CN102997885B - Gap detection device of large slewing bearing - Google Patents

Gap detection device of large slewing bearing Download PDF

Info

Publication number
CN102997885B
CN102997885B CN201210489591.4A CN201210489591A CN102997885B CN 102997885 B CN102997885 B CN 102997885B CN 201210489591 A CN201210489591 A CN 201210489591A CN 102997885 B CN102997885 B CN 102997885B
Authority
CN
China
Prior art keywords
axial
radial
worktable
electric push
push rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210489591.4A
Other languages
Chinese (zh)
Other versions
CN102997885A (en
Inventor
余晓流
汪永明
谈莉斌
汪丽芳
王全先
刘庆运
汪叶青
余云霓
戴克芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAANSHAN FANGYUAN SLEWING RING CO Ltd
Anhui University of Technology AHUT
Original Assignee
MAANSHAN FANGYUAN SLEWING RING CO Ltd
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAANSHAN FANGYUAN SLEWING RING CO Ltd, Anhui University of Technology AHUT filed Critical MAANSHAN FANGYUAN SLEWING RING CO Ltd
Priority to CN201210489591.4A priority Critical patent/CN102997885B/en
Publication of CN102997885A publication Critical patent/CN102997885A/en
Application granted granted Critical
Publication of CN102997885B publication Critical patent/CN102997885B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

The invention provides a gap detection device of a large slewing bearing and belongs to the technical field of industrial measurement. The gap detection device comprises a radial error detection table, three groups of symmetrically-distributed axial error detection tables, a detection working table frame with a spiral pressing plate clamping mechanism, a slewing bearing to be detected, a controller and a displayer. Each axial error detection table comprises an axial servo motor, an axial rolling guide rail, an axial ball screw, a centering mechanism, an axial screw nut, an axial servo electric pushing rod, an axial working table plate, an axial base and an axial displacement sensor. The radial error detection table comprises a radial servo motor, a locking mechanism, a radial ball screw, a radial rolling guide rail, a radial screw nut, a radial working table plate, a radial servo electric pushing rod, a fork head, a radial base and a radial displacement sensor. The gap detection device of the large slewing bearing has the advantages of being high in detection accuracy, convenient to operate and high in detection efficiency.

Description

大型回转支承间隙检测装置Large slewing bearing gap detection device

技术领域 technical field

本发明属于工业测量技术领域,具体涉及一种大型回转支承间隙检测装置,用于检测大直径回转支承内外圈安装后的轴向和径向间隙。 The invention belongs to the technical field of industrial measurement, and in particular relates to a large-scale slewing bearing clearance detection device, which is used for detecting the axial and radial clearances of the installed inner and outer rings of the large-diameter slewing support.

背景技术 Background technique

大型回转支承内外圈间的轴向、径向间隙检测一直是困扰业界的一大难题。目前常采用传统的人工检测方法:对于轴向间隙检测,具体方式是将回转支承放在一个工作平台上,多名检测人员借助撬杠同时撬动回转支承内圈(或外圈)的不同支点,再利用百分表测出回转支承内外圈端面不同位置处的高度差,取其平均值作为其轴向间隙;对于径向间隙的检测,具体方式是将回转支承的内圈(或外圈)固定,检测人员人工推拉回转支承的外圈(或内圈),然后利用百分表测出其内外圈相应侧面在水平方向上的读数差值,作为其径向间隙。 The axial and radial clearance detection between the inner and outer rings of large slewing bearings has always been a major problem in the industry. At present, the traditional manual detection method is often used: for axial clearance detection, the specific method is to place the slewing bearing on a working platform, and several inspectors use the crowbar to pry the different fulcrums of the inner ring (or outer ring) of the slewing ring at the same time , and then use the dial indicator to measure the height difference at different positions of the end faces of the inner and outer rings of the slewing bearing, and take the average value as its axial clearance; for the detection of the radial clearance, the specific method is to use the inner ring (or outer ring) of the slewing bearing ) is fixed, the inspector manually pushes and pulls the outer ring (or inner ring) of the slewing ring, and then uses the dial indicator to measure the difference in readings in the horizontal direction of the corresponding sides of the inner and outer rings as the radial clearance.

大型回转支承的直径和重量都比较大,采用上述传统的人工检测方法不仅劳动强度大、效率低,而且由于检测人员利用百分表依靠人工读数方式来记录测量结果,因此存在视觉误差,也增大了偶然误差的可能性,使得检测结果不可靠。 The diameter and weight of large-scale slewing bearings are relatively large. The above-mentioned traditional manual inspection method is not only labor-intensive and inefficient, but also because the inspectors use the dial indicator to record the measurement results manually, there are visual errors and increase. The possibility of accidental errors is greatly increased, making the detection results unreliable.

由上述可知,目前还没有一种简便、直接和检测精度高的方法用于大型回转支承内外圈间的轴向和径向间隙的自动检测。 It can be seen from the above that there is no simple, direct and high-precision method for automatic detection of axial and radial clearances between the inner and outer rings of large slewing bearings.

发明内容 Contents of the invention

本发明针对现有技术存在的上述问题,提供一种大型回转支承间隙检测装置,用于自动检测大型回转支承内外圈安装后的轴向和径向间隙,以满足回转支承装配精度要求。该装置采取的技术方案为利用定心机构定位,位移传感器和力传感器反馈,通过PLC控制系统组成的控制器和显示器直接显示出检测结果。 The present invention aims at the above-mentioned problems existing in the prior art, and provides a large-scale slewing bearing gap detection device, which is used to automatically detect the axial and radial clearances of the large-scale slewing bearing inner and outer rings after installation, so as to meet the assembly accuracy requirements of the slewing bearing. The technical solution adopted by the device is to utilize the positioning of the centering mechanism, the feedback of the displacement sensor and the force sensor, and directly display the detection result through the controller and the display composed of the PLC control system.

本发明所提供的大型回转支承间隙检测装置包括径向间隙检测台、三组对称分布的轴向间隙检测台、待测回转支承外圈11、待测回转支承内圈12、含螺旋压板夹紧机构的检测工作台架13、控制器及显示器;所述径向间隙检测台由径向伺服电机1、锁紧机构2、径向滚珠丝杠3、径向滚动导轨4、径向丝杠螺母5、径向工作台板6、径向伺服电动推杆7、径向机座8、叉头9及径向位移传感器10组成;所述三组对称分布的轴向间隙检测台沿所述检测工作台架13的圆周均布,所述三组对称分布的轴向间隙检测台由基座14、第一轴向机座15a、第二轴向机座15b、第三轴向机座15c、第一伺服电动推杆16a、第二伺服电动推杆16b、第三伺服电动推杆16c、第一轴向位移传感器17a、第二轴向位移传感器17b、第三轴向位移传感器17c、第一轴向工作台板18a、第二轴向工作台板18b、第三轴向工作台板18c、第一轴向丝杠螺母19a、第二轴向丝杠螺母19b、第三轴向丝杠螺母19c、第一定心机构20a、第二定心机构20b、第三定心机构20c、第一轴向滚动导轨21a、第二轴向滚动导轨21b、第三轴向滚动导轨21c、第一轴向滚珠丝杠22a、第二轴向滚珠丝杠22b、第三轴向滚珠丝杠22c、第一轴向伺服电机23a、第二轴向伺服电机23b 及第三轴向伺服电机23c组成;所述径向伺服电机1、第一轴向伺服电机23a、第二轴向伺服电机23b 及第三轴向伺服电机23c的控制线与所述控制器相连,所述径向位移传感器10、第一轴向位移传感器17a、第二轴向位移传感器17b 以及第三轴向位移传感器17c通过数据线与所述显示器相连;所述径向滚珠丝杠3 由轴承座支承在所述径向机座8 上,所述第一轴向滚珠丝杠22a、第二轴向滚珠丝杠22b及第三轴向滚珠丝杠22c分别由轴承座支承在所述第一轴向机座15a、第二轴向机座15b及第三轴向机座15c上;所述径向滚珠丝杠3 的一端通过联轴器与所述径向伺服电机1相连,所述第一轴向滚珠丝杠22a、第二轴向滚珠丝杠22b及第三轴向滚珠丝杠22c的一端分别通过联轴器与所述第一轴向伺服电机23a、第二轴向伺服电机23b 及第三轴向伺服电机23c相连;所述径向工作台板6 通过螺钉与所述径向丝杠螺母5 相连,所述第一轴向工作台板18a、第二轴向工作台板18b及第三轴向工作台板18c分别通过螺钉与所述第一轴向丝杠螺母19a、第二轴向丝杠螺母19b及第三轴向丝杠螺母19c相连;所述径向工作台板6 与所述径向滚动导轨4 上的导轨滑块固连,所述第一轴向工作台板18a、第二轴向工作台板18b及第三轴向工作台板18c分别与所述第一轴向滚动导轨21a、第二轴向滚动导轨21b、第三轴向滚动导轨21c上的导轨滑块固连;所述径向伺服电动推杆7通过侧面法兰与所述径向工作台板6相连,所述径向伺服电动推杆7的前端布置有力传感器,所述力传感器通过螺杆及锁紧螺母与所述叉头9上的U型槽联接;所述叉头9上的销轴与待测回转支承外圈11上的安装孔相连,用于完成回转支承的径向推拉;所述第一伺服电动推杆16a、第二伺服电动推杆16b及第三伺服电动推杆16c通过底部法兰与所述第一轴向工作台板18a、第二轴向工作台板18b及第三轴向工作台板18c相连,所述第一伺服电动推杆16a、第二伺服电动推杆16b及第三伺服电动推杆16c的顶部布置有力传感器;所述径向伺服电动推杆7、第一伺服电动推杆16a、第二伺服电动推杆16b及第三伺服电动推杆16c的控制线与控制器相连;所述第一定心机构20a、第二定心机构20b及第三定心机构20c分别通过螺钉与所述第一轴向工作台板18 a、第二轴向工作台板18 b及第三轴向工作台板18c相连;所述检测工作台架13沿圆周均布6个,用于完成待测回转支承的支撑和夹紧工作;所述径向机座8、第一轴向机座15a、第二轴向机座15b、第三轴向机座15c分别通过螺钉与所述底座14相连。 The large-scale slewing bearing gap detection device provided by the present invention includes a radial gap detection platform, three groups of symmetrically distributed axial gap detection platforms, an outer ring of the slewing bearing to be tested 11, an inner ring of the slewing bearing to be tested 12, and a clamping device including a screw platen. Mechanism detection workbench 13, controller and display; the radial gap detection platform is composed of radial servo motor 1, locking mechanism 2, radial ball screw 3, radial rolling guide rail 4, radial screw nut 5. The radial worktable 6, the radial servo electric push rod 7, the radial machine base 8, the fork 9 and the radial displacement sensor 10; The circumference of the workbench 13 is evenly distributed, and the three groups of symmetrically distributed axial gap detection stations are composed of a base 14, a first axial support 15a, a second axial support 15b, a third axial support 15c, The first servo electric push rod 16a, the second servo electric push rod 16b, the third servo electric push rod 16c, the first axial displacement sensor 17a, the second axial displacement sensor 17b, the third axial displacement sensor 17c, the first Axial table 18a, second axial table 18b, third axial table 18c, first axial screw nut 19a, second axial screw nut 19b, third axial screw nut 19c, first centering mechanism 20a, second centering mechanism 20b, third centering mechanism 20c, first axial rolling guide 21a, second axial rolling guide 21b, third axial rolling guide 21c, first shaft Composed of ball screw 22a, second axial ball screw 22b, third axial ball screw 22c, first axial servo motor 23a, second axial servo motor 23b and third axial servo motor 23c; The control lines of the radial servo motor 1, the first axial servo motor 23a, the second axial servo motor 23b and the third axial servo motor 23c are connected to the controller, the radial displacement sensor 10, the first Axial displacement sensor 17a, the second axial displacement sensor 17b and the 3rd axial displacement sensor 17c are connected with described display device by data line; Described radial ball screw 3 is supported on described radial frame 8 by bearing seat Above, the first axial ball screw 22a, the second axial ball screw 22b and the third axial ball screw 22c are respectively supported on the first axial frame 15a, the second axial On the frame 15b and the third axial frame 15c; one end of the radial ball screw 3 is connected with the radial servo motor 1 through a coupling, the first axial ball screw 22a, the second One end of the axial ball screw 22b and the third axial ball screw 22c are respectively connected to the first axial servo motor 23a, the second axial servo motor 23b and the third axial servo motor 23c through a coupling; The radial workbench 6 is connected to the radial lead screw nut 5 by screws, and the first axial workbench 18a, the second axial workbench 18b and the third axial workbench 18c are respectively Through screws and the first axial lead screw nut 19a, the second axial lead screw nut 1 9b and the third axial lead screw nut 19c are connected; the radial worktable 6 is fixedly connected with the guide rail slider on the radial rolling guide 4 , the first axial worktable 18a, the second shaft The worktable 18b and the third axial worktable 18c are respectively fixedly connected with the guide rail sliders on the first axial rolling guide rail 21a, the second axial rolling guide rail 21b, and the third axial rolling guide rail 21c; The radial servo electric push rod 7 is connected to the radial worktable 6 through a side flange, and a force sensor is arranged at the front end of the radial servo electric push rod 7, and the force sensor is connected to the radial work table through a screw rod and a lock nut. The U-shaped groove on the fork 9 is connected; the pin shaft on the fork 9 is connected with the installation hole on the outer ring 11 of the slewing bearing to be tested, and is used to complete the radial push-pull of the slewing bearing; the first servo motor The push rod 16a, the second servo electric push rod 16b and the third servo electric push rod 16c are connected to the first axial worktable 18a, the second axial worktable 18b and the third axial worktable through the bottom flange The plate 18c is connected, and force sensors are arranged on the top of the first servo electric push rod 16a, the second servo electric push rod 16b and the third servo electric push rod 16c; the radial servo electric push rod 7, the first servo electric push rod The control lines of the rod 16a, the second servo electric push rod 16b and the third servo electric push rod 16c are connected to the controller; the first centering mechanism 20a, the second centering mechanism 20b and the third centering mechanism 20c pass through Screws are connected with the first axial worktable 18 a, the second axial worktable 18 b and the third axial worktable 18 c; the detection workbench 13 is evenly distributed along the circumference of 6, for Complete the supporting and clamping work of the slewing bearing to be tested; the radial base 8, the first axial base 15a, the second axial base 15b, and the third axial base 15c are respectively connected to the base by screws 14 connected.

所述叉头9采用具有U型槽结构的快换挡板,以满足叉头的快速安装和拆卸的要求。 The fork 9 adopts a quick-change baffle plate with a U-shaped groove structure to meet the requirements for fast installation and disassembly of the fork.

所述径向滚珠丝杠3上设有锁紧机构2,当径向工作台板6移动到预定检测位置时,利用锁紧机构2对径向滚珠丝杠3进行即时锁紧,防止径向工作台板6沿径向移动而影响检测结果。 The radial ball screw 3 is provided with a locking mechanism 2. When the radial worktable 6 moves to a predetermined detection position, the locking mechanism 2 is used to instantly lock the radial ball screw 3 to prevent the radial The worktable 6 moves in the radial direction to affect the detection result.

所述径向位移传感器10用于检测待测回转支承内外圈间的径向间隙;所述第一轴向位移传感器17a、第二轴向位移传感器17b以及第三轴向位移传感器17c用于检测待测回转支承内外圈间的轴向间隙。 The radial displacement sensor 10 is used to detect the radial clearance between the inner and outer rings of the slewing bearing to be tested; the first axial displacement sensor 17a, the second axial displacement sensor 17b and the third axial displacement sensor 17c are used to detect The axial clearance between the inner and outer rings of the slewing bearing to be tested.

该装置采用伺服电机驱动,通过滚珠丝杠副带动工作台板在滚动导轨上移动,以适应不同直径的回转支承的检测需求;利用工作台板上的伺服电动推杆来取代人工撬动和推拉,既减轻了劳动强度,又降低了人为因素对回转支承造成的破坏;采用高精度位移传感器和多点检测方法,避免了人为视觉误差,也降低了偶然误差的可能性,提高了检测精度,检测数据以动态曲线和数字方式实时显示在显示器上,并可存储和打印,整个检测装置操作方便、检测效率高。 The device is driven by a servo motor, and the ball screw pair drives the worktable to move on the rolling guide rail to meet the detection requirements of slewing bearings with different diameters; the servo electric push rod on the worktable is used to replace manual prying and pushing and pulling , which not only reduces the labor intensity, but also reduces the damage caused by human factors to the slewing bearing; the use of high-precision displacement sensors and multi-point detection methods avoids human visual errors, reduces the possibility of accidental errors, and improves detection accuracy. The detection data is displayed on the monitor in real time in the form of dynamic curves and numbers, and can be stored and printed. The entire detection device is easy to operate and has high detection efficiency.

附图说明 Description of drawings

图1:本发明检测装置结构示意图(主视); Fig. 1: Schematic diagram of the structure of the detection device of the present invention (front view);

图2:本发明检测装置结构示意图(俯视); Fig. 2: Structural schematic diagram (top view) of detection device of the present invention;

图3:回转支承轴向间隙的检测过程示意图; Figure 3: Schematic diagram of the detection process of the axial clearance of the slewing bearing;

图4:回转支承径向间隙的检测过程示意图。 Figure 4: Schematic diagram of the detection process of the radial clearance of the slewing bearing.

图中:1-径向伺服电机、2-锁紧机构、3-径向滚珠丝杠、4-径向滚动导轨、5-径向丝杠螺母、6-径向工作台板、7-径向伺服电动推杆、8-径向机座、9-叉头、10-径向位移传感器、11-待测回转支承外圈、12-待测回转支承内圈、13-检测工作台架、14-基座、15a-第一轴向机座、15b-第二轴向机座、15c-第三轴向机座、16a-第一轴向伺服电动推杆、16b-第二轴向伺服电动推杆、16c-第三轴向伺服电动推杆、17a-第一轴向位移传感器、17b-第二轴向位移传感器、17c-第三轴向位移传感器、18a-第一轴向工作台板、18b-第二轴向工作台板、18c-第三轴向工作台板、19a-第一轴向丝杠螺母、19b-第二轴向丝杠螺母、19c-第三轴向丝杠螺母、20a-第一定心机构、20b-第二定心机构、20c-第三定心机构、21a-第一轴向滚动导轨、21b-第二轴向滚动导轨、21c-第三轴向滚动导轨、22a-第一轴向滚珠丝杠、22b-第二轴向滚珠丝杠、22c-第三轴向滚珠丝杠、23a-第一轴向伺服电机、23b-第二轴向伺服电机、23c-第三轴向伺服电机。 In the figure: 1-radial servo motor, 2-locking mechanism, 3-radial ball screw, 4-radial rolling guide, 5-radial screw nut, 6-radial table, 7-diameter Directional servo electric push rod, 8-radial base, 9-fork, 10-radial displacement sensor, 11-outer ring of the slewing ring to be tested, 12-inner ring of the slewing ring to be tested, 13-testing workbench, 14-base, 15a-first axial base, 15b-second axial base, 15c-third axial base, 16a-first axial servo electric push rod, 16b-second axial servo Electric push rod, 16c-third axial servo electric push rod, 17a-first axial displacement sensor, 17b-second axial displacement sensor, 17c-third axial displacement sensor, 18a-first axial workbench Plate, 18b-second axial table, 18c-third axial table, 19a-first axial screw nut, 19b-second axial screw nut, 19c-third axial screw Nut, 20a-first centering mechanism, 20b-second centering mechanism, 20c-third centering mechanism, 21a-first axial rolling guide, 21b-second axial rolling guide, 21c-third axial Rolling guide, 22a-first axial ball screw, 22b-second axial ball screw, 22c-third axial ball screw, 23a-first axial servo motor, 23b-second axial servo motor , 23c-the third axial servo motor.

具体实施方式 Detailed ways

实施例1:轴向间隙的检测 Example 1: Detection of axial clearance

当被测回转支承为外齿式时,首先将待测回转支承放置于检测工作台架13上,由控制器驱动第一轴向伺服电机23a、第二轴向伺服电机23b、第三轴向伺服电机23c同时旋转,分别带动第一定心机构20a、第二定心机构20b、第三定心机构20c沿径向同时移动以完成待测回转支承内圈12的定心,然后通过螺旋压板夹紧机构将待测回转支承的内圈12固定在检测工作台架13上,此时待测回转支承外圈11在自重作用下自然下垂。将轴向位移传感器17的不动端固定在待测回转支承内圈12的上表面,轴向位移传感器17的测头指向待测回转支承外圈11的上表面,此时将位移传感器读数标定为零(见图3a)。再由控制器驱动第一轴向伺服电动推杆16a、第二轴向伺服电动推杆16b、第三轴向伺服电动推杆16c同时向上顶升待测回转支承外圈11,在一定的顶升压力作用下,待测回转支承的外圈11因轴向间隙而抬高至最大值,此时位移传感器17的读数即为该测点处的轴向间隙值H(见图3b)。通过均布的三个测点的多次检测结果,取其平均值作为待测回转支承内外圈间的轴向间隙检测值,并将检测结果实时输出在显示器上。 When the slewing bearing to be tested is an external gear type, first place the slewing bearing to be tested on the detection workbench 13, and the controller drives the first axial servo motor 23a, the second axial servo motor 23b, and the third axial servo motor. The servo motor 23c rotates at the same time, and respectively drives the first centering mechanism 20a, the second centering mechanism 20b, and the third centering mechanism 20c to move simultaneously in the radial direction to complete the centering of the inner ring 12 of the slewing bearing to be tested, and then through the screw platen The clamping mechanism fixes the inner ring 12 of the slewing ring to be tested on the detection workbench 13, and at this time, the outer ring 11 of the slewing ring to be tested naturally sags under the action of its own weight. Fix the fixed end of the axial displacement sensor 17 on the upper surface of the inner ring 12 of the slewing bearing to be tested, and the measuring head of the axial displacement sensor 17 points to the upper surface of the outer ring 11 of the slewing bearing to be tested. At this time, the reading of the displacement sensor is calibrated to zero (see Figure 3a). Then the controller drives the first axial servo electric push rod 16a, the second axial servo electric push rod 16b, and the third axial servo electric push rod 16c to simultaneously lift up the outer ring 11 of the slewing bearing to be tested, at a certain top Under the action of the boost pressure, the outer ring 11 of the slewing bearing to be tested is raised to the maximum due to the axial clearance, and the reading of the displacement sensor 17 at this time is the axial clearance value H at the measuring point (see Figure 3b). Through the multiple detection results of three uniformly distributed measuring points, the average value is taken as the axial gap detection value between the inner and outer rings of the slewing bearing to be tested, and the detection results are output on the display in real time.

当待测回转支承为内齿式时,其轴向间隙的检测原理与外齿式回转支承类似。 When the slewing bearing to be tested is an internal gear type, the detection principle of the axial clearance is similar to that of the external gear type slewing bearing.

实施例2: 径向间隙的检测 Embodiment 2: Detection of Radial Clearance

当被测回转支承为外齿式时,首先将待测回转支承放置于检测工作台架13上,由控制器驱动第一轴向伺服电机23a、第二轴向伺服电机23b、第三轴向伺服电机23c同时旋转,分别带动第一定心机构20a、第二定心机构20b、第三定心机构20c沿径向同时移动以完成待测回转支承内圈12的定心,然后通过螺旋压板夹紧机构将待测回转支承内圈12固定在检测工作台架13上。由控制器驱动径向伺服电机1,通过径向滚珠丝杠3和径向丝杠螺母5带动径向工作台板6在径向滚动导轨4上移动至检测位置时,利用锁紧机构2将径向工作台板6锁紧。将径向位移传感器10的不动端固定在待测回转支承内圈12的上表面,轴向位移传感器10的测头指向待测回转支承外圈11的侧面(见图4)。叉头9在径向伺服电动推杆7的作用下水平向内推紧待测回转支承外圈11,此时标定径向位移传感器10的读数为零,然后叉头9在径向伺服电动推杆7的作用下水平向外拉紧待测回转支承外圈11,此时径向位移传感器10的读数即为该测点处的待测回转支承内外圈间的径向间隙值L(见图4)。选取多个测点进行重复测量,取其平均值作为待测回转支承内外圈间的径向间隙检测值,并将检测结果实时输出在显示器上。 When the slewing bearing to be tested is an external gear type, first place the slewing bearing to be tested on the detection workbench 13, and the controller drives the first axial servo motor 23a, the second axial servo motor 23b, and the third axial servo motor. The servo motor 23c rotates at the same time, and respectively drives the first centering mechanism 20a, the second centering mechanism 20b, and the third centering mechanism 20c to move simultaneously in the radial direction to complete the centering of the inner ring 12 of the slewing bearing to be tested, and then through the screw platen The clamping mechanism fixes the inner ring 12 of the slewing bearing to be tested on the testing workbench 13 . The radial servo motor 1 is driven by the controller, and when the radial worktable 6 is driven by the radial ball screw 3 and the radial screw nut 5 to move to the detection position on the radial rolling guide rail 4, the locking mechanism 2 is used to lock the The radial workbench 6 is locked. Fix the fixed end of the radial displacement sensor 10 on the upper surface of the inner ring 12 of the slewing ring to be tested, and the probe of the axial displacement sensor 10 points to the side of the outer ring 11 of the slewing ring to be tested (see FIG. 4 ). The fork 9 pushes the outer ring 11 of the slewing bearing to be tested horizontally inward under the action of the radial servo electric push rod 7. At this time, the reading of the calibrated radial displacement sensor 10 is zero, and then the fork 9 is pushed inward by the radial servo electric push rod. Under the action of the rod 7, the outer ring 11 of the slewing ring to be tested is pulled horizontally outward, and the reading of the radial displacement sensor 10 at this time is the radial gap value L between the inner and outer rings of the slewing ring to be tested at the measuring point (see Fig. 4). Select multiple measuring points for repeated measurement, take the average value as the radial clearance detection value between the inner and outer rings of the slewing bearing to be tested, and output the detection results on the display in real time.

    当被测回转支承为内齿式时,其径向间隙的检测原理与外齿式回转支承类似。    When the slewing bearing to be tested is an internal gear type, the detection principle of the radial clearance is similar to that of the external gear type slewing bearing. the

Claims (3)

1.大型回转支承间隙检测装置,其特征在于该装置包括径向间隙检测台、三组对称分布的轴向间隙检测台、待测回转支承外圈(11)、待测回转支承内圈(12)、含螺旋压板夹紧机构的检测工作台架(13)、控制器以及显示器;所述径向间隙检测台由径向伺服电机(1)、锁紧机构(2)、径向滚珠丝杠(3)、径向滚动导轨(4)、径向丝杠螺母(5)、径向工作台板(6)、径向伺服电动推杆(7)、径向机座(8)、叉头(9)及径向位移传感器(10)组成;所述三组对称分布的轴向间隙检测台沿所述检测工作台架(13)的圆周均布,所述三组对称分布的轴向间隙检测台由基座(14)、第一轴向机座(15a)、第二轴向机座(15b)、第三轴向机座(15c)、第一伺服电动推杆(16a)、第二伺服电动推杆(16b)、第三伺服电动推杆(16c)、第一轴向位移传感器(17a)、第二轴向位移传感器(17b)、第三轴向位移传感器(17c)、第一轴向工作台板(18a)、第二轴向工作台板(18b)、第三轴向工作台板(18c)、第一轴向丝杠螺母(19a)、第二轴向丝杠螺母(19b)、第三轴向丝杠螺母(19c)、第一定心机构(20a)、第二定心机构(20b)、第三定心机构(20c)、第一轴向滚动导轨(21a)、第二轴向滚动导轨(21b)、第三轴向滚动导轨(21c)、第一轴向滚珠丝杠(22a)、第二轴向滚珠丝杠(22b)、第三轴向滚珠丝杠(22c)、第一轴向伺服电机(23a)、第二轴向伺服电机(23b)及第三轴向伺服电机(23c)组成;所述径向伺服电机(1)、第一轴向伺服电机(23a)、第二轴向伺服电机(23b)及第三轴向伺服电机(23c)的控制线与所述控制器相连,所述径向位移传感器(10)、第一轴向位移传感器(17a)、第二轴向位移传感器(17b)以及第三轴向位移传感器(17c)通过数据线与所述显示器相连;所述径向滚珠丝杠(3)由轴承座支承在所述径向机座(8)上,所述第一轴向滚珠丝杠(22a)、第二轴向滚珠丝杠(22b)及第三轴向滚珠丝杠(22c)分别由轴承座支承在所述第一轴向机座(15a)、第二轴向机座(15b)及第三轴向机座(15c)上;所述径向滚珠丝杠(3)的一端通过联轴器与所述径向伺服电机(1)相连,所述第一轴向滚珠丝杠(22a)、第二轴向滚珠丝杠(22b)及第三轴向滚珠丝杠(22c)的一端分别通过联轴器与所述第一轴向伺服电机(23a)、第二轴向伺服电机(23b)及第三轴向伺服电机(23c)相连;所述径向工作台板(6)通过螺钉与所述径向丝杠螺母(5)相连,所述第一轴向工作台板(18a)、第二轴向工作台板(18b)及第三轴向工作台板(18c)分别通过螺钉与所述第一轴向丝杠螺母(19a)、第二轴向丝杠螺母(19b)及第三轴向丝杠螺母(19c)相连;所述径向工作台板(6)与所述径向滚动导轨(4)上的导轨滑块固连,所述第一轴向工作台板(18a)、第二轴向工作台板(18b)及第三轴向工作台板(18c)分别与所述第一轴向滚动导轨(21a)、第二轴向滚动导轨(21b)、第三轴向滚动导轨(21c)上的导轨滑块固连;所述径向伺服电动推杆(7)通过侧面法兰与所述径向工作台板(6)相连,所述径向伺服电动推杆(7)的前端布置有力传感器,所述力传感器通过螺杆及锁紧螺母与所述叉头(9)上的U型槽联接;所述叉头(9)上的销轴与待测回转支承外圈(11)上的安装孔相连,用于完成回转支承的径向推拉;所述第一伺服电动推杆(16a)、第二伺服电动推杆(16b)及第三伺服电动推杆(16c)通过底部法兰与所述第一轴向工作台板(18a)、第二轴向工作台板(18b)及第三轴向工作台板(18c)相连;所述第一伺服电动推杆(16a)、第二伺服电动推杆(16b)及第三伺服电动推杆(16c)的顶部布置有力传感器;所述径向伺服电动推杆(7)、第一伺服电动推杆(16a)、第二伺服电动推杆(16b)及第三伺服电动推杆(16c)的控制线与控制器相连;所述第一定心机构(20a)、第二定心机构(20b)及第三定心机构(20c)分别通过螺钉与所述第一轴向工作台板(18a)、第二轴向工作台板(18b)及第三轴向工作台板(18c)相连;所述检测工作台架(13)沿圆周均布6个,用于完成待测回转支承的支撑和夹紧工作;所述径向机座(8)、第一轴向机座(15a)、第二轴向机座(15b)、第三轴向机座(15c)分别通过螺钉与所述基座(14)相连。1. A large-scale slewing bearing gap detection device, which is characterized in that the device includes a radial gap detection platform, three groups of symmetrically distributed axial gap detection platforms, an outer ring of the slewing ring to be tested (11), an inner ring of the slewing ring to be tested (12 ), a detection workbench (13), a controller and a display containing a screw platen clamping mechanism; the radial gap detection platform is composed of a radial servo motor (1), a locking mechanism (2), a radial ball screw (3), radial rolling guide (4), radial screw nut (5), radial worktable (6), radial servo electric push rod (7), radial base (8), fork (9) and a radial displacement sensor (10); said three groups of symmetrically distributed axial gap detection platforms are evenly distributed along the circumference of said detection workbench (13), and said three groups of symmetrically distributed axial gaps The detection platform consists of a base (14), a first axial support (15a), a second axial support (15b), a third axial support (15c), a first servo electric push rod (16a), a second Two servo electric push rods (16b), the third servo electric push rod (16c), the first axial displacement sensor (17a), the second axial displacement sensor (17b), the third axial displacement sensor (17c), the first An axial worktable (18a), a second axial worktable (18b), a third axial worktable (18c), a first axial lead screw nut (19a), a second axial lead screw nut (19b), the third axial screw nut (19c), the first centering mechanism (20a), the second centering mechanism (20b), the third centering mechanism (20c), the first axial rolling guideway (21a ), the second axial rolling guide (21b), the third axial rolling guide (21c), the first axial ball screw (22a), the second axial ball screw (22b), the third axial ball screw Bar (22c), the first axial servo motor (23a), the second axial servo motor (23b) and the third axial servo motor (23c); the radial servo motor (1), the first axial The control lines of the servo motor (23a), the second axial servo motor (23b) and the third axial servo motor (23c) are connected to the controller, the radial displacement sensor (10), the first axial displacement The sensor (17a), the second axial displacement sensor (17b) and the third axial displacement sensor (17c) are connected to the display through a data line; the radial ball screw (3) is supported by a bearing seat on the On the radial frame (8), the first axial ball screw (22a), the second axial ball screw (22b) and the third axial ball screw (22c) are respectively supported by bearing housings The first axial frame (15a), the second axial frame (15b) and the third axial frame (15c); one end of the radial ball screw (3) is connected to the The radial servo motor (1) is connected, and one end of the first axial ball screw (22a), the second axial ball screw (22b) and the third axial ball screw (22c) are respectively passed through the shaft coupling tor with the first axial servo motor ( 23a), the second axial servo motor (23b) and the third axial servo motor (23c); the radial worktable (6) is connected with the radial lead screw nut (5) by screws, and the The first axial workbench (18a), the second axial workbench (18b) and the third axial workbench (18c) are respectively connected with the first axial lead screw nut (19a), The second axial lead screw nut (19b) and the third axial lead screw nut (19c) are connected; the radial worktable (6) is fixedly connected with the guide rail slide block on the radial rolling guide rail (4) , the first axial worktable (18a), the second axial worktable (18b) and the third axial worktable (18c) are respectively connected with the first axial rolling guide rail (21a), the second axial worktable The guide rail sliders on the second axial rolling guide rail (21b) and the third axial rolling guide rail (21c) are fixedly connected; the radial servo electric push rod (7) is connected to the radial worktable ( 6) connected, the front end of the radial servo electric push rod (7) is arranged with a force sensor, and the force sensor is connected with the U-shaped groove on the fork (9) through a screw rod and a lock nut; the fork The pin shaft on (9) is connected with the mounting hole on the outer ring (11) of the slewing bearing to be tested, and is used to complete the radial push-pull of the slewing bearing; the first servo electric push rod (16a), the second servo electric push rod The rod (16b) and the third servo electric push rod (16c) pass through the bottom flange and the first axial worktable (18a), the second axial worktable (18b) and the third axial worktable (18c) are connected; the tops of the first servo electric push rod (16a), the second servo electric push rod (16b) and the third servo electric push rod (16c) are arranged with force sensors; the radial servo electric push rod (7), the control lines of the first servo electric push rod (16a), the second servo electric push rod (16b) and the third servo electric push rod (16c) are connected to the controller; the first centering mechanism (20a ), the second centering mechanism (20b) and the third centering mechanism (20c) are respectively connected with the first axial worktable (18a), the second axial worktable (18b) and the third shaft through screws It is connected to the worktable (18c); the detection workbench (13) is evenly distributed along the circumference of 6, and is used to complete the support and clamping work of the slewing bearing to be tested; the radial machine base (8), the first An axial frame (15a), a second axial frame (15b), and a third axial frame (15c) are respectively connected to the base (14) through screws. 2.根据权利要求1所述的检测装置,其特征在于所述叉头(9)采用具有U型槽结构的快换挡板。2. The detection device according to claim 1, characterized in that the fork (9) adopts a quick-change baffle plate with a U-shaped groove structure. 3.根据权利要求1所述的检测装置,其特征在于所述径向滚珠丝杠(3)上设有锁紧机构(2)。3. The detection device according to claim 1, characterized in that the radial ball screw (3) is provided with a locking mechanism (2).
CN201210489591.4A 2012-11-27 2012-11-27 Gap detection device of large slewing bearing Active CN102997885B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210489591.4A CN102997885B (en) 2012-11-27 2012-11-27 Gap detection device of large slewing bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210489591.4A CN102997885B (en) 2012-11-27 2012-11-27 Gap detection device of large slewing bearing

Publications (2)

Publication Number Publication Date
CN102997885A CN102997885A (en) 2013-03-27
CN102997885B true CN102997885B (en) 2015-02-25

Family

ID=47926766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210489591.4A Active CN102997885B (en) 2012-11-27 2012-11-27 Gap detection device of large slewing bearing

Country Status (1)

Country Link
CN (1) CN102997885B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181226B (en) * 2014-09-02 2018-04-06 贵州省机电研究设计院 A kind of multi-channel magnetic memory detection device
WO2017084604A1 (en) * 2015-11-18 2017-05-26 珠海格力节能环保制冷技术研究中心有限公司 Axial displacement detection method, device and system
CN106441197B (en) * 2016-10-12 2019-04-02 上海信耀电子有限公司 A kind of the axial gap detection device and method of rotary actuator
CN106363046B (en) * 2016-12-02 2018-03-02 安徽工业大学 A kind of pivoting support deviation from circular from automatic shaping machine
CN107238345B (en) * 2017-06-15 2019-03-05 大连理工大学 Air bearing rotor gyro dynamic pressure motor gap self-operated measuring unit and method
CN110530320B (en) * 2019-08-15 2022-04-12 成都中车四方轨道车辆有限公司 Bearing radial and axial clearance measuring device
CN112033275B (en) * 2020-07-27 2022-04-12 北京航天控制仪器研究所 Motor axial clearance measuring device and method based on centroid loading
CN112197733B (en) * 2020-10-09 2022-07-08 上海大众动力总成有限公司 Automatic measuring instrument for valve swinging clearance
CN113532861B (en) * 2021-09-16 2021-11-26 江苏如非轴承科技有限公司 Bearing working loss and stability detection device
CN114234884B (en) * 2021-11-22 2024-08-27 河南航天液压气动技术有限公司 Trapezoidal screw pair gap detection equipment and detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201448358U (en) * 2009-05-07 2010-05-05 徐州丰禾回转支承制造有限公司 Special type slewing bearing
DE102010030762A1 (en) * 2010-06-30 2012-01-05 Zf Friedrichshafen Ag Device for measuring bearing clearance of ball-and-socket joint mounted in landing gears of vehicle, has measurement instrument comprising magnetic field-sensitive sensor secured to releasable magnets outside housing
CN102749056A (en) * 2012-07-25 2012-10-24 中国计量学院 Suction and separation clearance testing device of air-conditioner compressor clutch
CN202522176U (en) * 2012-02-08 2012-11-07 浙江春晖空调压缩机有限公司 Detection device of swash plate and piston axial matched gap

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215129B1 (en) * 2006-03-30 2007-05-08 General Electric Company Multi tip clearance measurement system and method of operation
JP2009270913A (en) * 2008-05-07 2009-11-19 Ihi Corp Bearing clearance measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201448358U (en) * 2009-05-07 2010-05-05 徐州丰禾回转支承制造有限公司 Special type slewing bearing
DE102010030762A1 (en) * 2010-06-30 2012-01-05 Zf Friedrichshafen Ag Device for measuring bearing clearance of ball-and-socket joint mounted in landing gears of vehicle, has measurement instrument comprising magnetic field-sensitive sensor secured to releasable magnets outside housing
CN202522176U (en) * 2012-02-08 2012-11-07 浙江春晖空调压缩机有限公司 Detection device of swash plate and piston axial matched gap
CN102749056A (en) * 2012-07-25 2012-10-24 中国计量学院 Suction and separation clearance testing device of air-conditioner compressor clutch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于LabVIEW的轴承轴向间隙测试系统设计;宋佳等;《电子测量技术》;20111031;第34卷(第10期);全文 *

Also Published As

Publication number Publication date
CN102997885A (en) 2013-03-27

Similar Documents

Publication Publication Date Title
CN102997885B (en) Gap detection device of large slewing bearing
CN102252804B (en) A multifunctional torque calibration device
CN107270857B (en) Tapered roller bearing internal ring circularity detection device
CN102944472B (en) Device and method for measuring axial static rigidity of ball screw pair
CN105806224A (en) Large-size shaft-type part high-precision measuring device and method
CN204388760U (en) Detect the comprehensive check tool of thrust surface Distance geometry verticality
CN111412865A (en) Non-contact type coaxiality measuring device and method
CN203940816U (en) A kind of calibrating installation
CN104515493A (en) Automatic radial run-out measuring device
CN117824518A (en) Non-contact thickness measuring device
CN109990686B (en) Automatic detection device for outer diameter of steel pipe
CN103940679A (en) Three-point externally extending bending creep parameter measurement device and operating method thereof
CN203323686U (en) Detecting tool for symmetry degree of crankshaft keyway
CN202501810U (en) Movable dial gauge stand
CN104330009A (en) Component height size measuring method and measuring tool thereof
CN103644876B (en) A kind of testing apparatus of physical dimension of long stator iron core
CN104865541A (en) Equipment for detecting magnetic flux of magnetic element
CN208736330U (en) A device for measuring the surface roughness of the inner hole of a workpiece
CN209027403U (en) A kind of novel test device for high technology ceramics
CN102980519B (en) Radial composite error detecting device of gear ring in large pivoting support
CN203824454U (en) Slot position detection device
CN207717042U (en) The device of optical grating ruler measurement is mining two times of maximum static lotus set deformation volumes of bolt
CN102865793B (en) The measurement mechanism of bearing washer inner arc surface and measuring method
CN116929752A (en) Transmission gear meshing and jumping combined measuring device
CN110440662B (en) Automatic detection device for cylindrical automobile parts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant