CN102951790B - 玻璃焊接的平板钢化真空玻璃及其制造方法 - Google Patents

玻璃焊接的平板钢化真空玻璃及其制造方法 Download PDF

Info

Publication number
CN102951790B
CN102951790B CN201210075610.9A CN201210075610A CN102951790B CN 102951790 B CN102951790 B CN 102951790B CN 201210075610 A CN201210075610 A CN 201210075610A CN 102951790 B CN102951790 B CN 102951790B
Authority
CN
China
Prior art keywords
glass
vacuum
edge band
solder
band frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210075610.9A
Other languages
English (en)
Other versions
CN102951790A (zh
Inventor
戴长虹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201210075610.9A priority Critical patent/CN102951790B/zh
Publication of CN102951790A publication Critical patent/CN102951790A/zh
Application granted granted Critical
Publication of CN102951790B publication Critical patent/CN102951790B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

本发明提供了一种平板钢化真空玻璃,其包括:上玻璃、下玻璃,所述上玻璃和所述下玻璃是平板钢化玻璃,所述上玻璃和所述下玻璃的焊接面的周边均有封边条框,所述上玻璃和所述下玻璃的周边通过低温焊料焊接在一起,所述低温焊料为低温玻璃焊料,所述上玻璃和所述下玻璃之间形成一个封闭的真空层,所述真空层内有呈点阵排列的支撑物。本发明的这种真空玻璃的制作方法工艺简单,所制备的钢化真空玻璃能克服现有技术中的不足,而且能够实现批量化生产。

Description

玻璃焊接的平板钢化真空玻璃及其制造方法
技术领域
本发明属于真空玻璃制造领域,尤其是一种钢化真空玻璃及其制造方法。
背景技术
目前,真空玻璃的通用制造方法是首先在两片平板玻璃---上片玻璃与下片玻璃之间放置呈点阵排列的微小支撑物,利用支撑物来防止在大气压作用下向内弯曲而闭合在一起,然后将上片玻璃与下片玻璃的四周用熔化温度约为450℃的低熔点玻璃焊料焊接在一起,最后经预留的抽气口将两块玻璃之间的封闭空间抽成真空,封闭抽气口即可形成平板真空玻璃产品。但上述工艺不能用于采用钢化玻璃原片制造钢化真空玻璃,其原因一是钢化玻璃在钢化过程中不可避免地产生变形,出现弓形弯曲和波形弯曲,而固定厚度的支撑体不能适应因钢化玻璃变形而造成的两片玻璃间隙的无规则变化,支撑体无法均匀承载大气压力,甚至无法定位而移动,在大气压力下玻璃受力不匀而破坏;二是在生产真空玻璃的加热封边过程中,温度过高、时间过长,造成钢化玻璃表面应力松弛、甚至消失,强度大幅度下降,使钢化玻璃失去钢化品质,从而降低其安全防护性能。因此,钢化玻璃直接制造真空玻璃难度很大,目前尚无批量生产成功的例子。由于大部分现代建筑和保温箱都要求使用安全玻璃,而钢化玻璃是安全玻璃的重要类别,所以真空玻璃的使用范围由于己有技术中不能制成钢化真空玻璃而受到很大的限制。
发明内容
本发明所要解决的技术问题是在于针对现有真空玻璃存在的缺陷,提供一种新型的钢化真空玻璃及其制作方法,这种钢化真空玻璃的制作方法工艺简单,所制备的钢化真空玻璃能克服现有技术中的不足,可有效保证钢化真空玻璃的气密性,并能增加其透明度与强度以及隔热、隔音性能。
为了解决上述技术问题,本发明提供了一种平板钢化真空玻璃,其包括:上玻璃、下玻璃,所述上玻璃和所述下玻璃是平板钢化玻璃,所述上玻璃和所述下玻璃的焊接面的周边均有封边条框,所述上玻璃和所述下玻璃的周边通过低温焊料焊接在一起,所述低温焊料为低温玻璃焊料,所述上玻璃和所述下玻璃之间形成一个封闭的真空层,所述真空层内有呈点阵排列的支撑物。
其中,所述上玻璃焊接面的周边至少有一个封边条框,所述下玻璃焊接面的周边至少有两个封边条框。
其中,所述封边条框通过印刷的方式制成,优选采用模板印刷低温玻璃粉制成,所述低温玻璃粉优选为市售的熔融温度为550~750℃的玻璃釉料。
其中,所述印刷方式是采用丝网印刷或模板印刷或打印机的方法,将低温玻璃粉印在玻璃上形成凸起于玻璃表面的凸棱。
其中,所述封边条框采用模板印刷低温玻璃粉制备时,可以是一次印刷,也可以是多次印刷。
其中,所述封边条框的高度优选为0.1~10mm,进一步优选为0.5~2mm,宽度优选为0.2~5mm,进一步优选为1~2mm。
其中,所述低温玻璃焊料优选市售的熔融温度范围为430~450℃的无铅玻璃焊料。
其中,所述平板钢化真空玻璃还可以包括一块平板玻璃,所述平板玻璃夹在所述上玻璃和所述下玻璃之间,所述上玻璃和所述下玻璃分别和所述平板玻璃形成两个封闭的真空层,所述平板玻璃的周边的下表面至少含有一个封边条框,上表面至少含有两个封边条框。
其中,所述支撑物由金属、陶瓷或玻璃制成,优选采用模板印刷低温玻璃粉或低温玻璃焊料制备。
其中,所述支撑物印制在一块玻璃上,或印制在两块玻璃上。
其中,所述支撑物为圆柱状,或为长条状;当支撑物只印制在一块玻璃上时,优选为圆柱状;当支撑物同时印制在两块玻璃上时,优选为长条状,并垂直叠放。
其中,所述支撑物最小单元可以是等边三角形的点阵排列,三角形的边长约为30~300mm,优选为50~150mm;支撑物为长条状,其长度为0.3~5.0 mm、优选为0.5~2.0 mm,宽度为0.1~2.0mm、优选为0.2~1.0mm,高度为0.1~10.0mm、优选为0.5~3.0mm,支撑物的高度高于封边条框的高度0.1~2.0mm、优选为0.1~0.5mm;支撑物也可以为圆柱状,其直径为0.1~3.0mm、优选为0.3~2.0mm,高度为0.1~5.0 mm、优选为0.5~3.0mm,支撑物的高度高于上下两块玻璃合片后支撑物所在位置空间高度0~0.3 mm、优选为0.1~0.2mm。
其中,所述支撑物在玻璃钢化前印制时,其材料优选为低温玻璃粉;所述支撑物在玻璃钢化后印制时,其材料优选为低温玻璃焊料,所述低温玻璃焊料能够在封边过程中烧结固化。
其中,所述支撑物在玻璃钢化前印制时,其钢化后的高度均不低于所设定的高度;然后经机械加工,如车削、研磨等,将所述支撑物加工至所设定的高度,以消除因玻璃钢化变形所造成的支撑物的高度差。
其中,所述支撑物在玻璃钢化后印制时,其干燥后的高度均不低于所设定的高度;当所述支撑物只印在一块玻璃上时,若其干燥后的顶端不在所设定的平面内,则可经机械加工,如车削、研磨等,将所述支撑物的顶端加工至所设定的平面内;当所述支撑物同时印在两块玻璃上时,若其干燥后的顶端不在所设定的平面内,则可不需加工,两块玻璃上的支撑物能够互相嵌合在一起。
为了解决上述技术问题,本发明提供了上述的平板钢化真空玻璃的制备方法,在支撑物的材料为低温玻璃粉时,制备方法如下:
第一步,根据所需要制作的平板钢化真空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框和支撑物,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
第三步,将第二步获得的玻璃上的支撑物进行机械加工,使其顶端位于所设定的平面内,玻璃的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入真空封边炉中;所述真空封边炉具有基础加热系统和局部加热系统,基础加热系统可采用电阻加热的方式如电热丝、电热管、电热板等,局部加热系统可以采用电阻加热、红外线加热、激光加热、电磁加热、微波加热等方式;
第四步,对所述真空封边炉边抽真空、边加热,抽真空至0.1Pa以下、先采用基础加热系统将所述真空封边炉内部以及上、下玻璃整体加热至一基础温度,再采用局部加热系统对玻璃周边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的,从而达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开真空封边炉的炉门得到所需的平板钢化真空玻璃。
为了解决上述技术问题,本发明提供了上述的平板钢化真空玻璃的制备方法,当支撑物的材料为低温玻璃焊料时,其包括:
第一步,根据所需要制作的平板钢化真空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
第三步,将第二步获得的玻璃的焊接面上利用模板印刷技术和低温玻璃焊料制备支撑物,玻璃上的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入真空封边炉中;所述真空封边炉具有基础加热系统和局部加热系统,基础加热系统可采用电阻加热的方式如电热丝、电热管、电热板等,局部加热系统可以采用电阻加热、红外线加热、激光加热、电磁加热、微波加热等方式;
第四步,对所述真空封边炉边抽真空、边加热,抽真空至0.1Pa以下、先采用基础加热系统将所述真空封边炉内部以及上、下玻璃整体加热至一基础温度,再采用局部加热系统对玻璃周边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的,从而达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开真空封边炉的炉门得到所需的平板钢化真空玻璃。
本发明的有益效果:
本发明的真空玻璃上、下玻璃的周边含有封边条框,使得真空玻璃的封边更简便,上下封边条框的相互嵌合保证了玻璃在钢化变形情况下的密封效果;通过对玻璃钢化后支撑物的机械加工或使上下支撑物互相嵌合,消除了因玻璃钢化变形而造成的支撑物的高度差;通过采用真空封边炉的局部加热系统,解决了钢化玻璃的退火问题;封边条框与上下玻璃之间具有比低温玻璃焊料更高的结合强度,增大了上下玻璃之间密封面积和气密层厚度,解决了现有真空玻璃边缘的密封参差不齐的问题,大大加强了封接的附着力和附着强度,增加了上、下玻璃之间真空层的密封度,提高了真空玻璃的寿命,并可省去制作和密封难度极大的抽气口,实现了一步法批量化制备钢化真空玻璃,促进了钢化真空玻璃的工业化生产,极大地提高了真空玻璃的生产率和合格率、降低了真空玻璃的生产成本。
附图说明
图1为本发明的具有双支撑物的平板钢化真空玻璃结构示意图;
图2为本发明的具有单支撑物的平板钢化真空玻璃结构示意图。
图中:1.上玻璃,2.下玻璃,3.低温焊料,4.下玻璃上的封边条框,5.上玻璃的封边条框,6. 下玻璃上的支撑物,7.上玻璃上的支撑物。
具体实施方式
本发明提供了一种平板钢化真空玻璃,其包括:上玻璃、下玻璃,所述上玻璃和所述下玻璃是平板钢化玻璃,所述上玻璃和所述下玻璃的焊接面的周边均有封边条框,所述上玻璃和所述下玻璃的周边通过低温焊料焊接在一起,所述低温焊料为低温玻璃焊料,所述上玻璃和所述下玻璃之间形成一个封闭的真空层,所述真空层内有呈点阵排列的支撑物。
所述平板钢化真空玻璃还可以包括一块平板玻璃,所述平板玻璃夹在所述上玻璃和所述下玻璃之间,所述上玻璃和所述下玻璃分别和所述平板玻璃形成两个封闭的真空层。
所述平板钢化真空玻璃可以进一步包括多块平板玻璃,从而包含多个封闭的真空层。
当支撑物的材料为低温玻璃粉时,所述平板钢化真空玻璃的制备方法进一步包括:
第一步,根据所需要制作的平板钢化真空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框和支撑物,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
当支撑物的材料为低温玻璃焊料时,所述制备方法进一步包括:
第一步,根据所需要制作的平板钢化真空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
所述玻璃钢化温度优选为550℃~750℃。
所述低温焊料优选市售的熔融温度为430℃~450℃的无铅玻璃焊料。
所述低温焊料放置在下玻璃的两个封边条框之间。
所述单个真空层的真空玻璃的形成采用一步法形成,所述一步法是指真空玻璃的封边和抽真空是在真空封边炉内同时完成的,并可对真空玻璃进行批量处理。
当支撑物的材料为低温玻璃粉时,所述一步法进一步包括如下步骤:
将第二步获得的玻璃上的支撑物进行机械加工,使其顶端位于所设定的平面内,玻璃的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入真空封边炉中;所述真空封边炉具有基础加热系统和局部加热系统,基础加热系统可采用电阻加热的方式如电热丝、电热管、电热板等,局部加热系统可以采用电阻加热、红外线加热、激光加热、电磁加热、微波加热等方式;对所述真空封边炉边抽真空、边加热,抽真空至0.1Pa以下、先采用基础加热系统将所述真空封边炉内部以及上、下玻璃整体加热至一基础温度,再采用局部加热系统对玻璃周边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的,从而达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开真空封边炉的炉门得到所需的平板钢化真空玻璃。
当支撑物的材料为低温玻璃焊料时,所述一步法进一步包括如下步骤:
将第二步获得的玻璃的焊接面上利用模板印刷技术和低温玻璃焊料制备支撑物,玻璃上的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入真空封边炉中;所述真空封边炉具有基础加热系统和局部加热系统,基础加热系统可采用电阻加热的方式如电热丝、电热管、电热板等,局部加热系统可以采用电阻加热、红外线加热、激光加热、电磁加热、微波加热等方式;对所述真空封边炉边抽真空、边加热,抽真空至0.1Pa以下、先采用基础加热系统将所述真空封边炉内部以及上、下玻璃整体加热至一基础温度,再采用局部加热系统对玻璃周边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的,从而达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开真空封边炉的炉门得到所需的平板钢化真空玻璃。
所述两个真空层平板钢化真空玻璃的一步法形成步骤与所述一个真空层平板钢化真空玻璃的一步法形成步骤相类似
所述基础加热温度的范围优选为280~320℃,封边温度的范围优选为420~470℃。
采用在真空封边炉内自动封边的方式,省去制作和密封难度很大的抽气口和抽气管,简化了工艺过程、减低了生产成本、缩短了生产周期、提高了生产效率。
由于真空封边炉具有基础加热系统和局部加热系统,可以使玻璃边缘的温度快速升温至焊接温度,而钢化或半钢化玻璃在较低的基础温度下、较长时间内和较高的局部温度、较短的时间内不会发生明显的退火现象,所以可以保证得到钢化或半钢化真空玻璃。
所述上、下玻璃是钢化玻璃,或是半钢化玻璃,或是低辐射钢化玻璃,或是低辐射半钢化玻璃,或是以上任两种或三种玻璃的组合。
所述上玻璃的焊接面周边至少含有一个封边条框,所述下玻璃的焊接面周边至少含有两个封边条框。
所述封边条框的高度优选为0.1~10mm,进一步优选为0.5~2mm,宽度优选为0.2~5mm,进一步优选为1~2mm。
所述封边条框在具有两个真空层的平板钢化玻璃的中间平板玻璃的上表面时,与所述下玻璃的相同,在所述平板玻璃的下表面时,与所述上玻璃的相同。
所述下玻璃的封边条框比所述上玻璃的封边条框多一个,即所述上玻璃至少含有一个封边条框,所述下玻璃至少含有两个封边条框,所述上玻璃的封边条框插在所述下玻璃的封边条框中间,所述上、下玻璃的封边条框相互嵌合在一起,对真空层实行迷宫式密封。
封边条框的引入不仅可以限制低温焊料溶化后无规则的流动、使封边整齐好看,而且起到很好的支撑作用,使低温焊料保持一定的厚度、强化密封效果,更重要的是其加热温度高、与上下玻璃有更可靠的粘结,表面粗糙、与低温焊料有更牢固的结合,从而提高真空玻璃的气密性和可靠性。
所述封边条框通过印刷的方式制成,优选采用模板印刷低温玻璃粉制成,所述低温玻璃粉优选为市售的熔融温度为550~750℃的无铅玻璃釉料。
所述印刷方式是采用丝网印刷或模板印刷或打印机的方法,将低温玻璃粉印或低温玻璃焊料在玻璃上形成凸起于玻璃表面的凸棱。
所述封边条框采用模板印刷制备时,可以是一次印刷,也可以是多次印刷。
制作封边条框的低温玻璃粉其熔融温度远高于封边用的低温焊料,不仅价格便宜、性能好,而且与玻璃有更好的结合强度;上下玻璃的封边条框互相嵌合后,不仅减少了封边低温焊料的用量、降低了对封边低温焊料的要求,而且增大了气密层厚度、提高了上下玻璃的封接强度,更重要的是可以解决因玻璃在钢化过程中产生的翘曲变形而带来的密封问题,从而提高产品的合格率。
本发明提供了一种具有一个封闭的真空层的平板钢化真空玻璃,其包括:上玻璃、下玻璃,所述上玻璃和所述下玻璃是平板钢化玻璃,所述上玻璃和所述下玻璃的焊接面的周边均有封边条框,所述上玻璃和所述下玻璃的周边通过低温焊料焊接在一起,所述低温焊料为低温玻璃焊料,所述上玻璃和所述下玻璃之间形成一个封闭的真空层,所述真空层内有呈点阵排列的支撑物。
所述具有一个封闭的真空层的平板钢化真空玻璃的制备方法之一如下:
当支撑物的材料为低温玻璃粉时,其包括:
第一步,根据所需要制作的平板钢化真空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框和支撑物,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
第三步,将第二步获得的玻璃上的支撑物进行机械加工,使其顶端位于所设定的平面内,玻璃的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入真空封边炉中;所述真空封边炉具有基础加热系统和局部加热系统,基础加热系统可采用电阻加热的方式如电热丝、电热管、电热板等,局部加热系统可以采用电阻加热、红外线加热、激光加热、电磁加热、微波加热等方式;
第四步,对所述真空封边炉边抽真空、边加热,抽真空至0.1Pa以下、先采用基础加热系统将所述真空封边炉内部以及上、下玻璃整体加热至一基础温度,再采用局部加热系统对玻璃周边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的,从而达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开真空封边炉的炉门得到所需的平板钢化真空玻璃。
所述具有一个封闭的真空层的平板钢化真空玻璃的制备方法之二如下:
当支撑物的材料为低温玻璃焊料时,其包括:
第一步,根据所需要制作的平板钢化真空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
第三步,将第二步获得的玻璃的焊接面上利用模板印刷技术和低温玻璃焊料制备支撑物,玻璃上的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入真空封边炉中;所述真空封边炉具有基础加热系统和局部加热系统,基础加热系统可采用电阻加热的方式如电热丝、电热管、电热板等,局部加热系统可以采用电阻加热、红外线加热、激光加热、电磁加热、微波加热等方式;
第四步,对所述真空封边炉边抽真空、边加热,抽真空至0.1Pa以下、先采用基础加热系统将所述真空封边炉内部以及上、下玻璃整体加热至一基础温度,再采用局部加热系统对玻璃周边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的,从而达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开真空封边炉的炉门得到所需的平板钢化真空玻璃。
本发明还提供了一种具有两个封闭的真空层的平板钢化真空玻璃,其包括:上玻璃、下玻璃和平板玻璃,所述平板玻璃夹在所述上玻璃和所述下玻璃之间,所述上玻璃、所述下玻璃和所述平板玻璃是平板钢化玻璃,所述上玻璃、所述下玻璃和所述平板玻璃的焊接面的周边均有封边条框,所述上玻璃、所述下玻璃和所述平板玻璃的周边通过低温焊料焊接在一起,所述上玻璃和所述下玻璃分别和所述平板玻璃形成两个封闭的真空层,所述真空层内有呈点阵排列的支撑物。
所述具有两个封闭的真空层的平板钢化真空玻璃的制备方法与所述具有一个封闭的真空层的平板钢化真空玻璃的制备方法相类似。
本发明还提供了一种具有一个真空层的平板钢化真空玻璃的制备方法,当支撑物的材料为低温玻璃粉时,其包括:
第一步,根据所需要制作的平板钢化真空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框和支撑物,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
第三步,将第二步获得的玻璃上的支撑物进行机械加工,使其顶端位于所设定的平面内,玻璃的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入真空封边炉中;所述真空封边炉具有基础加热系统和局部加热系统,基础加热系统可采用电阻加热的方式如电热丝、电热管、电热板等,局部加热系统可以采用电阻加热、红外线加热、激光加热、电磁加热、微波加热等方式;
第四步,对所述真空封边炉边抽真空、边加热,抽真空至0.1Pa以下、先采用基础加热系统将所述真空封边炉内部以及上、下玻璃整体加热至一基础温度,再采用局部加热系统对玻璃周边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的,从而达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开真空封边炉的炉门得到所需的平板钢化真空玻璃。
本发明还提供了一种具有一个真空层的平板钢化真空玻璃的制备方法,当支撑物的材料为低温玻璃焊料时,其包括:
第一步,根据所需要制作的平板钢化真空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
第三步,将第二步获得的玻璃的焊接面上利用模板印刷技术和低温玻璃焊料制备支撑物,玻璃上的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两玻璃之间留有排气通道,然后送入真空封边炉中;所述真空封边炉具有基础加热系统和局部加热系统,基础加热系统可采用电阻加热的方式如电热丝、电热管、电热板等,局部加热系统可以采用电阻加热、红外线加热、激光加热、电磁加热、微波加热等方式;
第四步,对所述真空封边炉边抽真空、边加热,抽真空至0.1Pa以下、先采用基础加热系统将所述真空封边炉内部以及上、下玻璃整体加热至一基础温度,再采用局部加热系统对玻璃周边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的,从而达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开真空封边炉的炉门得到所需的平板钢化真空玻璃。
以下采用实施例和附图来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。
实施例1:参见图1,真空玻璃的两块玻璃为平板钢化玻璃,其中一块还是低辐射玻璃,在两块玻璃上均具有封边条框,其制作方法如下:首先根据所制作真空玻璃的形状和大小切割所需尺寸的一块平板玻璃和一块低辐射玻璃,进行磨边、倒角,清洗、干燥后,在两块玻璃上利用模板印刷技术将低温玻璃粉膏印制成封边条框,其中上玻璃有两个封边条框、下玻璃有三个封边条框,上玻璃封边条框的大小介于下玻璃封边条框之间,上下玻璃合片后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,每个封边条框的宽度为1.5mm、高度为0.8mm;其次将两块玻璃分别送入钢化炉,在钢化炉550~750℃的高温作用下封边条框软化熔融与玻璃粘结在一起,随即进行钢化处理,得到具有封边条框的上、下钢化玻璃;然后在上、下玻璃上采用较低烧结温度的低温玻璃焊料同时印制支撑物,支撑物为最小单元是等边三角形的点阵排列,三角形的边长为50mm,支撑物为长条状,其长度为2 mm、宽度为0.60mm、高度为0.5mm,上下玻璃的支撑物互相垂直,上下玻璃合片后支撑物重叠为十字状形;再次将下玻璃的三个封边条框之间装入熔点为450℃的低温玻璃焊料,并将两块玻璃上下对齐叠放在一起,预留抽气通道,送入真空封边炉中,真空封边炉具有基础加热系统和局部加热系统;最后一边抽真空、一边利用基础加热系统加热,抽真空至0.1Pa以下、基础温度升至300℃后,再利用局部加热系统如远红外线加热器将封边条框内的低温玻璃焊料加热至熔融温度450℃以上,支撑物先软化自动适应两块玻璃之间的高度差、并互相交差嵌合,同时将两块玻璃粘接在一起,再烧结固化,上玻璃的封边条框在重力的作用下嵌入下玻璃的两个封边条框之间,熔融的低温玻璃焊料将两块玻璃粘接在一起,停止加热、随炉降温,低温玻璃焊料将两块玻璃气密性地焊接在一起,打开炉门得到所需的真空玻璃。
支撑物采用较低烧结温度的低温玻璃焊料制成,使其在封边温度下能够烧结,并借助于其略高的高度,使其能够将上下玻璃可靠地粘接在一起,从而起到有效的支撑作用。
封边条框的引入不仅可以限制低温焊料溶化后无规则的流动、使封边整齐好看,而且起到很好的支撑作用,使低温焊料保持一定的厚度、强化密封效果,更重要的是其加热温度高、与上下玻璃有更可靠的粘结,表面粗糙、与低温玻璃焊料有更牢固的结合,从而提高真空玻璃的气密性和可靠性。此外,封边条框也是一步法制备真空玻璃的关键。
实施例2:参见图1,两块玻璃为钢化玻璃或半钢化玻璃,其中一块还是低辐射玻璃,在两块玻璃上均具有封边条框,其制作方法如下:首先根据所制作真空玻璃的形状和大小切割所需尺寸的一块平板玻璃和一块低辐射玻璃,进行磨边、倒角,清洗、干燥后,在两块玻璃上利用印刷技术将低温玻璃粉膏印制成封边条框,其中上玻璃有两个封边条框、下玻璃有三个封边条框,上玻璃封边条框的大小介于下玻璃两个封边条框之间,上下玻璃合片后,上玻璃的封边条框能够嵌合于下玻璃的两个封边条框之间,每个封边条框的宽度为1.5mm、高度为0.7mm;而且在上、下玻璃上同时印制支撑物,支撑物为最小单元是等边三角形的点阵排列,三角形的边长为80mm,支撑物为长条状,其长度为2 mm、宽度为0.60mm、高度为0.5mm,上下玻璃的支撑物互相垂直,上下玻璃合片后支撑物重叠为十字状;其次将两块玻璃分别送入钢化炉,在钢化炉的高温作用下封边条框和支撑物软化熔融与玻璃粘结在一起,随即进行风冷钢化,得到具有封边条框和支撑物的钢化或半钢化玻璃;为消除因玻璃钢化变形而造成的支撑物的高度差,对支撑物进行机械加工,通过切削或研磨使其顶端处于同一平面内;再次将下玻璃的三个封边条框之间装满低温玻璃焊料,将两块玻璃上下对齐叠放在一起、预留一定的抽气通道,送入真空封边炉中;真空封边炉具有基础加热系统和局部加热系统;最后一边抽真空、一边利用基础加热系统加热,抽真空至0.1Pa以下、基础温度升至300℃后,再利用局部加热系统如远红外线加热器将封边条框内的低温玻璃焊料加热至熔融温度450℃以上,上玻璃的封边条框在重力的作用下嵌入下玻璃的两个封边条框之间,熔融的低温玻璃焊料将两块玻璃粘接在一起,上下玻璃的支撑物相互接触、重叠为十字状形;停止加热、随炉降温,低温玻璃焊料将两块玻璃气密性地焊接在一起,打开炉门得到所需的真空玻璃。
上下玻璃均有条状支撑物,支撑物垂直叠放支撑,上下玻璃通过支撑物仍为点接触,而支撑物与玻璃之间为线接触,增大了接触面积,减小了玻璃在支撑处的张应力,所以可以减少支撑物的数量,从而进一步提高玻璃的透明度、隔热和隔音性能;通过对支撑物进行机械加工,使其顶端处于同一平面内,保证了支撑的可靠性。
实施例3:参见图2,两块玻璃为钢化玻璃或半钢化玻璃,其中一块还是低辐射玻璃,在两块玻璃上均具有封边条框,其制作方法如下:首先根据所制作真空玻璃的形状和大小切割所需尺寸的一块平板玻璃和一块低辐射玻璃,进行磨边、倒角,清洗、干燥后,在两块玻璃上利用丝网印刷技术将低温玻璃粉膏印制成封边条框,其中上玻璃有两个封边条框、下玻璃有三个封边条框,上玻璃封边条框的大小介于下玻璃两个封边条框之间,上下玻璃合片后,上玻璃的封边条框能够嵌合于下玻璃的两个封边条框之间,每个封边条框的宽度为1.5mm、高度为0.6mm;其次将两块玻璃分别送入钢化炉,在钢化炉的高温作用下封边条框软化熔融与玻璃粘结在一起,随即进行风冷钢化,得到具有封边条框的钢化或半钢化玻璃;并在上或下玻璃上利用低温玻璃焊料印制支撑物,支撑物为最小单元是等边三角形的点阵排列,三角形的边长为70mm,支撑物为圆柱状,其直径为0.6mm、高度为0.8mm,为消除因玻璃钢化所造成的高度差,支撑物的高度高于封边条框的高度0.2mm;再次将下玻璃的三个封边条框之间装入熔点为450℃的低温玻璃焊料,并将两块玻璃上下对齐叠放在一起,预留抽气通道,送入真空封边炉中,真空封边炉具有基础加热系统和局部加热系统;最后一边抽真空、一边利用基础加热系统加热,抽真空至0.1Pa以下、基础温度升至300℃后,再利用局部加热系统如远红外线加热器将封边条框内的低温玻璃焊料加热至熔融温度450℃以上,支撑物先软化自动适应两块玻璃之间的高度差、将两块玻璃粘接在一起,再烧结固化,上玻璃的封边条框在重力的作用下嵌入下玻璃的两个封边条框之间,熔融的低温玻璃焊料将两块玻璃粘接在一起,停止加热、随炉降温,低温玻璃焊料将两块玻璃气密性地焊接在一起,打开炉门得到所需的真空玻璃。
支撑物采用低温玻璃焊料制成,有较低的烧结温度,使其在较低的加热温度下能够软化、烧结,并借助于其略高的高度,使其能够将上下玻璃可靠地粘接在一起,从而起到有效的支撑作用。
所有上述的首要实施这一知识产权,并没有设定限制其他形式的实施这种新产品和/或新方法。本领域技术人员将利用这一重要信息,上述内容修改,以实现类似的执行情况。但是,所有修改或改造基于本发明新产品属于保留的权利。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

1.一种平板钢化真空玻璃,包括上玻璃和下玻璃,其特征在于:所述上玻璃和下玻璃焊接面的周边均有封边条框,所述封边条框是将熔融温度为550-750℃的低温玻璃粉印在所述上玻璃和下玻璃上形成凸起于玻璃表面的凸棱,在钢化炉的高温作用下封边条框软化熔融与玻璃粘结在一起,随即进行钢化处理,得到具有封边条框的上、下钢化玻璃;所述上玻璃和下玻璃的封边条框相互嵌合在一起,对所述真空玻璃的真空层实行迷宫式密封;所述封边条框之间有熔融温度为430~450℃的低温玻璃焊料,所述上玻璃和下玻璃的周边通过嵌合在一起的封边条框和低温玻璃焊料在真空封边炉内焊接在一起;所述封边条框能够限制低温玻璃焊料熔化后的无规则流动、使封边整齐好看,而且起到很好的支撑作用,使低温玻璃焊料保持一定的厚度、强化密封效果;所述上玻璃和下玻璃之间形成一个封闭的真空层,所述真空层内有呈点阵排列的支撑物。
2.如权利要求1所述的平板钢化真空玻璃,其特征在于所述上玻璃焊接面的周边至少有一个封边条框,所述下玻璃焊接面的周边至少有两个封边条框。
3.如权利要求1所述的平板钢化真空玻璃,其特征在于所述平板钢化真空玻璃还包括一块平板玻璃,所述平板玻璃夹在所述上玻璃和所述下玻璃之间,所述上玻璃和所述下玻璃分别和所述平板玻璃形成两个封闭的真空层。
4.如权利要求1所述的平板钢化真空玻璃,其特征在于所述支撑物印制在一块玻璃上时为圆柱状,所述支撑物印制在两块玻璃上时为长条状,并垂直叠放。
5.如权利要求1所述的平板钢化真空玻璃,其特征在于所述封边条框和所述支撑物采用模板印刷低温玻璃粉或低温玻璃焊料制备。
6.如权利要求1所述的平板钢化真空玻璃,其特征在于所述支撑物通过机械加工或上下互相嵌合来消除因玻璃钢化变形所造成的高度差。
7.如权利要求2所述的平板钢化真空玻璃,其特征在于所述上玻璃的封边条框嵌合在所述下玻璃的封边条框之间。
8.如权利要求2所述的平板钢化真空玻璃,其特征在于所述低温焊料放置在所述下玻璃的封边条框之间。
9.权利要求1至8任一项所述的平板钢化真空玻璃的制备方法,其特征在于当支撑物的材料为低温玻璃粉时,制备方法如下:
第一步,根据所需要制作的平板钢化真空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框和支撑物,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
第三步,将第二步获得的玻璃上的支撑物进行机械加工,使其顶端位于所设定的平面内,玻璃的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两块玻璃之间留有排气通道,然后送入真空封边炉中;所述真空封边炉具有基础加热系统和局部加热系统,基础加热系统采用电阻加热的方式,局部加热系统采用电阻加热、红外线加热、激光加热、电磁加热或微波加热的方式;
第四步,对所述真空封边炉边抽真空、边加热,抽真空至0.1Pa以下、先采用基础加热系统将所述真空封边炉内部以及上、下玻璃整体加热至一基础温度,再采用局部加热系统对玻璃周边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的,从而达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开真空封边炉的炉门得到所需的平板钢化真空玻璃。
10.权利要求1至8任一项所述的平板钢化真空玻璃的制备方法,其特征在于当支撑物的材料为低温玻璃焊料时,其包括:
第一步,根据所需要制作的平板钢化真空玻璃的形状和大小切割所需尺寸的两块平板玻璃,并进行磨边、倒角,清洗、干燥处理;
第二步,在处理后的玻璃的焊接面上利用模板印刷技术和低温玻璃粉制备封边条框,并保证上、下玻璃对齐后,上玻璃的封边条框能够嵌合于下玻璃的封边条框之间,然后经干燥后,在钢化炉中对其进行钢化处理;
第三步,将第二步获得的玻璃的焊接面上利用模板印刷技术和低温玻璃焊料制备支撑物,玻璃上的封边条框之间装入低温焊料,并将所述两块玻璃上下对齐叠放在一起,两块玻璃之间留有排气通道,然后送入真空封边炉中;所述真空封边炉具有基础加热系统和局部加热系统,基础加热系统采用电阻加热的方式,局部加热系统采用电阻加热、红外线加热、激光加热、电磁加热或微波加热的方式;
第四步,对所述真空封边炉边抽真空、边加热,抽真空至0.1Pa以下、先采用基础加热系统将所述真空封边炉内部以及上、下玻璃整体加热至一基础温度,再采用局部加热系统对玻璃周边位置进行局部加热,达到在短时间内将低温焊料加热至熔融的目的,从而达到封边温度;低温焊料融化成液体,在玻璃自身重力的作用下,上、下封边条框互相嵌合在一起;停止加热、随炉降温,低温焊料将两块玻璃气密性地焊接在一起,打开真空封边炉的炉门得到所需的平板钢化真空玻璃。
CN201210075610.9A 2012-03-21 2012-03-21 玻璃焊接的平板钢化真空玻璃及其制造方法 Active CN102951790B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210075610.9A CN102951790B (zh) 2012-03-21 2012-03-21 玻璃焊接的平板钢化真空玻璃及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210075610.9A CN102951790B (zh) 2012-03-21 2012-03-21 玻璃焊接的平板钢化真空玻璃及其制造方法

Publications (2)

Publication Number Publication Date
CN102951790A CN102951790A (zh) 2013-03-06
CN102951790B true CN102951790B (zh) 2018-04-24

Family

ID=47761254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210075610.9A Active CN102951790B (zh) 2012-03-21 2012-03-21 玻璃焊接的平板钢化真空玻璃及其制造方法

Country Status (1)

Country Link
CN (1) CN102951790B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103382079B (zh) * 2013-06-27 2015-10-14 中国建筑材料科学研究总院 钢化真空玻璃的封接方法、制备方法和钢化真空玻璃
CN104743839A (zh) * 2013-12-25 2015-07-01 戴长虹 密封条封边玻璃焊接的平面真空玻璃及其制作方法
CN104743840A (zh) * 2013-12-25 2015-07-01 戴长虹 密封条封边玻璃焊接的平面双真空层玻璃及其制作方法
CN104743833A (zh) * 2013-12-25 2015-07-01 戴长虹 密封槽封边玻璃焊接的平面双真空层玻璃及其制作方法
CN104743834A (zh) * 2013-12-25 2015-07-01 戴长虹 密封条槽封边玻璃焊接的平面真空玻璃及其制作方法
CN103922574B (zh) * 2014-03-28 2016-04-20 张英华 制作真空玻璃板的设备和工艺流程及制作太阳能集热器的方法
CN104030557B (zh) * 2014-06-26 2016-04-13 滕少波 真空玻璃的制备方法
CN105621904A (zh) * 2015-12-28 2016-06-01 太仓耀华玻璃有限公司 一种利用玻璃粉料对真空玻璃进行封装的方法
CN110091561A (zh) * 2018-01-30 2019-08-06 上海派沃建筑装饰设计工程有限公司 一种镜面玻璃
CN108640490A (zh) * 2018-06-25 2018-10-12 洛阳八佳电气科技股份有限公司 一种激光焊接密封制作全钢化真空玻璃的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601041A (zh) * 2003-09-23 2005-03-30 京东方科技集团股份有限公司 双面钢化真空玻璃及制造方法
CN101050056A (zh) * 2006-04-05 2007-10-10 罗建超 一种制备真空玻璃面板的新方法和装置
CN101148314A (zh) * 2006-09-19 2008-03-26 黄家军 一种真空玻璃周边的封接方法和封边条

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601041A (zh) * 2003-09-23 2005-03-30 京东方科技集团股份有限公司 双面钢化真空玻璃及制造方法
CN101050056A (zh) * 2006-04-05 2007-10-10 罗建超 一种制备真空玻璃面板的新方法和装置
CN101148314A (zh) * 2006-09-19 2008-03-26 黄家军 一种真空玻璃周边的封接方法和封边条

Also Published As

Publication number Publication date
CN102951790A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
CN102951790B (zh) 玻璃焊接的平板钢化真空玻璃及其制造方法
CN102701575B (zh) 凸面真空玻璃、平板真空玻璃及其制备方法
CN103420578A (zh) 密封条封边和封口的真空玻璃及其制备方法
CN102951814A (zh) 金属焊料焊接、条框和沟槽封边的凸面低空玻璃及其制作方法
CN102951803A (zh) 玻璃焊料焊接、沟槽封边的凸面真空玻璃及其制作方法
CN103420594A (zh) 密封条槽封边、封口的凸面真空玻璃及其制备方法
CN102951826A (zh) 金属焊料焊接、条框封边的凸面真空玻璃及其制作方法
CN102951813A (zh) 玻璃焊料焊接、条框和沟槽封边的凸面低空玻璃及其制作方法
CN102951821A (zh) 玻璃焊料焊接、条框和沟槽封边的凸面真空玻璃及其制作方法
CN102951787A (zh) 真空玻璃的金属焊料封边方法及其产品
CN102951829A (zh) 金属焊料焊接、条框和沟槽封边的凸面真空玻璃及其制作方法
CN102951806A (zh) 玻璃焊料微波焊接条框封边的凸面真空玻璃及其制作方法
CN102951805A (zh) 玻璃焊料微波焊接沟槽封边的凸面真空玻璃及其制作方法
CN102951819A (zh) 金属焊料焊接、沟槽封边的凸面真空玻璃及其制作方法
CN102951823A (zh) 玻璃焊料焊接、沟槽封边的凸面低空玻璃及其制作方法
CN102951857B (zh) 金属焊接的凸面钢化真空玻璃及其制造方法
CN102951789A (zh) 金属焊接的平板钢化真空玻璃及其制造方法
CN102951786B (zh) 玻璃焊接的凸面低空玻璃及其制备方法
CN102951801B (zh) 玻璃焊接的凸面真空玻璃及其制备方法
CN102976591A (zh) 金属焊接的平板钢化低空玻璃及其制造方法
CN102951796B (zh) 低空玻璃的金属焊料封边方法及其产品
CN102951798B (zh) 玻璃焊接的平板钢化低空玻璃及其制造方法
CN102951797B (zh) 钢化、半钢化低空玻璃及其制造方法
CN102992597A (zh) 单片钢化平板真空玻璃及其制备方法
CN102951794A (zh) 真空玻璃的低温玻璃焊料封边方法及其产品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant