 00 doped with germanium (Ge) and quartz glass fluorine (F) is composed of silica glass doped with germanium or other dopant and composition; around the outer core layer has two cladding, the inner cladding immediately surrounding the core 10, fluorine-doped germanium-fluorine co-doped or quartz glass; 20 outer layer closely surrounding the inner cladding, made of pure quartz glass.

[0023] 按上述单模光纤的技术方案,在其所规定的范围内对光纤的参数进行设计,并通过我们熟知的PCVD、MCVD, OVD或VAD工艺等芯棒制造工艺根据光纤设计要求制造芯棒,通过套管工艺、OVD工艺等进行外包层的制造,完成整个预制棒的制造。 [0023] According to the above embodiment of the single-mode fiber, they are within a predetermined range of the design parameters of the fiber, and we know through PCVD, MCVD, OVD or VAD core rod manufacturing process or the like according to the process for producing an optical fiber core design requirements bars, produced by the sleeve outer layer process, an OVD process or the like, completing the manufacture of the entire preform.

[0024] 光纤的折射率剖面主要参数如表I所示。 [0024] refractive index profile of the fiber of the main parameters in Table I below.

[0025] 光纤的主要性能参数如表2所示。 [0025] The main performance parameters of the fiber shown in Table 2.

[0026] 宏弯附加损耗测试方法按照IEC60793-1-47中规定的方法,将光纤按一定直径绕成I圈或10圈,然后将圆圈放开,分别测试打圈前后光功率的变化,作为光纤的弯曲附加损耗。 [0026] Additional macro bending loss test method in accordance with the method specified in IEC60793-1-47, the optical fiber is wound into a diameter I by ring or ring 10, then release the circle, were tested before and after the change in optical power circle, as additional bending loss of the fiber. 主要测试光纤在1550nm和1625nm处的弯曲附加损耗,推断光纤在整个波段的弯曲特性。 The main bending test fiber at 1625nm and 1550nm additional loss of fibers throughout the bending characteristics inferred band.

[0027] 从实施例可以看出,(A1- A2)对于光纤的弯曲性能有较为明显的影响,更大的(Al — A2)值则对应更好的宏弯附加损耗,这是因为高的折射率可以更好的约束光在芯层传输,在受到弯曲等应力作用下,也不容易泄漏到包层中,产生附加损耗。 [0027] As can be seen from the examples, (A1- A2) have a more significant effect on the bending performance of the fiber, a larger (Al - A2) corresponding to the value of the additional better macrobending loss, because of the high refractive index may be better transmitted light confinement in the core, by bending under stress, it is not likely to leak into the cladding, resulting in additional losses. 而包层的掺氟或锗氟共掺区域,则可以使芯层和包层的材料粘度得到一定的匹配,从而降低拉丝过程中产生的内部应力,从而避免模式泄漏导致的损耗增大。 And the cladding is doped with fluorine or germanium-fluorine co-doped region, it is possible to make the core material and the cladding of a certain viscosity matching, thereby reducing the internal stress generated in the drawing process, thereby avoiding an increase mode due to leakage losses. 然而更多的掺杂氟会导致石英玻璃内部缺陷增大,从而使光纤损耗发生不利影响,而且粘度进一步降低也会使此区域粘度进一步降低,反而不利于拉丝过程中承受拉丝张力,使纤芯部分集中更多的应力,这些都会导致损耗增大。 But more fluorine-doped quartz glass can cause internal defects is increased, so that the adverse effects of fiber loss occurs, but also to further reduce the viscosity of this area will be further reduced viscosity, but is not conducive to withstand the drawing tension during the drawing, so that the core partially centralized more stress, which can lead to increased losses. 因此需要综合考虑掺氟区域的深度和宽度,使材料粘度匹配和材料缺陷降低。 Therefore needs to consider the depth and width of the fluorine-doped regions, the viscosity reducing material matching and material defects.

