CN102962191A - 一种连续水锤冲击振动方法 - Google Patents

一种连续水锤冲击振动方法 Download PDF

Info

Publication number
CN102962191A
CN102962191A CN201210431367XA CN201210431367A CN102962191A CN 102962191 A CN102962191 A CN 102962191A CN 201210431367X A CN201210431367X A CN 201210431367XA CN 201210431367 A CN201210431367 A CN 201210431367A CN 102962191 A CN102962191 A CN 102962191A
Authority
CN
China
Prior art keywords
water
pipeline
liquid
piston
bar cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210431367XA
Other languages
English (en)
Other versions
CN102962191B (zh
Inventor
陆春月
严绍进
许步勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201210431367.XA priority Critical patent/CN102962191B/zh
Publication of CN102962191A publication Critical patent/CN102962191A/zh
Application granted granted Critical
Publication of CN102962191B publication Critical patent/CN102962191B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydraulic Motors (AREA)

Abstract

本发明公开一种连续水锤冲击振动方法,该方法涉及连续水锤冲击振动发生器、水箱、液压活塞振动器和管路;步骤是:(1)、水以正常速度从水箱进入液压活塞振动器的无杆缸中;(2)、水还以正常速度进入液压活塞振动器的有杆缸中,当与有杆缸连接的管路中的水流速骤然降至零,形成水锤负压波传至有杆缸,有杆缸压力小于无杆缸,液压活塞振动器的活塞向上运动;(3)、当有杆缸与水箱形成通路,有杆缸中的水快速流回水箱,活塞继续向上运动;(4)、当有杆缸与水箱通路中水的流速骤然降至零,水停止流动,形成水锤增压波向有杆缸传播,有杆缸压力远大于无杆缸,活塞被迫向下运动;(5)、重复上述过程,活塞上下振动产生类似“水锤”连续冲击。

Description

一种连续水锤冲击振动方法
技术领域
本发明涉及一种液压振动方法,特别是涉及一种利用水做为工作介质,通过液压管路通断产生类似“水锤”冲击的连续振动方法。
背景技术
随着液压技术的发展,液压激振具有功率密度高、易于实现直线运动、配置柔性大、动力控制方便等优点,因而近年来已广泛应用于许多工程机械中,如矿山机械、装载机械、压实机械、建筑振动机械以及振动成型机械等。目前液压振动的形式多种多样,阀控缸系统的振动是依靠阀的间隙来工作,存在节流损失,流体易发热,能量利用率较低;而直流泵控马达系统最终驱动的惯性激振器存在参振质量大,功率能耗大的问题。而且液压激振技术采用的工作介质都是液压油,液压油易燃且对环境有污染,在很多工作场合都不适宜使用,一旦发生泄漏易发生爆炸及污染事故。
发明内容
本发明的目的是针对上述问题,提供一种结构简单、工作可靠的连续振动方法,该方法能够利用水做为工作介质,通过液压管路通断产生类似“水锤”连续冲击振动。
为了达到上述目的,本发明通过以下技术方案来实现:
一种连续水锤冲击振动方法,该方法涉及连续水锤冲击振动发生器、水箱、水压泵站、液压活塞振动器和连通各部件的管路;连续水锤冲击振动发生器主要包括支座、轴套、芯轴、转动电机,所述的支座在轴线方向形成的圆柱形空腔,在支座壁上设置有进液孔、回液孔、第一导流孔、第二导流孔与空腔相通,其中进液孔与第一导流孔设置在支座壁的同一端且在径向方向呈180°对称同轴设置,回液孔设置在支座壁的另一端与进液孔同侧,第二导流孔设置在支座壁的中部与第一导流孔同侧,进液孔、回液孔、第一导流孔、第二导流孔的轴线位于圆柱形空腔的同一轴截面上;所述的轴套为两端开口的中空柱形套筒,固定于支座空腔内,轴套壁上亦设有进液口、回液口、出液口,过液矩形切口,其中进液口、出液口设置在轴套壁上同一端在径向方向呈180°对称同轴设置,回液口设置在轴套壁的另一端与进液口同侧,过液矩形切口设置在轴套壁中部与出液口同侧,进液口、回液口、出液口,过液矩形切口的中心线位于中空柱形套筒的同一轴截面上并分别与进液孔、回液孔、第一导流孔、第二导流孔对应相通;所述的芯轴为圆柱体置于轴套的柱形套筒中,芯轴一端延伸至支座外与所述的转动电机连接,在芯轴上与进液口、出液口同一端外环周上设置有环形过流槽,环形过流槽将进液口、出液口连通,在芯轴上与出液口同一端外环周上设置有环形回流槽,环形回流槽与回液口相通,在芯轴的外周轴向间隔对插形式设置有至少一对以上的轴向过流矩形槽、轴向回流矩形槽,轴向过流矩形槽一端与环形过流槽相通而另一端封闭,轴向回流矩形槽一端与环形回流槽相通而另一端封闭;所述的转动电机带动芯轴在轴套的柱形套筒中转动,轴向过流矩形槽与轴向回流矩形槽不断交替实现与过液矩形切口接通和切断;所述的液压活塞振动器包括缸体、无杆缸、有杆缸、活塞、活塞杆、振动连接件;活塞杆一端固定于活塞中部,缸体上端开有通孔而内部形成密闭的中空缸腔,活塞置于中空缸腔中,并将中空缸腔分成无杆缸、有杆缸,活塞杆从有杆缸上端的通孔中穿出与缸体外的振动连接件连接,所述的水压泵站包括溢流阀、单向阀、流量控制阀、水压泵、水压泵电机,水压泵进水口通过管路通向水箱,水压泵出水口分接两管路,其中一管路通向水箱,溢流阀接通在该管路中,单向阀、流量控制阀依次接通在另一管路中与连续水锤冲击振动发生器的进液孔接通,第一导流孔通过管路与液压活塞振动器的无杆缸接通,第二导流孔通过管路与液压活塞振动器的有杆缸接通,回液孔通过管路与水箱相通,该方法步骤是:
(1)水压泵电机带动水压泵旋转,水以正常速度从水箱经过水压泵依次通过单向阀、流量控制阀流向进液孔、进液口、环形过流槽、出液口、第一导流孔通过管路进入到无杆缸中;
(2)当转动电机带动到芯轴转到轴向过流矩形槽与过液矩形切口相通时,水还以正常速度从环形过流槽、轴向过流矩形槽、过液矩形切口、第二导流孔通过管路与进入到有杆缸中,继续旋转,当叶片旋转至轴向过流矩形槽与过液矩形切口切断瞬间,管路中的水流速骤然降至零,导致管路中水压降低,形成水锤负压波传至有杆缸,此时,有杆缸压力小于无杆缸,活塞向上运动。
(3)当芯轴继续旋转至轴向回流矩形槽与过液矩形切口连通时,有杆缸依次通过管路、第二导流孔、过液矩形切口、轴向回流矩形槽、环形回流槽、回液口、回液孔、管路与水箱形成通路,有杆缸水以很快的速度流回水箱,活塞继续向上运动;
(4)当芯轴的叶片旋转至轴向回流矩形槽与液矩形切口切断瞬间,管路中水的流速骤然降至零,水停止流动导致水压升高,对芯轴产生很大冲击,形成水锤增压波向有杆缸传播,这个冲击压力通常能达到系统原有压力的5-10倍,此时有杆缸压力远远大于无杆缸,活塞被迫向下运动;
(5)重复上述过程,活塞忽上忽下运动产生激烈振动。
本发明通过芯轴不停地旋转,将会在与在第二导流孔连接的管路中产生连续的类似“水锤”冲击波。另外,本发明采用纯水作为工作介质,环保安全,很好的克服了液压油的缺点,并且与油相比,水的粘度小,比重大,动能大,因此在相同的系统压力下,水产生的振幅大,能达到节能的目的。
附图说明
图1是本发明的连续水锤冲击振动发生器的三维剖视图;
图2是本发明的连续水锤冲击振动发生器的的主视图;
图3是图2的A-A向剖视图;
图4是本发明的连续水锤冲击振动发生器的的俯视图;
图5是图4的F-F向剖视图;
图6是本发明的连续水锤冲击振动发生器的芯轴的三维视图;
图7是图6的径向截面剖视图;
图8是图2的E-E向剖视图;
图9是本发明的连续水锤冲击振动发生器的轴套的前视图;
图10是本发明的工作原理图。
具体实施方式
结合图1~图10,对本发明较佳实施例做进一步详细说明。
如图10所示,本发明的连续水锤冲击振动发生器1做为连续水锤冲击振动装置9的振源。
如图1、图10所示,一种连续水锤冲击振动发生器1,包括支座11、轴套12、芯轴13、转动电机14、第一端盖15、第二端盖16,所述的支座11在轴线方向形成两端开口的圆柱形空腔111,在支座壁上设置有进液孔112、回液孔113、第一导流孔114、第二导流孔115与空腔111相通,其中进液孔112与第一导流孔111设置在支座11壁的同一端且在径向方向呈180°对称同轴设置,回液孔113设置在支座11壁的另一端与进液孔112同侧,第二导流孔115设置在支座11壁的中部与第一导流孔114同侧,进液孔112、回液孔113、第一导流孔114、第二导流孔115的轴线位于圆柱形空腔111的同一轴截面上。
如图1、图3所示、图8,轴套12为两端开口的中空柱形套筒121,固定于支座空腔111内,轴套12壁上亦设有进液口122、回液口123、出液口124,过液矩形切口125,其中进液口122、出液口124设置在轴套12壁上同一端在径向方向呈180°对称同轴设置,回液口123设置在轴套12壁的另一端与进液口122同侧,过液矩形切口125设置在轴套12壁中部与出液口124同侧,进液口122、回液口123、出液口124,过液矩形切口125的中心线位于中空柱形套筒121的同一轴截面上,进液口122、回液口123、出液口124,过液矩形切口125分别与进液孔112、回液孔113、第一导流孔114、第二导流孔115对应相通。
如图1、图2、图3、图4、图5所示,第一端盖15设置在圆柱形空腔111的一端开口并将开口封闭,而第二端盖16设置在圆柱形空腔111的另一端开口,第二端盖16设有贯通轴向的中心孔161。
如图1、图3、图5、图6、图7、图8所示,芯轴13为圆柱体置于轴套12的柱形套筒121中,芯轴13一端穿过第二端盖16的中心孔161延伸至支座11外与所述的转动电机14(见图10)连接,在芯轴13上与进液口122、出液口124同一端外环周上设置有环形过流槽131,环形过流槽将进液口122、出液口124连通,在芯轴13上与回液口123同一端外环周上设置有环形回流槽132,环形回流槽132与回液口124相通,在芯轴13的外周轴向间隔对插形式设置有至少一对以上的轴向过流矩形槽133、轴向回流矩形槽134,轴向过流矩形槽133、轴向回流矩形槽134之间的隔墙自然形成叶片110,轴向过流矩形槽133一端与环形过流槽相通131而另一端封闭,轴向回流矩形槽134一端与环形回流槽132相通而另一端封闭;所述的转动电机14带动芯轴13在轴套12的柱形套筒121中转动,轴向过流矩形槽133与轴向回流矩形槽134不断交替实现与过液矩形切口125接通和切断。
如图1、图3、图5所示,在上述结构中,芯轴13的两端通过轴承动配合于第一端盖15、第二端盖16中,其中芯轴13与第第二端盖16之见采用深沟球轴承19,为增加支座11的空腔111的密封性,第一端盖15、第二端盖16与支座11两端均设置有密封件,包括密封圈17、骨架油封18,密封圈17套置于芯轴13上并设置在支座11的空腔111中第一端盖15与轴套12之间,骨架油封18套置于芯轴13上并设置第二端盖16的中心孔161中。
如图10所示,上述的连续水锤冲击振动发生器1是连续水锤冲击振动装置9的振源,连续水锤冲击振动装置9除包括连续水锤冲击振动发生器1之外,还包括水箱5、水压泵站3、液压活塞振动器4和连通各部件的管路;所述的水压泵站3包括溢流阀36、单向阀37、流量控制阀38、蓄能器39、水压泵33、水压泵电机34,水压泵电机34带动水压泵33旋转,水压泵33进水口通过管路通向水箱5,水压泵33出水口分接两管路61、62,其中一管路61通向水箱5,溢流阀36接通在管路61中,单向阀37、流量控制阀38、蓄能器39依次接通在另一管路62中,单向阀37保证水流从水压泵流33向流量控制阀38、蓄能器39,而蓄能器39亦为现有技术,蓄能器39能确保管路62中的水具有一定流速。
如图10所示,上述的液压活塞振动器4为现有技术,包括缸体48、无杆缸42、有杆缸47、活塞41、活塞杆43、振动连接件44;活塞杆43一端固定于活塞41中部,缸体48上端开有通孔49而内部形成密闭的中空缸腔,活塞41置于中空缸腔中,并将中空缸腔分成无杆缸42、有杆缸47,活塞杆43从有杆缸47上端的通孔49中穿出与缸体48外的振动连接件44连接。
如图10所示,管路62与连续水锤冲击振动发生器1的进液孔112接通,第一导流孔114通过管路63与液压活塞振动器4的无杆缸42接通,第二导流孔115通过管路64与液压活塞振动器4的有杆缸47接通,回液孔113通过管路65与水箱5相通。
如图10、图1、图3所示,连续水锤冲击振动装置9的工作原理是,水压泵电机34带动水压泵33旋转,水以正常速度从水箱5经过水压泵33进入管路61、62中,水再以正常速度依次通过单向阀37、流量控制阀38流向进液孔112、进液口122、环形过流槽131、出液口124、第一导流孔114通过管路63进入到无杆缸42中;当转动电机14带动到芯轴13转到轴向过流矩形槽133与过液矩形切口125相通时,水还以正常速度从环形过流槽131、轴向过流矩形槽133、过液矩形切口125、第二导流孔115通过管路64与进入到有杆缸47中,继续旋转,当叶片110旋转至轴向过流矩形槽133与过液矩形切口125切断瞬间,管路64中的水流速骤然降至零,导致管路64中水压降低,形成水锤负压波传至有杆缸47,此时,有杆缸47压力小于无杆缸42,活塞41向上运动。
然而,当芯轴13继续旋转至轴向回流矩形槽134与过液矩形切口125连通时,有杆缸47依次通过管路64、第二导流孔115、过液矩形切口125、轴向回流矩形槽134、环形回流槽132、回液口123、回液孔113、管路65与水箱5形成通路,有杆缸47水以很快的速度流回水箱5,活塞41继续向上运动。当芯轴13的叶片110旋转至轴向回流矩形槽134与液矩形切口125切断瞬间,管路64中水的流速骤然降至零,水停止流动导致水压升高,对芯轴13产生很大冲击,形成水锤增压波向有杆缸47传播,这个冲击压力通常能达到系统原有压力的5-10倍,此时有杆缸47压力远远大于无杆缸42,活塞41被迫向下运动。芯轴13继续旋转,重复上述过程,活塞41忽上忽下运动产生激烈振动,将振动连接件44接于与如矿山机械、装载机械、压实机械、建筑振动机械以及振动成型机械等设备的其它零件相联,就构成了连续水锤冲击振动的矿山机械、装载机械、压实机械、建筑振动机械以及振动成型机械。
为了使液体产生较大的冲击,轴套12的过液矩形切口125必须在极短的时间内被关闭,如图9所示,过液矩形切口125设计成细长的矩形槽,使宽度b尺寸较小,保证瞬时关闭,长度L比较大能够使油缸中有足够的流量,取长宽比L/b=8~12为宜。
为了保证过液矩形切口125的快速通断,且使过液矩形切口125能够完全关闭,如图7所示,芯轴13上叶片110的厚度与阀口宽度间取x1/b=1~1.2为宜。
由于芯轴13上的轴向过流矩形槽133、轴向回流矩形槽134必须成对才能使液压活塞振动器4产生振动,如图7、图8所标,轴向过流矩形槽133、轴向回流矩形槽134总计5对10只叶片110,因此芯轴13上轴向过流矩形槽133、轴向回流矩形槽134的总数是偶数,叶片数也必须是2、4、6、8、2n等偶数,并且叶片110宽度X1与槽的弧长X2之间要满足一定的关系。为了使有杆缸47获得很大的冲击力,水应以全流速通过过液矩形切口125,应保证水流过过液矩形切口125有足够的通流时间,因此叶片110宽度X1与槽的弧长X2之间比值需x2/x1>2。液压活塞振动器4的振动频率与图9上过液矩形切口125的启闭频率一致,本例过液矩形切口125开启和封闭一次,实现液压活塞振动器4的活塞41振动一次,芯轴13旋转一周,输出5个水锤冲击波推动活塞41上下振动5次,为了保证活塞41的振动频率一般X2//X1的取值在3-8之间为宜,根据实际情况所需频率来选择该值,频率越高X2//X1的比值取值越小。
当转动电机14采用异步电动机时,通过可变频器调速,即可改变芯轴13的转动从而改变活塞41的振动的频率,实现调频。当转动电机14采用同步电动机或伺服电动机带动,可是芯轴13输出稳定的振动频率,实现稳频。
另外,还可以通过对溢流阀36调节的从而活塞41的振幅,由于芯轴13在轴套12的柱形套筒121旋转会产生的液膜,其轴向渗漏非常微小,该芯轴13具有很好的密封性。
综上所述,本发明的主要有以下两大优点:
1、结构简单,制造成本低,工作可靠,能同时带动多组液压缸同步振动,响应快,振幅可调,通过选配不同的转动电机可达到变频,稳频,易于实现自动控制,可应用在多种振动机械中。
2、采用纯水作为工作介质,环保安全,很好的克服了液压油的缺点,并且与油相比,水的粘度小,比重大,动能大,因此在相同的系统压力下,水产生的振幅大,能达到节能的目的。

Claims (1)

1.一种连续水锤冲击振动方法,其特征在于:该方法涉及连续水锤冲击振动发生器、水箱、水压泵站、液压活塞振动器和连通各部件的管路;连续水锤冲击振动发生器主要包括支座、轴套、芯轴、转动电机,所述的支座在轴线方向形成的圆柱形空腔,在支座壁上设置有进液孔、回液孔、第一导流孔、第二导流孔与空腔相通,其中进液孔与第一导流孔设置在支座壁的同一端且在径向方向呈180°对称同轴设置,回液孔设置在支座壁的另一端与进液孔同侧,第二导流孔设置在支座壁的中部与第一导流孔同侧,进液孔、回液孔、第一导流孔、第二导流孔的轴线位于圆柱形空腔的同一轴截面上;所述的轴套为两端开口的中空柱形套筒,固定于支座空腔内,轴套壁上亦设有进液口、回液口、出液口,过液矩形切口,其中进液口、出液口设置在轴套壁上同一端在径向方向呈180°对称同轴设置,回液口设置在轴套壁的另一端与进液口同侧,过液矩形切口设置在轴套壁中部与出液口同侧,进液口、回液口、出液口,过液矩形切口的中心线位于中空柱形套筒的同一轴截面上并分别与进液孔、回液孔、第一导流孔、第二导流孔对应相通;所述的芯轴为圆柱体置于轴套的柱形套筒中,芯轴一端延伸至支座外与所述的转动电机连接,在芯轴上与进液口、出液口同一端外环周上设置有环形过流槽,环形过流槽将进液口、出液口连通,在芯轴上与出液口同一端外环周上设置有环形回流槽,环形回流槽与回液口相通,在芯轴的外周轴向间隔对插形式设置有至少一对以上的轴向过流矩形槽、轴向回流矩形槽,轴向过流矩形槽一端与环形过流槽相通而另一端封闭,轴向回流矩形槽一端与环形回流槽相通而另一端封闭;所述的转动电机带动芯轴在轴套的柱形套筒中转动,轴向过流矩形槽与轴向回流矩形槽不断交替实现与过液矩形切口接通和切断;所述的液压活塞振动器包括缸体、无杆缸、有杆缸、活塞、活塞杆、振动连接件;活塞杆一端固定于活塞中部,缸体上端开有通孔而内部形成密闭的中空缸腔,活塞置于中空缸腔中,并将中空缸腔分成无杆缸、有杆缸,活塞杆从有杆缸上端的通孔中穿出与缸体外的振动连接件连接,所述的水压泵站包括溢流阀、单向阀、流量控制阀、水压泵、水压泵电机,水压泵进水口通过管路通向水箱,水压泵出水口分接两管路,其中一管路通向水箱,溢流阀接通在该管路中,单向阀、流量控制阀依次接通在另一管路中与连续水锤冲击振动发生器的进液孔接通,第一导流孔通过管路与液压活塞振动器的无杆缸接通,第二导流孔通过管路与液压活塞振动器的有杆缸接通,回液孔通过管路与水箱相通,该方法步骤是:
(1)水压泵电机带动水压泵旋转,水以正常速度从水箱经过水压泵依次通过单向阀、流量控制阀流向进液孔、进液口、环形过流槽、出液口、第一导流孔通过管路进入到无杆缸中;
(2)当转动电机带动到芯轴转到轴向过流矩形槽与过液矩形切口相通时,水还以正常速度从环形过流槽、轴向过流矩形槽、过液矩形切口、第二导流孔通过管路与进入到有杆缸中,继续旋转,当叶片旋转至轴向过流矩形槽与过液矩形切口切断瞬间,管路中的水流速骤然降至零,导致管路中水压降低,形成水锤负压波传至有杆缸,此时,有杆缸压力小于无杆缸,活塞向上运动。
(3)当芯轴继续旋转至轴向回流矩形槽与过液矩形切口连通时,有杆缸依次通过管路、第二导流孔、过液矩形切口、轴向回流矩形槽、环形回流槽、回液口、回液孔、管路与水箱形成通路,有杆缸水以很快的速度流回水箱,活塞继续向上运动;
(4)当芯轴的叶片旋转至轴向回流矩形槽与液矩形切口切断瞬间,管路中水的流速骤然降至零,水停止流动导致水压升高,对芯轴产生很大冲击,形成水锤增压波向有杆缸传播,这个冲击压力通常能达到系统原有压力的5-10倍,此时有杆缸压力远远大于无杆缸,活塞被迫向下运动;
(5)重复上述过程,活塞忽上忽下运动产生激烈振动。
CN201210431367.XA 2012-10-18 2012-10-18 一种连续水锤冲击振动方法 Expired - Fee Related CN102962191B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210431367.XA CN102962191B (zh) 2012-10-18 2012-10-18 一种连续水锤冲击振动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210431367.XA CN102962191B (zh) 2012-10-18 2012-10-18 一种连续水锤冲击振动方法

Publications (2)

Publication Number Publication Date
CN102962191A true CN102962191A (zh) 2013-03-13
CN102962191B CN102962191B (zh) 2014-12-10

Family

ID=47792787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210431367.XA Expired - Fee Related CN102962191B (zh) 2012-10-18 2012-10-18 一种连续水锤冲击振动方法

Country Status (1)

Country Link
CN (1) CN102962191B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112178011A (zh) * 2020-11-04 2021-01-05 浙江工业大学 一种水锤波压力信号发生装置
CN113331027A (zh) * 2021-06-11 2021-09-03 渭南绿盛农业科技有限责任公司 一种葡萄种植的滴灌装置及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1260449A (zh) * 2000-02-01 2000-07-19 许步勤 液压激振器
US20060266028A1 (en) * 2005-05-30 2006-11-30 Weber H-J Vibration generator
CN101608965A (zh) * 2009-07-13 2009-12-23 浙江工业大学 单出杆液压缸电液激振器
WO2012042512A1 (en) * 2010-10-01 2012-04-05 Giancarlo Fedeli Piston vibrator
CN202471987U (zh) * 2012-03-12 2012-10-03 杭州电子科技大学 一种用于水下地质勘测的水压驱动激振器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1310041A2 (ru) * 1986-02-03 1987-05-15 Ярославский политехнический институт Вибровозбудитель

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1260449A (zh) * 2000-02-01 2000-07-19 许步勤 液压激振器
US20060266028A1 (en) * 2005-05-30 2006-11-30 Weber H-J Vibration generator
CN101608965A (zh) * 2009-07-13 2009-12-23 浙江工业大学 单出杆液压缸电液激振器
WO2012042512A1 (en) * 2010-10-01 2012-04-05 Giancarlo Fedeli Piston vibrator
CN202471987U (zh) * 2012-03-12 2012-10-03 杭州电子科技大学 一种用于水下地质勘测的水压驱动激振器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112178011A (zh) * 2020-11-04 2021-01-05 浙江工业大学 一种水锤波压力信号发生装置
CN112178011B (zh) * 2020-11-04 2021-10-15 浙江工业大学 一种水锤波压力信号发生装置
CN113331027A (zh) * 2021-06-11 2021-09-03 渭南绿盛农业科技有限责任公司 一种葡萄种植的滴灌装置及其使用方法
CN113331027B (zh) * 2021-06-11 2024-05-03 渭南绿盛农业科技有限责任公司 一种葡萄种植的滴灌装置及其使用方法

Also Published As

Publication number Publication date
CN102962191B (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
CN101608965B (zh) 单出杆液压缸电液激振器
CN202451682U (zh) 液压振动能量回收减振器
CN108278233B (zh) 一种阀芯旋转式液控换向激振器的液压系统
CN102619798A (zh) 高频液压转阀
CN102954069B (zh) 一种连续水锤冲击振动发生器
CN102962191B (zh) 一种连续水锤冲击振动方法
CN102027228A (zh) 水力发电设备
CN105114368A (zh) 一种具有延伸进流角结构的旋转式功交换器
CN102954070B (zh) 一种连续水锤冲击振动装置
WO2020093618A1 (zh) 液压直线冲击振动桩锤机
CN104033348A (zh) 数字定量连续注液泵
CN102661232B (zh) 一种海浪发电站
JP2008133632A (ja) 管路式水力発電方法および管路式水力発電システム
CN101975155A (zh) 一种泥浆泵控制系统
CN102840193B (zh) 一种水压波动激振装置
CN201068906Y (zh) 转盘式液压换向阀
CN104088843A (zh) 一种低泄漏高频响大流量高速开关阀
CN104959657A (zh) 一种变负压抽屑装置
CN109469058B (zh) 一种液压激发高频直线冲击装置
CN110714744B (zh) 高压脉冲流体生成装置及使用方法
CN204843065U (zh) 一种变负压抽屑装置
CN102146690B (zh) 液控振动挖掘机挖力的控制方法及专用伺服阀
CN204284030U (zh) 一种自动换向水力机械
CN217354797U (zh) 一种含有行星齿轮减速机的潜水轴混流泵
CN204082712U (zh) 一种基于活塞机构的自动换向水力机械

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141210

Termination date: 20181018