CN102956417B - 无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法 - Google Patents

无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法 Download PDF

Info

Publication number
CN102956417B
CN102956417B CN201110245311.0A CN201110245311A CN102956417B CN 102956417 B CN102956417 B CN 102956417B CN 201110245311 A CN201110245311 A CN 201110245311A CN 102956417 B CN102956417 B CN 102956417B
Authority
CN
China
Prior art keywords
assembling
mould
collector
hot
ceramics pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110245311.0A
Other languages
English (en)
Other versions
CN102956417A (zh
Inventor
马天军
赵丽
唐伯俊
邓峰
吕艳杰
刘胜英
郁素德
胡京军
王鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronics of CAS
Original Assignee
Institute of Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronics of CAS filed Critical Institute of Electronics of CAS
Priority to CN201110245311.0A priority Critical patent/CN102956417B/zh
Publication of CN102956417A publication Critical patent/CN102956417A/zh
Application granted granted Critical
Publication of CN102956417B publication Critical patent/CN102956417B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法,涉及真空器件技术,该方法通过一系列高精度的装配模具及工艺措施,确保装配过程中陶瓷柱与各个电极之间的紧密配合及相对位置,而后采用热挤压的方法将装配好的陶瓷柱和各级收集极在热挤压专用模具上整体推入收集极外筒中。本发明方法由于使用非焊接手段,不会有焊料的流出、蒸散等问题,制备的多级降压收集极耐压性能优良,结构可靠。

Description

无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法
技术领域
本发明涉及真空器件技术,是一种无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法。
背景技术
微波电子管诞生于二十世纪三十年代末,它作为雷达和通信系统的“心脏”,在第二次世界大战中发挥了巨大作用。作为真空电子器件,多年来一直受到半导体器件的极大挑战和威胁,尤其在中小功率方面为甚。但是,在大功率、尤其是超大功率领域,真空电子器件至今仍具有极其显著的优势(参见:冯西贤.空间行波管多级降压收集极CAD技术研究:[博士学位论文].北京:中科院电子所,2010)。
行波管以其宽频带、高增益、高功率和多模工作等优点,被广泛用于数据通信、电子对抗、预警飞机、火控雷达和精密制导,在现代军事电子装备中日益显示出不可替代的重要作用(参见:《廖复疆.大功率微波管一21世纪军事电子装备的关键器件.中国电子学会真空电子学分会第十界年会论文集(上册),1996:1-7》,《杨中海等.“宽带大功率行波管CAD集成系统”总体方案论证报告,1995:1-3》,《杨中海等.“宽带大功率行波管CAD集成系统”GF报告,1999:1-3》)。
行波管主要由如下的五个主要部分组成:电子枪,磁聚焦系统,慢波结构,输入输出装置,收集极(参见:赵刚.行波管电子光学与驻波互作用研究:[博士学位论文].北京:中科院电子所,2007)。
电子枪主要是产生电子束,磁聚焦系统主要用来约束电子束使其顺利穿过慢波系统而实现信号放大,慢波系统主要是使电磁波的传播速度下降到和电子的运动速度基本相同,实现把电子的动能转换成高频场能量这一物理过程,输入输出装置主要是信号的入口和出口,收集极主要用于收集已经和电磁场交换能量完毕的电子,为了减少耗散,提高效率,行波管经常采用多级降压收集极(参见:《Coco S,Laudani A.An IterativeApproach for the 3-D Representation of Focusing AxisymmetricMagnetic Fields in TWT Collectors.IEEE Transactions onMagnetics,2002,38(2):1137-1140.》,《Henry G.Kosmahl.Modernmultistage depressed collectors-a review.The proceedings of theIEEE,70(11):1325-1334,1982》)。
多级降压收集极半个多世纪的发展极大地提高了行波管的整体效率,降低了收集极的热负荷,行波管的使用寿命也因此得到提高,但是多级降压收集极的制备过程中也遇到了很多问题,比如:各级的位置确定、各级的固定和连接、陶瓷的金属化和封接以及各级之间的绝缘等等,因此合理的空间结构和良好的表面材料以及具体的工艺都需要进一步改善。
发明内容
本发明的目的是提供一种无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法,以克服现有技术的缺陷,使用无焊接的陶瓷柱作为多级降压收集极各级之间的定位及绝缘。
为达到上述目的,本发明的技术解决方案是:
一种无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法,其包括步骤:
a)制备高精度装配模具用于陶瓷柱与各个电极之间的装配及定位:该模具采用分体式卡槽结构,沿着内圆的相切线切割出用于固定圆柱形陶瓷柱的槽;
b)装配前,各模具、电极和使用的工具均须经过丙酮和超声波清洗至少三分钟,确保清洁,对收集极无污染,陶瓷柱须经过氢炉烘烤,烘烤过程采用缓慢升温至600℃,保温5分钟,而后缓慢降温至室温;
c)陶瓷柱与各个电极之间的装配及定位:
c1、首先,取两个对称的半圆形模具,分别将几十根陶瓷柱带有窄平面槽的一侧均朝向圆心,在每个半圆形模具中定位装配后,用固定模具锁定当前陶瓷柱方向;
c2、而后再将各级电极分层卡在陶瓷柱的窄平面槽中;
c3、最后将两个分体的半圆形模具按卡槽合模在一起,成一整体,完成多级降压收集极内部组件的装配及定位;
d)制备热挤压模具:该热挤压模具为一套燕尾槽形挤压模具,包括陶瓷柱和电极装配模具、收集极外筒固定模具、挤压推套模具;
e)热挤压工艺在氢气保护下进行,当加热温度为600℃时,迅速将c)步中装配于模具中的陶瓷柱和电极用挤压推套推入收集极外筒中;
f)在氢气保护下降温,待温度低于50℃时,取出收集极,装配完毕。
所述的收集极的装配及热挤压方法,其所述b)步中,缓慢升温或降温的速率≤20℃/min。
所述的收集极的装配及热挤压方法,其所述d)步中,通过使用配合间隙在0.02mm以内的燕尾槽确保各装配模具、挤压模具的中心均在一条轴线上,且同心度在0.02mm以内。
本发明方法由于使用非焊接手段,不会有焊料的流出、蒸散等问题,制备的多级降压收集极耐压性能优良,结构可靠。实践证明使用该装配及热挤压方法可以制备很好的多级降压收集极。
附图说明
图1为本发明的无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法的流程示意图;
图2为本发明无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法的收集极总装示意图;
图3为本发明无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法的装配模具示意图;
图4为本发明无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法的定位基座示意图;
图5为本发明无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法的陶瓷柱方向定位模具示意图;
图6为本发明无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法的锁紧模具示意图;
图7为本发明无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法的电极装卡定位模具示意图;
图8为本发明无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法的热挤压套筒模具示意图;
图9为本发明无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法的热挤压推挤模具示意图。
具体实施方式
本发明的一种无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法和相关的工艺参数。主要内容包括:
1、高精度装配模具制备。
该模具采用对称分体式卡槽结构,按模具使用顺序介绍如下:
1)沿着陶瓷柱外圆相切轨迹,采用电火花线切割设备切出用于固定圆柱形陶瓷柱轮廓的两个对称装配模具(如图3所示,该装配模具采用分体结构,两个半圆弧形片凹槽相对拼接为筒状,筒状内圆与陶瓷柱外圆相切);
2)将上述两个模具装入定位基座中(如图4所示,该基座也采用分体结构,两个半圆弧内竖直排放陶瓷柱,陶瓷柱上的平面向心排列),定位基座上下各一个,主要用于将陶瓷柱组装定位,定位基座由车床加工制备;
3)四层电极沿着轴向卡入陶瓷柱上的四个定位窄槽,要求窄槽的方向全部向心组装,所以使用一个陶瓷柱方向定位模具(如图5所示,该模具主要用于固定陶瓷柱的方向),用于将陶瓷柱方向定位于窄槽中,将几十根带有窄平面槽的陶瓷柱,使用陶瓷柱方向定位模具,使带有窄平面槽的一侧均朝向圆心定位装配,紧密排列,排列的规则是将窄槽平面朝向圆心方向,这样可以组装出合格的多级降压收集极;
4)位置确定后使用锁紧模具(如图6所示,该模具主要用于将排放好的陶瓷柱固定锁紧)将其锁紧,此时两个对称组装陶瓷柱模具完成。锁紧模具用车床,铣床,线切割机床加工制备;
5)四级电极的装配使用电极装卡定位模具(如图7所示,该模具主要用于定位各个收集极沿轴向的尺寸位置)组装,将四级电极固定在装卡定位模具后,将其放入已定位好的陶瓷柱中,而后将两个对称分体的锁紧模具和定位模具组成一个完整的收集极整体。电极装卡定位模具起到定位四层电极的作用,采用电火花线切割机床制备该模具;
6)撤掉所有辅助模具,只留下中心陶瓷柱定位模具,将其放在准备热挤压同心高的模具轨道上,将组装好的陶瓷与多级电极一起推到热挤压套筒模具中(如图8所示,该模具主要用于将上述步骤所装配好的组件挤压到该模具中)。该热挤压模具由电火花线切割机床制备。
2、装配前的工艺处理。
装配之前各模具、电极和使用的工具均须要经过丙酮和超声波清洗至少三分钟,确保清洁,对收集极无污染,陶瓷柱须经过氢炉烘烤,烘烤过程采用缓慢升温(速率≤20℃/min)至600℃,保温5分钟,而后缓慢(速率≤20℃/min)降至室温。
3、热挤压模具制备。
热挤压推挤模具(如图9所示,该模具主要通过使用配合间隙在0.02mm以内的燕尾槽确保各装配模具、挤压模具的中心均在一条轴线上,使得热挤压的工艺过程顺利进行)采用一套燕尾槽形模具,主要用于控制推挤过程的同心度,由于热挤压过程中需要对材料进行加热,考虑到材料的热变形以及推挤力的方向,该套模具的制备是在数控慢走丝线切割机上加工出来的,确保了该套模具的精度。推挤过程中,陶瓷柱和电极装配模具、收集极外筒固定模具、挤压推套模具须在一条轴线上,且同心度在0.02mm以内。
4、热挤压工艺参数
热挤压工艺是在自制的热挤压工作台上进行的,该工作台提供了热挤压用的推挤燕尾槽形导轨以及氢气保护,主要是防止无氧铜材料的电极氧化,首先对不锈钢材料的收集极外筒进行加热,以使其热膨胀,当加热温度为600℃时,迅速将装配于模具中的陶瓷柱和电极用挤压推套推入收集极外筒中,氢气保护下降温,待温度低于50℃,可以取出收集极。
实施例:
见图1为本发明的一种无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法的流程示意图,包括如下步骤:
1.制备装配模具:
1)选择热变形小的铟钢材料制作模具;
2)对材料进行退火处理,600℃保温20分钟;
3)线切割机床按照计算尺寸进行绘图、生成加工程序、对已处理好的材料进行加工;
4)切割后的模具进行检验、清洗等工作,待用;
2.装配前的工艺处理:
1)对各模具、电极和使用的工具均须要经过丙酮和超声波清洗至少三分钟,确保清洁、对收集极无污染;
2)对收集极陶瓷柱进行氢炉烘烤,烘烤过程采用缓慢升温(速率≤20℃/min)至600℃,保温5分钟,而后缓慢(速率≤20℃/min)降至室温。
3.陶瓷柱与各个电极之间的装配:
1)首先安装陶瓷柱,将两个对称装配模具分别装在定位基座上,用上下两个卡环固定住,将几十根陶瓷柱带有窄平面槽的一侧均朝向圆心定位装配,紧密排列,用陶瓷柱方向定位模具将所有陶瓷柱的方向固定,位置确定后使用锁紧模具将其锁紧;
2)将四级电极固定在电极装卡定位模具内,将其放入已定位好的陶瓷柱中,而后将两个对称分体的模具组成一个完整的收集极整体,撤掉所有辅助模具,只留下中心陶瓷柱定位模具,将其放在准备热挤压同心高的模具轨道上,将组装好的陶瓷与多级电极一起推到热挤压模具中,准备挤压;
4.热挤压模具制备:
1)燕尾槽基座的制备:选用退火后的铟钢材料在数控慢走丝线切割机上加工高精度的基座;
2)收集极外筒定位座的制备:由于收集极外筒的轴线要定位到与装配模具和推杆模具同轴的位置上,该定位座切割成倒三角形式,角度为120°,以便不同直径的外筒均可以放置在该座上;
3)推杆的制备:推杆的主要尺寸须根据陶瓷柱组成的圆周来确定,小于外径,大于内径,这样推杆可以推着陶瓷柱带动各个电极进入收集极外筒中;
5、热挤压工艺参数
1)热挤压工艺是在自制的热挤压工作台上进行的,需要氢气保护;
2)对不锈钢材料的收集极外筒进行加热,加热温度至650℃;
3)用挤压推套将装配于模具中的陶瓷柱和电极推入收集极外筒中,待温度低于50℃,取出收集极。
见图2为本发明无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法的收集极总装示意图。
无焊接柱状绝缘瓷多级降压收集极的装配及热挤压过程结束,按本发明方法操作,可以获得绝缘效果很好的多级降压收集极。

Claims (3)

1.一种无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法,其特征在于,包括步骤:
a)制备高精度装配模具用于陶瓷柱与各个电极之间的装配及定位:该模具采用分体式卡槽结构,沿着内圆的相切线切割出用于固定圆柱形陶瓷柱的槽;
b)装配前,各模具、电极和使用的工具均须经过丙酮和超声波清洗至少三分钟,确保清洁,对收集极无污染,陶瓷柱须经过氢炉烘烤,烘烤过程采用缓慢升温至600℃,保温5分钟,而后缓慢降温至室温;
c)陶瓷柱与各个电极之间的装配及定位:
c1、首先,取两个对称的半圆形模具,分别将几十根陶瓷柱带有窄平面槽的一侧均朝向圆心,在每个半圆形模具中定位装配后,用固定模具锁定当前陶瓷柱方向;
c2、而后再将各级电极分层卡在陶瓷柱的窄平面槽中;
c3、最后将两个分体的半圆形模具按卡槽合模在一起,成一整体,完成多级降压收集极内部组件的装配及定位;
d)制备热挤压模具:该热挤压模具为一套燕尾槽形挤压模具,包括陶瓷柱和电极装配模具、收集极外筒固定模具、挤压推套模具;
e)热挤压工艺在氢气保护下进行,当加热温度为600℃时,迅速将c)步骤中装配于模具中的陶瓷柱和电极用挤压推套推入收集极外筒中;
f)在氢气保护下降温,待温度低于50℃时,取出收集极,装配完毕。
2.如权利要求1所述的无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法,其特征在于,所述b)步骤中,缓慢升温或降温的速率≤20℃/min。
3.如权利要求1所述的无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法,其特征在于,所述d)步骤中,通过使用配合间隙在0.02mm以内的燕尾槽确保各装配模具、挤压模具的中心均在一条轴线上,且同心度在0.02mm以内。
CN201110245311.0A 2011-08-25 2011-08-25 无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法 Expired - Fee Related CN102956417B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110245311.0A CN102956417B (zh) 2011-08-25 2011-08-25 无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110245311.0A CN102956417B (zh) 2011-08-25 2011-08-25 无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法

Publications (2)

Publication Number Publication Date
CN102956417A CN102956417A (zh) 2013-03-06
CN102956417B true CN102956417B (zh) 2015-03-25

Family

ID=47765097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110245311.0A Expired - Fee Related CN102956417B (zh) 2011-08-25 2011-08-25 无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法

Country Status (1)

Country Link
CN (1) CN102956417B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921355B (zh) * 2021-10-09 2024-02-06 中国科学院空天信息创新研究院 收集极及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1341120A (en) * 1970-12-02 1973-12-19 Litton Industries Inc Method for producing an assembly of a pair of concentric hollow cylinders with spacer elements
US5964633A (en) * 1997-12-15 1999-10-12 Hughes Electronics Corporation Method of heat shrink assembly of traveling wave tube
CN102059538A (zh) * 2009-11-17 2011-05-18 中国科学院电子学研究所 多级降压收集极组件非焊接装配方法
CN102103960A (zh) * 2009-12-16 2011-06-22 中国科学院电子学研究所 外筒侧开口式多级降压收集极组件及制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1341120A (en) * 1970-12-02 1973-12-19 Litton Industries Inc Method for producing an assembly of a pair of concentric hollow cylinders with spacer elements
US5964633A (en) * 1997-12-15 1999-10-12 Hughes Electronics Corporation Method of heat shrink assembly of traveling wave tube
CN102059538A (zh) * 2009-11-17 2011-05-18 中国科学院电子学研究所 多级降压收集极组件非焊接装配方法
CN102103960A (zh) * 2009-12-16 2011-06-22 中国科学院电子学研究所 外筒侧开口式多级降压收集极组件及制造方法

Also Published As

Publication number Publication date
CN102956417A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
CN109413832B (zh) 采用永磁四极磁铁的交叉指型纵磁模漂移管直线加速器
CN104038157B (zh) 一种磁绝缘线振荡器
CN109729633B (zh) 直线型磁约束等离子体装置
CN105050309B (zh) 一种弯折翼型射频四极加速器
CN102956417B (zh) 无焊接柱状绝缘瓷多级降压收集极的装配及热挤压方法
CN109640508A (zh) 一种分离聚焦式交叉指型纵磁模漂移管直线加速器
CN103068143A (zh) 连续波射频四级加速器水冷系统及其制造方法
CN103167718B (zh) 一种单芯棒轮辐式超导加速腔及其制造方法
Virostek et al. Design and Analysis of the PIXIE CW Radio-Frequency Quadrupole (RFQ)
Faircloth et al. High current results from the 2X scaled Penning source
CN204968213U (zh) 一种弯折翼型射频四极加速器
CN203027589U (zh) 连续波射频四级加速器水冷系统
CN203896312U (zh) 一种磁绝缘线振荡器
US8928216B2 (en) High-frequency accelerator, method for manufacturing high-frequency accelerator, quadrupole accelerator, and method for manufacturing quadrupole accelerator
Chi et al. Design Studies on 100 MeV/100kW Electron Linac for NSC KIPT Neutron Source on the Base of Subcritical Assembly Driven by Linac
Park et al. Installation of a Four-Vane Radio-Frequency Quadrupole Accelerator for the Rare Isotope Science Project
Conway et al. First experimental results for the superconducting half-wave resonators for PXIE
Lee et al. Design and Fabrication Challenges of Transition Section for the CWA Module
Yamanaka et al. Cavity fabrication study in CFF at KEK
CN102655068A (zh) 一种双排矩形梳状慢波结构的制造方法
CN111941001B (zh) 一种大晶粒射频超导铌腔的制造方法
Ristori et al. Fabrication and test of the first normal-conducting crossbar H-type accelerating cavity at Fermilab for HINS
CN117182355A (zh) 一种离子推力器球面碳碳栅极激光阵列成孔方法
CN117580239A (zh) 用于医用同位素生产的超高频直线加速器及参数设计方法
Xu et al. The Multi-physics Analysis of LEAF RFQ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150325

Termination date: 20160825