[0028] 试验表明,按照本发明的技术方案制造的光纤,其1550nm处的模场直径约在6um左右,光缆截止波长在1260nm以下,1550nm处的衰耗在0. 3dB/km以下,且光纤具有极好的抗弯曲特性,1550nm波长处,对于围绕3mm弯曲半径饶一圈弯曲附加损耗小于或等于0.1dB,对于围绕5mm弯曲半径饶一圈弯曲附加损耗小于或等于0. 05dB,对于围绕7. 5mm弯曲半径饶一圈弯曲附加损耗小于或等于O.OldB,对于围绕IOmm弯曲半径饶一圈弯曲附加损耗小于或等于0.005dB,对于围绕15mm弯曲半径饶十圈弯曲附加损耗小于或等于0. 002dB ;在1625nm波长处,对于围绕3mm弯曲半径饶一圈弯曲附加损耗小于或等于 [0028] The test showed that, according to the aspect of the invention the optical fiber is produced, the mode field diameter at 1550nm which is about 6um, a cable cutoff wavelength of 1260nm or less, 1550nm attenuation in at 0. 3dB / km or less, and the optical fiber has excellent bending characteristic, at a wavelength of 1550 nm, for additional bending Rao circle around 3mm radius bend losses less than or equal to 0.1dB, for additional bending Rao circle around 5mm bending losses less than or equal to a radius of 0. 05dB, for about 7 . 5mm bend radius circle Rao additional bending loss is less than or equal to O.OldB, Rao circle for additional bending loss around IOmm bend radius equal to or smaller than 0.005dB, for a bending radius of around 15mm Rao ten turns additional bending loss is less than or equal to 0. 002dB; at a wavelength of 1625nm, for additional bending Rao circle around 3mm radius bend loss is less than or equal to

0. 2dB,对于围绕5mm弯曲半径饶一圈弯曲附加损耗小于或等于0. ldB,对于围绕7. 5mm弯曲半径饶一圈弯曲附加损耗小于或等于0. 02dB,对于围绕IOmm弯曲半径饶一圈弯曲附加损耗小于或等于0. 005dB,对于围绕15mm弯曲半径饶十圈弯曲附加损耗小于或等于0. 005dB。 0. 2dB, Rao circle for additional bending loss around a bending radius of 5mm or less 0. ldB, Rao circle for additional bending loss is about 7. The bending radius of 5mm or less 0. 02dB, for a bending radius RAO circle around IOmm additional bending loss is less than or equal to 0. 005dB, for a bending radius of around 15mm Rao ten turns additional bending loss is less than or equal to 0. 005dB.

[0029] [0029]

Figure CN102998742AD00061

Claims (9)

1. 一种小模场抗弯曲单模光纤,包括芯层和包层,其特征在于所述芯层的相对折射率差Al为O. 9%〜1. 1%,芯层半径Rl为2. 4〜3. ΟμίΉ;围绕在芯层外有内、外两个包层;内包层相对折射率差Λ2为0%〜-O. 1%,内包层半径R2为扩12 μ m;内包层外为外包层。 A small mode flexural mode optical fiber comprising a core and a cladding, wherein said core relative refractive index difference Al is O. 9% ~1. 1%, core radius Rl 2 .. 4~3 ΟμίΉ; outer core layer surrounding the inner, outer two cladding; an inner cladding relative refractive index difference Λ2 of 0% ~-O 1%, the inner cladding radius R2 is the diffuser 12 μ m;. the inner cladding outsourcing outer layer.
2.按权利要求1所述的小模场抗弯曲单模光纤,其特征在于所述的芯层由掺锗的石英玻璃、或锗氟共掺石英玻璃、或锗及其它掺杂剂共掺的石英玻璃组成;芯层中锗的贡献量Λ Ge为O. 9 %〜1.1 %,氟(F)的贡献量Λ F等于或低于-O.1 %。 2. Anti small mode according to claim 1 bent single mode optical fiber, wherein the core layer of germanium-doped quartz glass, fluorine or germanium co-doped quartz glass, germanium, and other dopants, or codoped quartz glass; the amount of germanium in the core contribution Λ Ge is O. 9% ~1.1%, fluorine (F) a contribution of less than or equal to Λ F -O.1%.
3.按权利要求1或2所述的小模场抗弯曲单模光纤,其特征在于所述的内包层由掺氟或锗氟共掺的石英玻璃组成,内包层半径R2与芯层半径Rl的比值R2/R1为Γ4. 5,内包层相对折射率差Λ 2与芯层相对折射率差Λ I的差值(Λ I —Λ 2)为1. 0%至1. 16%。 3. The anti small mode according to claim 1 or 2 single mode optical fiber is bent, wherein the inner cladding of fluorine-doped with fluorine or germanium co-doped quartz glass, the inner cladding and the core radius R2 Radius Rl the ratio R2 / R1 is Γ4. 5, the inner cladding relative index difference Λ 2 and Λ I core relative refractive index difference of the difference (Λ I -Λ 2) is 1.0 to 1.16%.
4.按权利要求1或2所述的小模场抗弯曲单模光纤,其特征在于所述的外包层由纯石英玻璃组成。 4. Anti small mode according to claim 1 or 2 single mode optical fiber is bent, characterized in that said outer layer is made of pure quartz glass.
5.按权利要求1或2所述的小模场抗弯曲单模光纤,其特征在于所述的单模光纤在1310nm波长处的衰减系数小于或等于O. 52dB/km ;在1310nm波长处的模场直径为4. 5〜5. 5 μ m0 The small mode bend resistant single-mode fiber according to claim 1 or 2, wherein said single mode optical fiber is less than or equal to the attenuation coefficient at a wavelength of 1310nm O. 52dB / km; at a wavelength of 1310nm mode field diameter of 4. 5~5. 5 μ m0
6.按权利要求1或2所述的小模场抗弯曲单模光纤,其特征在于所述的单模光纤在1550nm波长处的衰减系数小于或等于O. 30dB/km ;在1550nm波长处的模场直径为5. 5um至6. 5 μ m。 6. small mode bend resistant single-mode fiber according to claim 1 or 2, wherein said single mode optical fiber attenuation coefficient equal to or less than a wavelength of 1550nm O. 30dB / km; at a wavelength of 1550nm 5. 5um mode field diameter to 6. 5 μ m.
7.按权利要求1或2所述的小模场抗弯曲单模光纤,其特征在于所述的单模光纤具有小于或等于1260nm的光缆截止波长。 7. Anti small mode according to claim 1 or 2 single mode optical fiber is bent, characterized in that said single mode optical fiber has a cable cutoff wavelength less than or equal to 1260nm.
8.按权利要求1或2所述的小模场抗弯曲单模光纤,其特征在于所述的单模光纤在1550nm波长处,对于围绕3mm弯曲半径饶一圈弯曲附加损耗小于或等于O.1dB,对于围绕5_弯曲半径饶一圈弯曲附加损耗小于或等于O. 05dB,对于围绕7. 5_弯曲半径饶一圈弯曲附加损耗小于或等于O. OldB,对于围绕IOmm弯曲半径饶一圈弯曲附加损耗小于或等于O. 005dB,对于围绕15mm弯曲半径饶十圈弯曲附加损耗小于或等于O. 002dB。 8. The anti small mode according to claim 1 or 2 single mode optical fiber is bent, characterized in that said single mode optical fiber at a wavelength of 1550 nm, for additional bending Rao circle around 3mm radius bend losses less than or equal to O. 1dB, Rao for a bending radius circle around 5_ additional bending loss is less than or equal to O. 05dB, for a bending radius of about 5_ 7. Rao circle additional bending loss is less than or equal to O. OldB, Rao for a bending radius circle around IOmm additional bending loss is less than or equal to O. 005dB, for a bending radius of around 15mm Rao ten turns additional bending loss is less than or equal to O. 002dB.
9.按权利要求1或2所述的小模场抗弯曲单模光纤,其特征在于所述的单模光纤在1625nm波长处,对于围绕3mm弯曲半径饶一圈弯曲附加损耗小于或等于O. 2dB,对于围绕5mm弯曲半径饶一圈弯曲附加损耗小于或等于O.1dB,对于围绕7. 5mm弯曲半径饶一圈弯曲附加损耗小于或等于O. 02dB,对于围绕IOmm弯曲半径饶一圈弯曲附加损耗小于或等于O. 005dB,对于围绕15mm弯曲半径饶十圈弯曲附加损耗小于或等于O. 005dB。 9. The anti small mode according to claim 1 or 2 single mode optical fiber is bent, characterized in that said single mode optical fiber at the wavelength of 1625 nm, for additional bending Rao circle around 3mm radius bend losses less than or equal to O. 2dB, Rao circle for additional bending loss around a bending radius of 5mm or less O.1dB, Rao circle for additional bending loss is about 7. The bending radius of 5mm or less O. 02dB, for a bending radius RAO circle around IOmm additional bending loss is less than or equal to O. 005dB, the bending radius about 15mm Rao ten turns additional bending loss is less than or equal to O. 005dB.
CN 201210538228 2012-12-13 2012-12-13 Anti-bending single mode fiber with small mode field CN102998742B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210538228 CN102998742B (en) 2012-12-13 2012-12-13 Anti-bending single mode fiber with small mode field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210538228 CN102998742B (en) 2012-12-13 2012-12-13 Anti-bending single mode fiber with small mode field

Publications (2)

Publication Number Publication Date
CN102998742A true CN102998742A (en) 2013-03-27
CN102998742B CN102998742B (en) 2014-04-09

Family

ID=47927538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210538228 CN102998742B (en) 2012-12-13 2012-12-13 Anti-bending single mode fiber with small mode field

Country Status (1)

Country Link
CN (1) CN102998742B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137536A (en) * 2015-09-18 2015-12-09 长飞光纤光缆股份有限公司 Single-mode fiber
CN106154410A (en) * 2016-08-30 2016-11-23 烽火通信科技股份有限公司 A kind of single-mode fiber and manufacture method thereof
CN106536434A (en) * 2014-06-24 2017-03-22 康宁股份有限公司 Low attenuation fiber with viscosity matched core and inner clad
CN104391351B (en) * 2014-11-25 2017-07-21 长飞光纤光缆股份有限公司 A kind of anti-bending multimode fiber
CN107357004A (en) * 2017-07-04 2017-11-17 长飞光纤光缆股份有限公司 A kind of low decay single-mode fiber and preparation method thereof
CN107632338A (en) * 2017-10-31 2018-01-26 江苏亨通光导新材料有限公司 Counter-bending single-mode fiber and preparation method thereof
CN109116466A (en) * 2018-08-24 2019-01-01 长飞光纤光缆股份有限公司 A kind of thin footpath small-bend radius single mode optical fiber

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032001A (en) * 1990-03-09 1991-07-16 At&T Bell Laboratories Optical fiber having enhanced bend resistance
WO2003012501A1 (en) * 2001-07-30 2003-02-13 Corning Incorporated Optical waveguide fiber for local access
US6535679B2 (en) * 1997-01-16 2003-03-18 Sumitomo Electric Industries, Ltd. Optical fiber and method of manufacturing the same
CN1414404A (en) * 2001-10-26 2003-04-30 株式会社藤仓 Dispersion compensated optical fibre and dispersion compensated optical fibre module
CN1942793A (en) * 2004-04-28 2007-04-04 Ls电线有限公司 Optical fiber with improved bending behavior
CN1971321A (en) * 2006-06-13 2007-05-30 富通集团有限公司 A low bending loss superfine low water peak fiber
CN1982928A (en) * 2005-11-10 2007-06-20 德雷卡通信技术公司 Single mode optical fiber
CN101281275A (en) * 2007-04-06 2008-10-08 德雷卡通信技术公司 Transmission optical fiber having large effective area
CN101598834A (en) * 2009-06-26 2009-12-09 长飞光纤光缆有限公司 Single mode fiber and preparation method thereof
CN102004279A (en) * 2009-09-01 2011-04-06 汪业衡 Broadband nonzero dispersion single-mode optical fiber
CN102193140A (en) * 2010-02-26 2011-09-21 住友电气工业株式会社 Optical fiber and optical communication system comprising the same
CN102590933A (en) * 2012-01-10 2012-07-18 长飞光纤光缆有限公司 Bending insensitive single-mode optical fiber
CN102645699A (en) * 2012-05-02 2012-08-22 长飞光纤光缆有限公司 Low-attenuation bend-insensitive single-mode fiber
CN102692674A (en) * 2011-03-24 2012-09-26 德拉克通信科技公司 Multimode optical fiber with improved bend resistance

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032001A (en) * 1990-03-09 1991-07-16 At&T Bell Laboratories Optical fiber having enhanced bend resistance
US6535679B2 (en) * 1997-01-16 2003-03-18 Sumitomo Electric Industries, Ltd. Optical fiber and method of manufacturing the same
WO2003012501A1 (en) * 2001-07-30 2003-02-13 Corning Incorporated Optical waveguide fiber for local access
CN1414404A (en) * 2001-10-26 2003-04-30 株式会社藤仓 Dispersion compensated optical fibre and dispersion compensated optical fibre module
CN1942793A (en) * 2004-04-28 2007-04-04 Ls电线有限公司 Optical fiber with improved bending behavior
CN1982928A (en) * 2005-11-10 2007-06-20 德雷卡通信技术公司 Single mode optical fiber
CN1971321A (en) * 2006-06-13 2007-05-30 富通集团有限公司 A low bending loss superfine low water peak fiber
CN101281275A (en) * 2007-04-06 2008-10-08 德雷卡通信技术公司 Transmission optical fiber having large effective area
CN101598834A (en) * 2009-06-26 2009-12-09 长飞光纤光缆有限公司 Single mode fiber and preparation method thereof
CN102004279A (en) * 2009-09-01 2011-04-06 汪业衡 Broadband nonzero dispersion single-mode optical fiber
CN102193140A (en) * 2010-02-26 2011-09-21 住友电气工业株式会社 Optical fiber and optical communication system comprising the same
CN102692674A (en) * 2011-03-24 2012-09-26 德拉克通信科技公司 Multimode optical fiber with improved bend resistance
CN102590933A (en) * 2012-01-10 2012-07-18 长飞光纤光缆有限公司 Bending insensitive single-mode optical fiber
CN102645699A (en) * 2012-05-02 2012-08-22 长飞光纤光缆有限公司 Low-attenuation bend-insensitive single-mode fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106536434A (en) * 2014-06-24 2017-03-22 康宁股份有限公司 Low attenuation fiber with viscosity matched core and inner clad
CN104391351B (en) * 2014-11-25 2017-07-21 长飞光纤光缆股份有限公司 A kind of anti-bending multimode fiber
CN105137536A (en) * 2015-09-18 2015-12-09 长飞光纤光缆股份有限公司 Single-mode fiber
CN105137536B (en) * 2015-09-18 2018-07-03 长飞光纤光缆股份有限公司 A kind of single mode optical fiber
CN106154410A (en) * 2016-08-30 2016-11-23 烽火通信科技股份有限公司 A kind of single-mode fiber and manufacture method thereof
CN107357004A (en) * 2017-07-04 2017-11-17 长飞光纤光缆股份有限公司 A kind of low decay single-mode fiber and preparation method thereof
CN107632338A (en) * 2017-10-31 2018-01-26 江苏亨通光导新材料有限公司 Counter-bending single-mode fiber and preparation method thereof
CN109116466A (en) * 2018-08-24 2019-01-01 长飞光纤光缆股份有限公司 A kind of thin footpath small-bend radius single mode optical fiber

Also Published As

Publication number Publication date
CN102998742B (en) 2014-04-09

Similar Documents

Publication Publication Date Title
EP1488261B1 (en) Low bend loss optical fiber and components made therefrom
CN1982928B (en) Single-mode fiber
JP5616245B2 (en) Non-zero dispersion shifted optical fiber with large effective area
US7254305B2 (en) Low attenuation large effective area optical fiber
EP2211212B1 (en) Single-mode optical fibre having an enlarged effective area
KR20130084304A (en) Bending-resistant large core diameter high numerical aperture multimode fiber
CN101551488B (en) Dispersion-shifted optical fiber
EP2352046B1 (en) Non-zero dispersion shifted optical fiber having a short cutoff wavelength
US20060039665A1 (en) Optical fiber
KR20100098691A (en) Bend resistant multimode optical fiber
CN101006372B (en) Single-mode optical fiber
EP1845399B1 (en) Single-mode optical fibre with low bending losses still complying with the ITU-T G.652 specification
DK2369379T3 (en) Single-mode optical fiber having reduced bending losses
JP5606742B2 (en) Single mode optical fiber
EP2299302B1 (en) Multimode optical fibre having improved bending losses
CN101770051B (en) Low bend loss optical fiber
JP2009258354A (en) Graded index multimode optical fiber
CN101900853B (en) Single-mode optical fiber
CN1310045C (en) Optical fibre, optical transmission line and maufacturing method of optical fibre
JP5820377B2 (en) Low bending loss optical fiber
US8374472B2 (en) Bend insensitivity in single mode optical fibers
US7787731B2 (en) Bend resistant multimode optical fiber
JP5579707B2 (en) Bending sensitivity and catastrophic bending loss reduction in single mode optical fibers and methods of fabrication
JP5804793B2 (en) Single mode optical fiber and optical system
CN102621627B (en) Broad-bandwidth optical fiber having low bending loss

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
C53 Correction of patent for invention or patent application
COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: CHANGFEI FIBRE-OPTICAL + OPTICAL CABLE CO., LTD. TO: YANGTZE OPTICAL FIBRE AND CABLE CO., LTD