CN102970080A - 光模块及其激光器工作温度的调节方法 - Google Patents

光模块及其激光器工作温度的调节方法 Download PDF

Info

Publication number
CN102970080A
CN102970080A CN2012104290199A CN201210429019A CN102970080A CN 102970080 A CN102970080 A CN 102970080A CN 2012104290199 A CN2012104290199 A CN 2012104290199A CN 201210429019 A CN201210429019 A CN 201210429019A CN 102970080 A CN102970080 A CN 102970080A
Authority
CN
China
Prior art keywords
ambient temperature
voltage
temperature
circuit
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012104290199A
Other languages
English (en)
Inventor
王斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisense Broadband Multimedia Technology Co Ltd
Original Assignee
Hisense Broadband Multimedia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisense Broadband Multimedia Technology Co Ltd filed Critical Hisense Broadband Multimedia Technology Co Ltd
Priority to CN2012104290199A priority Critical patent/CN102970080A/zh
Publication of CN102970080A publication Critical patent/CN102970080A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种光模块及其激光器的工作温度调节方法,所述方法包括:光模块中的MCU在获取温度传感器检测的温度值后,根据获取的温度值确定当前的环境温度;并确定出当前的环境温度所对应的工作温度设定值和BIAS电流设定值;根据确定出的BIAS电流设定值,控制驱动电路输出相应的BIAS电流;根据确定出的工作温度设定值,控制TEC控制电路调节激光器的工作温度为相应的温度。由于激光器的工作温度允许在一定范围内随环境温度相应地变化;同时,采用调节BIAS电流作为补偿手段使得光功率和消光比恒定,减小了激光器的工作温度与环境温度之间的差值,减小为TEC提供的加热或制冷的电流,达到降低功耗的目的。

Description

光模块及其激光器工作温度的调节方法
技术领域
本发明涉及光纤通信技术,尤其涉及一种光模块及其激光器的工作温度调节方法。
背景技术
近年来,随着增强型8.5G光纤通道和10G以太网高速光网络协议的快速发展,对超高速率光收发模块的需求日益增加,同时对模块端口密度以及功耗的要求也越来越高。
10Gbit/s光收发模块在过去的几年里,经历了从300pin MSA、XENPAK(万兆以太网)、XPAK、X2、XFP(万兆以太网光收发模块)到SFP(千兆以太网光收发模块)+的转变。SFP+作为SFP的升级版本,符合IEEE 802.3AE/AQ和8G/10G光纤通道协议规范,与XFP相比模块尺寸减小40%,具有更高的端口密度和更低的功耗,传输距离也从300m增加到10km、40km和80km。
现有技术中的SFP+光模块在长距离传输时,随着温度的升高光器件的特性会发生较大变化,使得光信号的功率、波长等参数发生很大的变化,眼图质量也变得很差;通过光纤传输之后的信号质量也会很差,误码率变大从而影响通信的质量和可靠性。
为了保证光信号的质量,就需要保持光模块中的激光器发射的激光的光功率和消光比恒定,激光的波长的变化不超过预定的范围;由此,需要保持激光器的工作温度的恒定。
因此,现有技术中,需要进行长距离传输的光模块,如图1a所示,通常采用内置有TEC的激光器,如EML(Electroabsorption Modulated Laser,电吸收调制镭射)激光器。光模块中的TEC(Thermoelectric cooler,热电制冷器)控制电路用于保持激光器内的温度恒定,即保持激光器的工作温度恒定。具体地,激光器中还内置有热电偶,随着温度的改变,热电偶的阻值也会相应改变;TEC控制电路通过检测激光器内置的热电偶的阻值,闭环调节激光器内置的TEC进行加热或制冷,使得激光器内的温度保持恒定。
然而,本发明的发明人发现,现有技术的光模块在高温或者低温环境时,例如,60℃以上的高温环境或5℃以下的低温环境中,需要供给激光器内置的TEC进行制冷或者加热的电流非常大,导致光模块在全温工作范围内功耗较大。
发明内容
本发明的实施例提供了一种光模块及其激光器的工作温度调节方法,降低光模块的功耗。
根据本发明的一个方面,提供了一种光模块,包括:
激光发射单元,其包括激光器及其驱动电路;
微程序控制器MCU和TEC控制电路,所述MCU用于在获取温度传感器检测的温度值后,根据获取的温度值确定当前的环境温度;并根据预先保存的环境温度与工作温度设定值之间的对应关系,确定出当前的环境温度所对应的工作温度设定值;根据预先保存的环境温度与BIAS电流设定值之间的对应关系,确定出当前的环境温度所对应的BIAS电流设定值;
所述MCU根据确定出的BIAS电流设定值,控制所述驱动电路输出相应的BIAS电流;并根据确定出的工作温度设定值,控制所述TEC控制电路调节所述激光器的工作温度为相应的温度。
进一步,所述MCU还用于在确定当前的环境温度后,根据预先保存的环境温度与MOD电压设定值之间的对应关系,确定出当前的环境温度所对应的MOD电压设定值;根据确定出的MOD电压设定值控制所述驱动电路输出相应的MOD电压。
较佳地,所述环境温度与工作温度设定值之间的对应关系具体为:在环境温度处于T3~T1、T1~T2、T2~T4的温度段,环境温度与工作温度设定值之间的对应关系分别如公式1、2、3所示:
Tg=To+k1*(T-To)        (公式1)
Tg=To                  (公式2)
Tg=To+k2*(T-To)        (公式3)
所述环境温度与BIAS电流设定值之间的对应关系具体为:在环境温度处于T3~T1、T1~T2、T2~T4的温度段,环境温度与BIAS电流设定值之间的对应关系分别如公式4、5、6所示:
I=Io+k3*(T-To)        (公式4)
I=Io                  (公式5)
I=Io+k4*(T-To)        (公式6)
所述环境温度与MOD电压设定值之间的对应关系具体为:在环境温度处于T3~T1、T1~T2、T2~T4的温度段,环境温度与MOD电压设定值之间的对应关系分别如公式7、8、9所示:
V=Vo+k5*(T-To)        (公式7)
V=Vo                  (公式8)
V=Vo+k6*(T-To)        (公式9)
其中,T为环境温度,Tg为工作温度设定值,I为BIAS电流设定值,V为MOD电压设定值,To、k1-k6为设定的参数。
进一步,所述光模块还包括:EA偏置电路;
所述MCU还用于在确定当前的环境温度后,根据预先保存的环境温度与EA偏置电压设定值之间的对应关系,确定出当前的环境温度所对应的EA偏置电压设定值;根据确定出的EA偏置电压设定值控制所述EA偏置电路输出相应的EA偏置电压。
较佳地,所述温度传感器内置于所述MCU中;以及所述激光器具体为CML激光器或EML激光器。
其中,所述TEC控制电路具体包括:
分压电路,与所述激光器内置的热电偶串联;
标准电压输出电路,用以输出标准电压到所述分压电路以及与其串联的热电偶上;
电压比较电路,其一个电压输入端,与所述分压电路和所述热电偶的连接点相连,用以获取所述分压电路上的电压,另一个电压输入端接入所述MCU确定出的工作温度设定值从其DAC输出端口输出的电压;所述电压比较电路比较两个电压输入端的电压,得到两者的电压差,将电压差从其输出端输出;
电压调节电路,其输入端与所述电压比较电路的输出端相连,根据所述电压比较电路输出的电压差,调节其输出端输出到所述激光器内置的TEC的电压。
进一步,所述光模块还包括:
激光接收单元,用以根据所述光模块接收的光信号,将其转换为相应的电信号输出;
电源缓启动电路和DC-DC电源电路,所述电源缓启动电路接收3.3V电源供电后为所述激光接收单元、激光发射单元、MCU、TEC控制电路、EA偏置电路、DC-DC电源电路供电;
所述DC-DC电源电路接收所述电源缓启动电路的供电后,输出1.8V电压为所述驱动电路和所述激光接收单元中的限幅放大电路的内核供电;
CDR电路,用以将所述激光接收单元输出的电信号进行整型;以及
所述MCU还用于在保证信号质量的前提下控制所述CDR电路旁路;以及
所述电压调节电路和标准电压输出电路,集成于TEC控制芯片中。
根据本发明的另一个方面,提供了一种光模块中激光器的工作温度调节方法,包括:
光模块中的MCU在获取温度传感器检测的温度值后,根据获取的温度值确定当前的环境温度;
所述MCU根据预先保存的环境温度与工作温度设定值之间的对应关系,确定出当前的环境温度所对应的工作温度设定值;根据预先保存的环境温度与BIAS电流设定值之间的对应关系,确定出当前的环境温度所对应的BIAS电流设定值;
所述MCU根据确定出的BIAS电流设定值,控制所述光模块中的驱动电路输出相应的BIAS电流;并根据确定出的工作温度设定值,控制所述光模块中的TEC控制电路调节所述激光器的工作温度为相应的温度。
进一步,在所述根据获取的温度值确定当前的环境温度之后,还包括:
所述MCU根据预先保存的环境温度与MOD电压设定值之间的对应关系,确定出当前的环境温度所对应的MOD电压设定值;根据确定出的MOD电压设定值控制所述驱动电路输出相应的MOD电压。
较佳地,所述环境温度与工作温度设定值之间的对应关系具体为:在环境温度处于T3~T1、T1~T2、T2~T4的温度段,环境温度与工作温度设定值之间的对应关系分别如公式1、2、3所示:
Tg=To+k1*(T-To)        (公式1)
Tg=To                  (公式2)
Tg=To+k2*(T-To)        (公式3)
所述环境温度与BIAS电流设定值之间的对应关系具体为:在环境温度处于T3~T1、T1~T2、T2~T4的温度段,环境温度与BIAS电流设定值之间的对应关系分别如公式4、5、6所示:
I=Io+k3*(T-To)        (公式4)
I=Io                  (公式5)
I=Io+k4*(T-To)        (公式6)
所述环境温度与MOD电压设定值之间的对应关系具体为:在环境温度处于T3~T1、T1~T2、T2~T4的温度段,环境温度与MOD电压设定值之间的对应关系分别如公式7、8、9所示:
V=Vo+k5*(T-To)        (公式7)
V=Vo                   (公式8)
V=Vo+k6*(T-To)         (公式9)
其中,T为环境温度,Tg为工作温度设定值,I为BIAS电流设定值,V为MOD电压设定值,To、k1-k6为设定的参数。
本发明实施例的光模块不再维持激光器的工作温度为恒定值,而是允许激光器的工作温度在一定范围内随环境温度相应地变化;同时,采用调节BIAS(偏置)电流作为补偿手段,进一步还可采用调节MOD(调制)电压,或EA(Electro-Absorption,电吸收)电压作为补偿手段,使得激光器发射的激光的光功率和消光比恒定。由于允许激光器的工作温度随环境温度有相应的改变,减小了激光器的工作温度与环境温度之间的差值,也就不必为激光器内置的TEC提供过大的加热或制冷的电流,从而达到降低光模块功耗的目的。
附图说明
图1a为现有技术的光模块中的部分电路示意图;
图1b为本发明实施例的光模块中的内部电路框图;
图2为本发明实施例的激光器的内部电路示意图;
图3为本发明实施例的TEC控制电路的内部电路框图;
图4为本发明实施例的电压比较电路、标准电压输出电路的具体电路示意图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举出优选实施例,对本发明进一步详细说明。然而,需要说明的是,说明书中列出的许多细节仅仅是为了使读者对本发明的一个或多个方面有一个透彻的理解,即便没有这些特定的细节也可以实现本发明的这些方面。
本申请使用的“模块”、“系统”等术语旨在包括与计算机相关的实体,例如但不限于硬件、固件、软硬件组合、软件或者执行中的软件。例如,模块可以是,但并不仅限于:处理器上运行的进程、处理器、对象、可执行程序、执行的线程、程序和/或计算机。
本发明实施例的技术方案中,不再维持激光器的工作温度为恒定值,而是允许激光器的工作温度在一定范围内随环境温度相应地变化;同时,采用调节BIAS电流作为补偿手段,进一步还可采用调节MOD电压,或EA电压作为补偿手段,使得激光器发射的激光的光功率和消光比恒定。由于允许激光器的工作温度随环境温度有相应的改变,减小了激光器的工作温度与环境温度之间的差值,也就不必为激光器内置的TEC提供过大的加热或制冷的电流,从而达到降低光模块功耗的目的。
下面结合附图详细说明本发明实施例的技术方案。本发明实施例的光模块的内部电路如图1b所示,包括:激光发射单元101、MCU(MicroprogrammedControl Unit,微程序控制器)103、TEC控制电路104、EA偏置电路105。
激光发射单元101用以根据光模块接收的电信号发射光信号;例如,若光模块具体为SDH光端机中的光模块,则激光发射单元101接收SDH光端机中的交换机发送的数字差分电信号,并根据接收的数字差分电信号发射相应的光信号。
激光发射单元101中包括:激光器121及其驱动电路122。激光发射单元101的驱动电路122根据光模块接收的电信号驱动激光器121中的激光发射光源发射特定波长的光信号。即驱动电路122根据光模块接收的数字差分电信号驱动激光器121中的激光发射光源(图2中的LD)发射特定波长的光信号。具体地,驱动电路122与20PIN(管脚)电接口相连,光模块通过20PIN电接口与光模块之外的电路或设备相连。驱动电路122在通过电接口接收到数字差分电信号后,经过可旁路的CDR(时钟数据恢复)器件、均衡等处理后得到调制信号,并将调制信号送入到激光器121,用于对激光器121输出的光信号进行调制。驱动电路122为激光器121提供BIAS电流和调制信号,以驱动激光发射光源(图2中的LD)发射特定波长的光信号。其中,驱动电路122输出的BIAS电流和调制信号的MOD(调制)电压都是由MCU103控制设定的。
较佳地,激光器121可选用高效率、低功耗的EML激光器或CML激光器。
EA偏置电路105用以为激光器121提供EA偏置电压。EA偏置电路105通常由强驱动能力的运算放大器和充电泵电压反向器(Charge Pump VoltageInverters)构成,将MCU103通过DAC(Digital-to-Analog Converter,数字模拟转换器)输出端口输出的正电压转换成负电压输出给驱动电路122做负压偏置。也就是说,MCU103可以控制EA偏置电路105输出的EA偏置电压。
MCU103与驱动电路122相连,其可以控制驱动电路122输出的BIAS电流和MOD电压的大小。例如,MCU103与驱动电路122通过IIC总线相连,MCU103通过IIC总线向驱动电路122发送BIAS电流设定值,驱动电路122根据接收的BIAS电流设定值,输出相应大小的BIAS电流;MCU103通过IIC总线向驱动电路122发送MOD电压设定值,驱动电路122根据接收的MOD电压设定值,输出相应大小的MOD电压。再如,MCU103也可通过DAC输出端口输出相应的电压来控制驱动电路122输出的BIAS电流和MOD电压。
如图2所示,激光器121中内置了热电偶和TEC。TEC控制电路104具体与激光器121中的热电偶和TEC相连,用以调节激光器121内的温度,即调节激光器121的工作温度。
MCU103与TEC控制电路104相连,其可以控制TEC控制电路104调节激光器121的工作温度。具体地,MCU103可以通过通信总线,比如IIC(Inter-Integrated Circuit,交互集成电路)总线与TEC控制电路104相连,通过向TEC控制电路104发送参数或指令控制TEC控制电路104调节激光器121的工作温度;或者,MCU103通过DAC输出端口与TEC控制电路104相连,通过向TEC控制电路104输出模拟电压量来控制TEC控制电路104调节激光器121的工作温度。
MCU103在获取温度传感器检测的温度值后,根据获取的温度值确定当前的环境温度;在MCU103中预先保存了环境温度与工作温度设定值之间的对应关系、环境温度与BIAS电流设定值之间的对应关系;MCU103根据环境温度与工作温度设定值之间的对应关系,确定出当前的环境温度所对应的工作温度设定值;根据环境温度与BIAS电流设定值之间的对应关系,确定出当前的环境温度所对应的BIAS电流设定值。
上述的温度传感器可以是设置在光模块中,较佳地,温度传感器是内置于MCU103中的。即本发明实施例的光模块可采用具有内置温度传感器的MCU。
MCU103根据确定出的工作温度设定值,控制TEC控制电路104调节激光器121的工作温度为相应的温度;根据确定出的BIAS电流设定值,控制驱动电路122输出相应的BIAS电流。
进一步,MCU103中还可保存环境温度与MOD电压设定值之间的对应关系;MCU103还可根据环境温度与MOD电压设定值之间的对应关系,确定出当前的环境温度所对应的MOD电压设定值;MCU103根据确定出的MOD电压设定值,控制驱动电路122输出相应的MOD电压。
进一步,MCU103中还可保存环境温度与EA偏置电压设定值之间的对应关系;MCU103还可根据环境温度与EA偏置电压设定值之间的对应关系,确定出当前的环境温度所对应的EA偏置电压设定值;MCU103根据确定出的EA偏置电压设定值,控制EA偏置电路105输出相应的EA偏置电压。
这样,在环境温度改变时,MCU103不一定控制TEC控制电路104将激光器121的工作温度维持在一个恒定的温度值上,而是控制TEC控制电路104随着环境温度调节激光器121的工作温度;由于激光器121的工作温度发生了改变,则可能会影响激光器121发射的激光的光功率和消光比;因此,在本发明中MCU103还相应地控制驱动电路122调节、改变BIAS电流以补充工作温度的改变对激光的光功率和消光比所造成的影响;这样,综合了激光器121的工作温度与BIAS电流两者改变所造成的影响,可以达到让激光的光功率和消光比保持恒定的目的。
进一步,MCU103还可相应地控制驱动电路122调节MOD电压,综合了激光器121的工作温度、BIAS电流、MOD电压三者的改变对激光的光功率和消光比所造成的影响,使得激光的光功率和消光比能够保持恒定。
如下表1所示的对应关系表,示出了一种具体的环境温度与工作温度设定值之间的对应关系、环境温度与BIAS电流设定值之间的对应关系、以及环境温度与MOD电压设定值之间的对应关系。
表1
  环境温度T   T3~T1   T1~T2   T2~T4
  工作温度设定值   To+k1*(T-To)   恒定To   To+k2*(T-To)
  BIAS电流设定值   Io+k3*(T-To)   恒定Io   Io+k4*(T-To)
  MOD电压设定值   Vo+k5*(T-To)   恒定Vo   Vo+k6*(T-To)
本领域技术人员可以根据实际情况设定上表1中的T1、T2、T3、T4的环境温度值;例如,可以设定T1为-5℃,T2为10℃,T3为50℃,T4为70℃;
从上表1可以看出,在环境温度处于T3~T1的温度段,环境温度与工作温度设定值之间的对应关系如公式1所示:
Tg=To+k1*(T-To)    (公式1)
在环境温度处于T1~T2的温度段,环境温度与工作温度设定值之间的对应关系如公式2所示:
Tg=To              (公式2)
在环境温度处于T2~T4的温度段,环境温度与工作温度设定值之间的对应关系如公式3所示:
Tg=To+k2*(T-To)        (公式3)
上述公式1-3中的T为环境温度,Tg为工作温度设定值,To为本领域技术人员根据实际情况设定的参数;例如,可以设定To为50。
上述公式1中的k1、公式3中的k2都为本领域技术人员根据实际情况设定的参数;例如,可以设定k1=0.2,k2=0.5。
在环境温度处于T3~T1的温度段,环境温度与BIAS电流设定值之间的对应关系如公式4所示:
I=Io+k3*(T-To)         (公式4)
在环境温度处于T1~T2的温度段,环境温度与BIAS电流设定值之间的对应关系如公式5所示:
I=Io                   (公式5)
在环境温度处于T2~T4的温度段,环境温度与BIAS电流设定值之间的对应关系如公式6所示:
I=Io+k4*(T-To)         (公式6)
上述公式4-6中的T为环境温度,I为BIAS电流设定值,To为本领域技术人员根据实际情况设定的参数;例如,可以设定To为50。
上述公式4中的k3、公式6中的k4都为本领域技术人员根据实际情况设定的参数;例如,可以设定k3=0.1,k4=1。
在环境温度处于T3~T1的温度段,环境温度与MOD电压设定值之间的对应关系如公式7所示:
V=Vo+k5*(T-To)         (公式7)
在环境温度处于T1~T2的温度段,环境温度与MOD电压设定值之间的对应关系如公式8所示:
V=Vo                   (公式8)
在环境温度处于T2~T4的温度段,环境温度与MOD电压设定值之间的对应关系如公式9所示:
V=Vo+k6*(T-To)         (公式9)
上述公式7-9中的T为环境温度,V为MOD电压设定值,To为本领域技术人员根据实际情况设定的参数;例如,可以设定To为50。
上述公式7中的k5、公式9中的k6都为本领域技术人员根据实际情况设定的参数;例如,可以设定k5=0.2,k6=0.1。
MCU103可以根据表1中示出的对应关系,综合激光器121的工作温度、BIAS电流、MOD电压三者的改变,对激光的光功率和消光比所造成的影响,使得激光的光功率和消光比能够保持恒定。
上述的环境温度与工作温度之间的对应关系具体可以是以表格的形式保存在MCU103中,也可以是以函数的形式保存在MCU103中;环境温度与BIAS电流设定值之间的对应关系具体可以是以表格的形式保存在MCU103中,也可以是以函数的形式保存在MCU103中;环境温度与MOD电压设定值之间的对应关系具体可以是以表格的形式保存在MCU103中,也可以是以函数的形式保存在MCU103中;环境温度与EA偏置电压设定值之间的对应关系具体可以是以表格的形式保存在MCU103中,也可以是以函数的形式保存在MCU103中。
事实上,上述的驱动电路122、EA偏置电路105、TEC控制电路104可分别采用现有技术中常用的驱动电路、EA偏置电路、TEC控制电路。
图3示出了一种具体的TEC控制电路,包括:电压比较电路301、电压调节电路302、分压电路303和标准电压输出电路304。图4示出了电压比较电路301、电压调节电路302、标准电压输出电路304的具体电路。
其中,分压电路303与所述激光器121内置的热电偶串联;分压电路303具体可以是一个电阻,电阻与激光器121内置的热电偶串联,2.5V的标准电压被加载到电阻与热电偶上。
标准电压输出电路304输出标准电压到所述分压电路以及与其串联的热电偶上。标准电压输出电路304输出的标准电压,比如可以是3.3V,或者2.3V的直流电压,具体电压值本领域技术人员可以根据实际情况来设定。图4中的U8MAX8842芯片及其外围元件构成了标准电压输出电路304。U8MAX8842芯片为稳压电路芯片。U8MAX8842芯片的第6管脚输出了2.5V的标准电压被加载到分压电路303与热电偶上。
电压比较电路301的一个电压输入端,与分压电路303和激光器121内置的热电偶的连接点相连,从而可以监测到热电偶上的电压的变化,或者分压电路303上的电压的变化。由于热电偶的阻值会随着温度的改变而改变,在热电偶上的电压也会相应改变,同样,在分压电路303上的电压也会相应改变;也就是说,分压电路303上的电压的变化,或者热电偶上的电压的变化,反映了激光器121内的温度的变化。
电压比较电路301的另一个电压输入端接入MCU103根据确定出的工作温度设定值从其DAC输出端口输出的电压。
电压比较电路301比较两个电压输入端的电压,得到两者的电压差,将电压差从其输出端输出。
图4中的U7NCS3001芯片和U5NCS3001芯片及其外围元件构成了电压比较电路301。U7NCS3001芯片和U5NCS3001芯片都为比较器芯片。图4中的电压比较电路301的一个电压输入端为U7NCS3001芯片的电压输入管脚3,该电压比较电路301的另一个电压输入端为U5NCS3001芯片的电压输入管脚4,该电压比较电路301的输出端为U5NCS3001芯片的电压输出管脚1。
电压调节电路302的输入端与电压比较电路301的输出端相连,其输出端与激光器121内置的TEC相连;电压调节电路302根据电压比较电路301输出的电压差,调节其输出端输出到TEC的温度调节电压。
电压调节电路302具体可以包括压控PWM芯片,即电压调节电路302为压控PWM(Pulse-Width Modulation,脉宽调制)电路。电压调节电路302的输入端即为压控PWM芯片MAX8521芯片的管脚10,电压调节电路302的输入端,即U6MAX8521芯片的管脚10与U5NCS3001芯片的电压输出管脚1相连,压控PWM芯片MAX8521芯片根据电压比较电路301输出的电压,进行PWM波的脉宽调制,调制后的PWM波从压控PWM芯片MAX8521芯片的管脚18和19输出;而压控PWM芯片MAX8521芯片的管脚18和19分别与激光器121的TEC-(图2中的第1管脚)和TEC+(图2中的第2管脚)相连,从而将调制后的PWM波输出到激光器的TEC。通过控制加载在激光器的TEC上的PWM波的占空比,就可以控制TEC的放热或吸热,从而达到控制激光器内的温度的目的。
例如,在需要对激光器进行升温时,电压调节电路302输出正脉宽比较大的脉冲调制电流;
在需要对激光器进行降温时,电压调节电路302输出正脉宽较小、负脉宽较大的脉冲调制电流。
因此,TEC控制电路104可以根据MCU103从其DAC输出端口输出的电压,调节输出到所述激光器内置的TEC的电压来改变激光器内的温度,即达到调节激光器的工作温度的目的。
或者,上述的电压调节电路302、标准电压输出电路304也可集成于高集成度的TEC控制芯片MAX8521中。MAX8521片内FET减少了外部元件的数目,高开关频率减小了外部元件的尺寸,且工作于单电源,在两个同步转换器输出之间连接TEC。这种工作方式允许在低电流时实现无死区和其它非线性的温度控制。这种策略保证在设置点非常接近环境工作点时,控制系统不会发生振荡,仅需少量的加热或者冷却。
进一步,本发明的实施例的光模块还包括:激光接收单元102、电源缓启动电路、DC-DC(直流转直流)电源电路,以及CDR电路(图中未标)。
激光接收单元102其用以根据光模块接收的光信号,将其转换为相应的电信号输出,具体可以是转换为数字差分电信号从20PIN电接口输出。激光接收单元102的内部包括:限幅放大电路和光接收组件;光接收组件中包括:光电二极管和TIA(跨阻放大器)。较佳地,光电二极管可选用灵敏度高的APD(Avalanche Photo Diode,雪崩光电二极管)或PIN(Positive-intrinsic negativediode,正本征负二极管)探测器。
电源缓启动电路与20PIN电接口相连,接收3.3V电源供电。电源缓启动电路接受供电后,向激光接收单元102、激光发射单元101、MCU103、TEC控制电路104、EA偏置电路105、DC-DC电源电路供电。电源缓启动电路为光模块提供了热插拔功能。
DC-DC电源电路接收电源缓启动电路的供电后,输出较低电压1.8V为驱动电路和限幅放大电路的内核供电;而驱动电路和限幅放大电路的端口仍然由电源缓启动电路供电。由于内核电压较低,采用外部DC-DC替代内置ADC,提高了降压的效率,从而进一步降低了光模块的功耗。
CDR电路与激光接收单元102相连或者内置于激光接收单元102中,用以将激光接收单元102的限幅放大器输出的电信号进行整型;
或者,CDR电路与激光发射单元101相连或内置于激光发射单元101中,用以对激光发射单元101中的驱动电路接收的电信号进行整型;
本发明的MCU103还可控制CDR电路是否旁路,在保证信号质量的前提下MCU103可控制CDR电路旁路,以进一步降低光模块的功耗。
本发明的光模块可应用于10G的SDH(Synchronous Digital Hierarchy,同步数字系列)光传输网、10G/8G光纤通道以及10G以太网等领域;例如,应用于SDH光端机中,或者应用于GBE光端机中;或者应用于ONU(光网络单元)中,或者应用于OLT(光线路终端)中。
本发明实施例的光模块不再维持激光器的工作温度为恒定值,而是允许激光器的工作温度在一定范围内随环境温度相应地变化;同时,采用调节BIAS电流,或MOD电压,或EA电压作为补偿手段,使得激光器发射的激光的光功率和消光比恒定。实验证明通过该补偿方法,在整个温度范围内可以控制激光的光功率和消光比稳定在+/-0.5dB内。由于允许激光器的工作温度随环境温度有相应的改变,减小了激光器的工作温度与环境温度之间的差值,也就减小了为激光器内置TEC提供的加热或制冷的电流,从而达到降低光模块功耗的目的。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读取存储介质中,如:ROM/RAM、磁碟、光盘等。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种光模块,包括:
激光发射单元,其包括激光器及其驱动电路;
微程序控制器MCU和TEC控制电路,所述MCU用于在获取温度传感器检测的温度值后,根据获取的温度值确定当前的环境温度;并根据预先保存的环境温度与工作温度设定值之间的对应关系,确定出当前的环境温度所对应的工作温度设定值;根据预先保存的环境温度与BIAS电流设定值之间的对应关系,确定出当前的环境温度所对应的BIAS电流设定值;
所述MCU根据确定出的BIAS电流设定值,控制所述驱动电路输出相应的BIAS电流;并根据确定出的工作温度设定值,控制所述TEC控制电路调节所述激光器的工作温度为相应的温度。
2.如权利要求1所述的光模块,其特征在于,
所述MCU还用于在确定当前的环境温度后,根据预先保存的环境温度与MOD电压设定值之间的对应关系,确定出当前的环境温度所对应的MOD电压设定值;根据确定出的MOD电压设定值控制所述驱动电路输出相应的MOD电压。
3.如权利要求2所述的光模块,其特征在于,所述环境温度与工作温度设定值之间的对应关系具体为:在环境温度处于T3~T1、T1~T2、T2~T4的温度段,环境温度与工作温度设定值之间的对应关系分别如公式1、2、3所示:
Tg=To+k1*(T-To)                (公式1)
Tg=To                           (公式2)
Tg=To+k2*(T-To)                (公式3)
所述环境温度与BIAS电流设定值之间的对应关系具体为:在环境温度处于T3~T1、T1~T2、T2~T4的温度段,环境温度与BIAS电流设定值之间的对应关系分别如公式4、5、6所示:
I=Io+k3*(T-To)                   (公式4)
I=Io                             (公式5)
I=Io+k4*(T-To)                   (公式6)
所述环境温度与MOD电压设定值之间的对应关系具体为:在环境温度处于T3~T1、T1~T2、T2~T4的温度段,环境温度与MOD电压设定值之间的对应关系分别如公式7、8、9所示:
V=Vo+k5*(T-To)            (公式7)
V=Vo                      (公式8)
V=Vo+k6*(T-To)            (公式9)
其中,T为环境温度,Tg为工作温度设定值,I为BIAS电流设定值,V为MOD电压设定值,To、k1-k6为设定的参数。
4.如权利要求2所述的光模块,其特征在于,还包括:EA偏置电路;
所述MCU还用于在确定当前的环境温度后,根据预先保存的环境温度与EA偏置电压设定值之间的对应关系,确定出当前的环境温度所对应的EA偏置电压设定值;根据确定出的EA偏置电压设定值控制所述EA偏置电路输出相应的EA偏置电压。
5.如权利要求1-4任一所述的光模块,其特征在于,所述温度传感器内置于所述MCU中;以及所述激光器具体为CML激光器或EML激光器。
6.如权利要求1-4任一所述的光模块,其特征在于,所述TEC控制电路具体包括:
分压电路,与所述激光器内置的热电偶串联;
标准电压输出电路,用以输出标准电压到所述分压电路以及与其串联的热电偶上;
电压比较电路,其一个电压输入端,与所述分压电路和所述热电偶的连接点相连,用以获取所述分压电路上的电压,另一个电压输入端接入所述MCU确定出的工作温度设定值从其DAC输出端口输出的电压;所述电压比较电路比较两个电压输入端的电压,得到两者的电压差,将电压差从其输出端输出;
电压调节电路,其输入端与所述电压比较电路的输出端相连,根据所述电压比较电路输出的电压差,调节其输出端输出到所述激光器内置的TEC的电压。
7.如权利要求1-4任一所述的光模块,其特征在于,还包括:
激光接收单元,用以根据所述光模块接收的光信号,将其转换为相应的电信号输出;
电源缓启动电路和DC-DC电源电路,所述电源缓启动电路接收3.3V电源供电后为所述激光接收单元、激光发射单元、MCU、TEC控制电路、EA偏置电路、DC-DC电源电路供电;
所述DC-DC电源电路接收所述电源缓启动电路的供电后,输出1.8V电压为所述驱动电路和所述激光接收单元中的限幅放大电路的内核供电;
CDR电路,用以将所述激光接收单元输出的电信号进行整型;以及
所述MCU还用于在保证信号质量的前提下控制所述CDR电路旁路;以及
所述电压调节电路和标准电压输出电路,集成于TEC控制芯片中。
8.一种光模块中激光器的工作温度调节方法,包括:
光模块中的MCU在获取温度传感器检测的温度值后,根据获取的温度值确定当前的环境温度;
所述MCU根据预先保存的环境温度与工作温度设定值之间的对应关系,确定出当前的环境温度所对应的工作温度设定值;根据预先保存的环境温度与BIAS电流设定值之间的对应关系,确定出当前的环境温度所对应的BIAS电流设定值;
所述MCU根据确定出的BIAS电流设定值,控制所述光模块中的驱动电路输出相应的BIAS电流;并根据确定出的工作温度设定值,控制所述光模块中的TEC控制电路调节所述激光器的工作温度为相应的温度。
9.如权利要求8所述的方法,其特征在于,在所述根据获取的温度值确定当前的环境温度之后,还包括:
所述MCU根据预先保存的环境温度与MOD电压设定值之间的对应关系,确定出当前的环境温度所对应的MOD电压设定值;根据确定出的MOD电压设定值控制所述驱动电路输出相应的MOD电压。
10.如权利要求8所述的方法,其特征在于,所述环境温度与工作温度设定值之间的对应关系具体为:在环境温度处于T3~T1、T1~T2、T2~T4的温度段,环境温度与工作温度设定值之间的对应关系分别如公式1、2、3所示:
Tg=To+k1*(T-To)            (公式1)
Tg=To                       (公式2)
Tg=To+k2*(T-To)                    (公式3)
所述环境温度与BIAS电流设定值之间的对应关系具体为:在环境温度处于T3~T1、T1~T2、T2~T4的温度段,环境温度与BIAS电流设定值之间的对应关系分别如公式4、5、6所示:
I=Io+k3*(T-To)                    (公式4)
I=Io                              (公式5)
I=Io+k4*(T-To)                    (公式6)
所述环境温度与MOD电压设定值之间的对应关系具体为:在环境温度处于T3~T1、T1~T2、T2~T4的温度段,环境温度与MOD电压设定值之间的对应关系分别如公式7、8、9所示:
V=Vo+k5*(T-To)                    (公式7)
V=Vo                              (公式8)
V=Vo+k6*(T-To)                    (公式9)
其中,T为环境温度,Tg为工作温度设定值,I为BIAS电流设定值,V为MOD电压设定值,To、k1-k6为设定的参数。
CN2012104290199A 2012-10-31 2012-10-31 光模块及其激光器工作温度的调节方法 Pending CN102970080A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012104290199A CN102970080A (zh) 2012-10-31 2012-10-31 光模块及其激光器工作温度的调节方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012104290199A CN102970080A (zh) 2012-10-31 2012-10-31 光模块及其激光器工作温度的调节方法

Publications (1)

Publication Number Publication Date
CN102970080A true CN102970080A (zh) 2013-03-13

Family

ID=47799984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012104290199A Pending CN102970080A (zh) 2012-10-31 2012-10-31 光模块及其激光器工作温度的调节方法

Country Status (1)

Country Link
CN (1) CN102970080A (zh)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103281132A (zh) * 2013-05-24 2013-09-04 青岛海信宽带多媒体技术有限公司 应用于宽温度范围中的光模块及其工作温度调节方法
CN103390857A (zh) * 2013-07-11 2013-11-13 青岛海信宽带多媒体技术有限公司 生成光模块查找表的方法及装置
CN103490269A (zh) * 2013-09-18 2014-01-01 青岛海信宽带多媒体技术有限公司 基于热电制冷器的温度控制电路
CN103606804A (zh) * 2013-11-20 2014-02-26 武汉光迅科技股份有限公司 一种降低光放大器功耗的方法
CN103701034A (zh) * 2013-12-25 2014-04-02 青岛海信宽带多媒体技术有限公司 光模块发光功率的稳定方法和装置
CN104753589A (zh) * 2013-12-31 2015-07-01 弗兰克公司 改善在光网络测试仪器中的光源的稳定性
WO2015131366A1 (zh) * 2014-03-06 2015-09-11 华为技术有限公司 控制光组件的工作温度的方法、装置、光组件和光网络系统
CN105680953A (zh) * 2016-03-31 2016-06-15 青岛海信宽带多媒体技术有限公司 一种光模块启动方法及装置
CN106027157A (zh) * 2016-05-16 2016-10-12 青岛海信宽带多媒体技术有限公司 光模块的电流补偿方法及光模块
CN106301591A (zh) * 2016-08-31 2017-01-04 青岛海信宽带多媒体技术有限公司 维持消光比稳定的方法及装置
CN106324769A (zh) * 2015-06-18 2017-01-11 珠海思开达技术有限公司 一种基于xfp可热插拔的模拟光收模块
CN106505406A (zh) * 2016-12-05 2017-03-15 青岛海信宽带多媒体技术有限公司 激光器工作状态的控制方法及光模块
CN106774503A (zh) * 2016-12-01 2017-05-31 青岛海信宽带多媒体技术有限公司 一种光模块壳温监控方法及装置
CN107329507A (zh) * 2016-04-29 2017-11-07 广西师范大学 一种恒温控制系统
CN107332620A (zh) * 2017-05-17 2017-11-07 西安科锐盛创新科技有限公司 发光功率稳定的光模块和光通信设备
CN107634447A (zh) * 2017-09-21 2018-01-26 武汉恒泰通技术有限公司 一种光模块眼图补偿曲线的获取装置及其获取方法
CN107645120A (zh) * 2017-09-21 2018-01-30 武汉恒泰通技术有限公司 一种眼图自动补偿光模块及其眼图自动补偿方法
CN107942855A (zh) * 2017-11-23 2018-04-20 深圳市稻兴实业有限公司 一种激光投影设备运行时激光器的保护方法
CN108206449A (zh) * 2016-12-16 2018-06-26 上海航天科工电器研究院有限公司 激光器驱动电路
WO2018121061A1 (zh) * 2016-12-30 2018-07-05 深圳市光峰光电技术有限公司 固态发光光源相变制冷系统控制方法、装置及投影设备
CN109428260A (zh) * 2017-08-25 2019-03-05 朗美通运营有限责任公司 用于电吸收调制器的电吸收偏置电路
CN110542959A (zh) * 2019-09-11 2019-12-06 青岛海信宽带多媒体技术有限公司 一种防止光模块上电时发射光波长波动的方法及装置
CN111431612A (zh) * 2020-03-20 2020-07-17 青岛海信宽带多媒体技术有限公司 一种光模块
CN111504605A (zh) * 2020-04-22 2020-08-07 四川思创优光科技有限公司 一种连续光纤激光器前向光检测方法
CN111817781A (zh) * 2020-06-18 2020-10-23 武汉光迅科技股份有限公司 一种光功率监测电路和方法
CN112311475A (zh) * 2020-09-22 2021-02-02 武汉联特科技有限公司 降低eml光模块低温功耗的方法及设备
CN112345072A (zh) * 2020-09-11 2021-02-09 武汉联特科技有限公司 Eml发光功率校准方法、ea负压及电流采样电路及设备
CN112612311A (zh) * 2020-12-15 2021-04-06 四川华拓光通信股份有限公司 Mcu和tec控制器双向选择实现tec控制的方法
CN112903588A (zh) * 2021-03-16 2021-06-04 四川虹信软件股份有限公司 基于自校准的近红外光谱仪、校准方法和使用方法
CN112688161B (zh) * 2020-12-23 2021-10-22 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种冷原子陀螺仪用窄线宽半导体激光器的驱动电流源
CN114069382A (zh) * 2022-01-12 2022-02-18 日照市艾锐光电科技有限公司 一种基于控温直接调制激光器的10g-pon olt光模块
CN115249941A (zh) * 2021-11-20 2022-10-28 衢州学院 一种半导体激光器的温度控制系统和方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201243289Y (zh) * 2008-08-18 2009-05-20 青岛海信宽带多媒体技术股份有限公司 基于处理器控制的光模块
CN201383813Y (zh) * 2008-12-16 2010-01-13 武汉电信器件有限公司 基于单片机的平均光功率和消光比恒定的自动控制光模块
CN101726810A (zh) * 2009-11-27 2010-06-09 索尔思光电(成都)有限公司 高速低功耗长距离传输用SFPplus光模块
CN201623709U (zh) * 2010-03-16 2010-11-03 索尔思光电(成都)有限公司 可调谐50GHz和100GHz信道间隔的DWDM光模块
CN102209281A (zh) * 2011-05-18 2011-10-05 索尔思光电(成都)有限公司 10g epon olt单纤三向光模块
CN102280813A (zh) * 2011-06-28 2011-12-14 索尔思光电(成都)有限公司 一种降低eml tosa的tec功耗的方法
CN202094892U (zh) * 2011-05-23 2011-12-28 成都新易盛通信技术有限公司 一种长距离sfp+光模块
CN102496837A (zh) * 2011-12-23 2012-06-13 索尔思光电(成都)有限公司 EPON Triplexer OLT激光器保护模块
CN102496848A (zh) * 2011-12-19 2012-06-13 索尔思光电(成都)有限公司 一种扩展eml tosa核心温度工作范围的方法
CN202309985U (zh) * 2011-11-03 2012-07-04 成都新易盛通信技术有限公司 一种密集波分复用型3g视频sfp模块
CN102752054A (zh) * 2012-07-12 2012-10-24 青岛海信宽带多媒体技术有限公司 光网络单元光模块
CN102932066A (zh) * 2012-10-17 2013-02-13 青岛海信宽带多媒体技术有限公司 一种光模块

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201243289Y (zh) * 2008-08-18 2009-05-20 青岛海信宽带多媒体技术股份有限公司 基于处理器控制的光模块
CN201383813Y (zh) * 2008-12-16 2010-01-13 武汉电信器件有限公司 基于单片机的平均光功率和消光比恒定的自动控制光模块
CN101726810A (zh) * 2009-11-27 2010-06-09 索尔思光电(成都)有限公司 高速低功耗长距离传输用SFPplus光模块
CN201623709U (zh) * 2010-03-16 2010-11-03 索尔思光电(成都)有限公司 可调谐50GHz和100GHz信道间隔的DWDM光模块
CN102209281A (zh) * 2011-05-18 2011-10-05 索尔思光电(成都)有限公司 10g epon olt单纤三向光模块
CN202094892U (zh) * 2011-05-23 2011-12-28 成都新易盛通信技术有限公司 一种长距离sfp+光模块
CN102280813A (zh) * 2011-06-28 2011-12-14 索尔思光电(成都)有限公司 一种降低eml tosa的tec功耗的方法
CN202309985U (zh) * 2011-11-03 2012-07-04 成都新易盛通信技术有限公司 一种密集波分复用型3g视频sfp模块
CN102496848A (zh) * 2011-12-19 2012-06-13 索尔思光电(成都)有限公司 一种扩展eml tosa核心温度工作范围的方法
CN102496837A (zh) * 2011-12-23 2012-06-13 索尔思光电(成都)有限公司 EPON Triplexer OLT激光器保护模块
CN102752054A (zh) * 2012-07-12 2012-10-24 青岛海信宽带多媒体技术有限公司 光网络单元光模块
CN102932066A (zh) * 2012-10-17 2013-02-13 青岛海信宽带多媒体技术有限公司 一种光模块

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103281132A (zh) * 2013-05-24 2013-09-04 青岛海信宽带多媒体技术有限公司 应用于宽温度范围中的光模块及其工作温度调节方法
CN103281132B (zh) * 2013-05-24 2016-09-07 青岛海信宽带多媒体技术有限公司 应用于宽温度范围中的光模块及其工作温度调节方法
CN103390857A (zh) * 2013-07-11 2013-11-13 青岛海信宽带多媒体技术有限公司 生成光模块查找表的方法及装置
CN103390857B (zh) * 2013-07-11 2015-12-09 青岛海信宽带多媒体技术有限公司 生成光模块查找表的方法及装置
CN103490269A (zh) * 2013-09-18 2014-01-01 青岛海信宽带多媒体技术有限公司 基于热电制冷器的温度控制电路
CN103490269B (zh) * 2013-09-18 2016-04-20 青岛海信宽带多媒体技术有限公司 基于热电制冷器的温度控制电路
CN103606804A (zh) * 2013-11-20 2014-02-26 武汉光迅科技股份有限公司 一种降低光放大器功耗的方法
CN103606804B (zh) * 2013-11-20 2016-03-30 武汉光迅科技股份有限公司 一种降低光放大器功耗的方法
CN103701034B (zh) * 2013-12-25 2016-08-17 青岛海信宽带多媒体技术有限公司 光模块发光功率的稳定方法和装置
CN103701034A (zh) * 2013-12-25 2014-04-02 青岛海信宽带多媒体技术有限公司 光模块发光功率的稳定方法和装置
CN104753589A (zh) * 2013-12-31 2015-07-01 弗兰克公司 改善在光网络测试仪器中的光源的稳定性
CN104753589B (zh) * 2013-12-31 2019-07-12 弗兰克公司 改善在光网络测试仪器中的光源的稳定性
WO2015131366A1 (zh) * 2014-03-06 2015-09-11 华为技术有限公司 控制光组件的工作温度的方法、装置、光组件和光网络系统
CN105102085A (zh) * 2014-03-06 2015-11-25 华为技术有限公司 控制光组件的工作温度的方法、装置、光组件和光网络系统
US9787056B2 (en) 2014-03-06 2017-10-10 Huawei Technologies Co., Ltd. Method, apparatus, optical component and optical network system for controlling operating temperature of optical component
CN105102085B (zh) * 2014-03-06 2018-10-09 华为技术有限公司 控制光组件的工作温度的方法、装置、光组件和光网络系统
CN106324769A (zh) * 2015-06-18 2017-01-11 珠海思开达技术有限公司 一种基于xfp可热插拔的模拟光收模块
CN106324769B (zh) * 2015-06-18 2017-11-10 珠海思开达技术有限公司 一种基于xfp可热插拔的模拟光收模块
CN105680953A (zh) * 2016-03-31 2016-06-15 青岛海信宽带多媒体技术有限公司 一种光模块启动方法及装置
CN107329507A (zh) * 2016-04-29 2017-11-07 广西师范大学 一种恒温控制系统
CN106027157A (zh) * 2016-05-16 2016-10-12 青岛海信宽带多媒体技术有限公司 光模块的电流补偿方法及光模块
CN106027157B (zh) * 2016-05-16 2018-09-07 青岛海信宽带多媒体技术有限公司 光模块的电流补偿方法及光模块
CN106301591A (zh) * 2016-08-31 2017-01-04 青岛海信宽带多媒体技术有限公司 维持消光比稳定的方法及装置
CN106301591B (zh) * 2016-08-31 2019-08-23 广东海信宽带科技有限公司 维持消光比稳定的方法及装置
CN106774503A (zh) * 2016-12-01 2017-05-31 青岛海信宽带多媒体技术有限公司 一种光模块壳温监控方法及装置
CN106505406B (zh) * 2016-12-05 2020-02-14 青岛海信宽带多媒体技术有限公司 激光器工作状态的控制方法及光模块
CN106505406A (zh) * 2016-12-05 2017-03-15 青岛海信宽带多媒体技术有限公司 激光器工作状态的控制方法及光模块
CN108206449A (zh) * 2016-12-16 2018-06-26 上海航天科工电器研究院有限公司 激光器驱动电路
WO2018121061A1 (zh) * 2016-12-30 2018-07-05 深圳市光峰光电技术有限公司 固态发光光源相变制冷系统控制方法、装置及投影设备
CN107332620A (zh) * 2017-05-17 2017-11-07 西安科锐盛创新科技有限公司 发光功率稳定的光模块和光通信设备
CN109428260A (zh) * 2017-08-25 2019-03-05 朗美通运营有限责任公司 用于电吸收调制器的电吸收偏置电路
CN107645120B (zh) * 2017-09-21 2019-07-09 武汉恒泰通技术有限公司 一种眼图自动补偿光模块及其眼图自动补偿方法
CN107634447A (zh) * 2017-09-21 2018-01-26 武汉恒泰通技术有限公司 一种光模块眼图补偿曲线的获取装置及其获取方法
CN107645120A (zh) * 2017-09-21 2018-01-30 武汉恒泰通技术有限公司 一种眼图自动补偿光模块及其眼图自动补偿方法
CN107634447B (zh) * 2017-09-21 2019-07-09 武汉恒泰通技术有限公司 一种光模块眼图补偿曲线的获取装置及其获取方法
CN107942855A (zh) * 2017-11-23 2018-04-20 深圳市稻兴实业有限公司 一种激光投影设备运行时激光器的保护方法
CN110542959A (zh) * 2019-09-11 2019-12-06 青岛海信宽带多媒体技术有限公司 一种防止光模块上电时发射光波长波动的方法及装置
CN111431612A (zh) * 2020-03-20 2020-07-17 青岛海信宽带多媒体技术有限公司 一种光模块
CN111431612B (zh) * 2020-03-20 2022-08-30 青岛海信宽带多媒体技术有限公司 一种光模块
CN111504605B (zh) * 2020-04-22 2022-07-12 四川思创激光科技有限公司 一种连续光纤激光器前向光检测方法
CN111504605A (zh) * 2020-04-22 2020-08-07 四川思创优光科技有限公司 一种连续光纤激光器前向光检测方法
CN111817781A (zh) * 2020-06-18 2020-10-23 武汉光迅科技股份有限公司 一种光功率监测电路和方法
CN112345072A (zh) * 2020-09-11 2021-02-09 武汉联特科技有限公司 Eml发光功率校准方法、ea负压及电流采样电路及设备
CN112311475A (zh) * 2020-09-22 2021-02-02 武汉联特科技有限公司 降低eml光模块低温功耗的方法及设备
CN112612311A (zh) * 2020-12-15 2021-04-06 四川华拓光通信股份有限公司 Mcu和tec控制器双向选择实现tec控制的方法
CN112688161B (zh) * 2020-12-23 2021-10-22 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种冷原子陀螺仪用窄线宽半导体激光器的驱动电流源
CN112903588A (zh) * 2021-03-16 2021-06-04 四川虹信软件股份有限公司 基于自校准的近红外光谱仪、校准方法和使用方法
CN115249941A (zh) * 2021-11-20 2022-10-28 衢州学院 一种半导体激光器的温度控制系统和方法
CN114069382A (zh) * 2022-01-12 2022-02-18 日照市艾锐光电科技有限公司 一种基于控温直接调制激光器的10g-pon olt光模块

Similar Documents

Publication Publication Date Title
CN102970080A (zh) 光模块及其激光器工作温度的调节方法
CN103281132B (zh) 应用于宽温度范围中的光模块及其工作温度调节方法
CN101702489B (zh) 一种电吸收调制激光器的偏置电路及其调试方法
US8903254B2 (en) Low power consumption, long range, pluggable transceiver, circuits and devices therefor, and method(s) of using the same
CN102412897B (zh) 一种单纤四向对称光模块
CN102932066B (zh) 一种光模块
US20130230314A1 (en) Method for controlling optical power and extinction ratio over entire temperature range
US8867924B2 (en) Low power consumption small form-factor pluggable transceiver
CN202094892U (zh) 一种长距离sfp+光模块
US10461882B2 (en) Optical network unit for optical transmission in burst mode
CN102298401B (zh) 一种长距离sfp+光模块
CN105324703A (zh) 突发光信号发送装置和突发光信号发送装置的控制方法
CN101726810B (zh) 高速低功耗长距离传输用sfp+光模块
US8095015B2 (en) Optical transceiver with reduced peak power consumption and a method to reduce peak power consumption
CN115001523A (zh) 基于epon搭配eml的10g速率olt端收发一体芯片
CN105790064A (zh) 一种低功耗eml驱动电路和方法
US20180175858A1 (en) Adaptive power saving in field programmable gate array (fpga) in optical module
US10615877B2 (en) Electro-absorption bias circuit for electro-absorption modulators
CN102496848B (zh) 一种扩展eml tosa核心温度工作范围的方法
CN102546028A (zh) 一种分立设计的10g突发发射机
Palermo et al. Silicon photonic microring resonator-based transceivers for compact WDM optical interconnects
CN102496837B (zh) EPON Triplexer OLT激光器保护模块
CN103391138A (zh) 用于激光驱动器的快速初始化数字自动光功率控制电路
CN205319508U (zh) 一种低功耗eml驱动电路
CN115173946A (zh) 基于xgpon搭配eml的10g速率olt端收发一体芯片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130313