CN102944913A - 一种基于耦合模式分离的光分束器 - Google Patents

一种基于耦合模式分离的光分束器 Download PDF

Info

Publication number
CN102944913A
CN102944913A CN2012104789188A CN201210478918A CN102944913A CN 102944913 A CN102944913 A CN 102944913A CN 2012104789188 A CN2012104789188 A CN 2012104789188A CN 201210478918 A CN201210478918 A CN 201210478918A CN 102944913 A CN102944913 A CN 102944913A
Authority
CN
China
Prior art keywords
waveguide
coupled mode
beam splitter
wave guide
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012104789188A
Other languages
English (en)
Inventor
邢界江
李智勇
肖希
储涛
俞育德
余金中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN2012104789188A priority Critical patent/CN102944913A/zh
Publication of CN102944913A publication Critical patent/CN102944913A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种基于耦合模式分离的光分束器,包括两条相邻的第一波导(1)和第二波导(2),可实现2×2的光分束。首先两波导间距逐渐减小且波导尺寸不变构成耦合模式激发区,然后两波导间距逐渐增大且波导尺寸向相反方向变化构成耦合模式分离区。通过调整两波导在耦合模式激发区的结构,本光分束器可以实现各种不同的分束比。由于基于绝热模式变化来实现耦合模式的分离,本光分束器还具有插入损耗低、波长范围宽以及工艺容差大等优点。

Description

一种基于耦合模式分离的光分束器
技术领域
本发明涉及一种应用于光通信、光互连、光计算、集成光学、光学传感等领域的光分束器,特别是涉及一种可实现任意分光比、插入损耗低、波长范围宽以及工艺容差大的基于耦合模式分离的2×2光分束器。
背景技术
光分束器是一种重要的光学基本元器件,广泛应用于光通信、光互连、光计算、集成光学、光学传感等领域。目前常用的2×2光分束器主要包括定向耦合型分束器和多模干涉型分束器,随着集成度的增加两种分束器的尺寸不断减小,二者的缺陷变得日益显著。定向耦合型分束器的原理是基于耦合模式的干涉,由于耦合模式对波长和耦合区结构很敏感,所以这种分束器的工作波长范围很窄,工艺容差也很小。多模干涉型分束器基于多模干涉的自映像原理,主要用于均匀分光,因而其分束比变化范围很有限;2×2的多模干涉型分束器的两条输出波导与某一输入波导间存在不对称结构,为了实现均匀分光,就会激发起辐射模,因而插入损耗比较大。
发明内容
(一)要解决的技术问题
为了克服上述光分束器的不足,本发明提出了一种基于耦合模式分离的2×2光分束器。
(二)技术方案
为达到上述目的,本发明提供了一种基于耦合模式分离的光分束器,该光分束器包括相邻的第一波导1和第二波导2,用于实现2×2的光分束;其中,第一波导1和第二波导2的间距逐渐减小且波导尺寸不变构成耦合模式激发区,然后第一波导1和第二波导2的间距逐渐增大且波导尺寸向相反方向变化构成耦合模式分离区。
上述方案中,所述第一波导1和第二波导2是平面波导或非平面波导。所述平面波导是条形、脊形、圆形、椭圆形或狭缝形波导,所述非平面波导是光纤。
上述方案中,在所述耦合模式激发区该第一波导1和该第二波导2结构相同,该光分束器是均匀分束。
上述方案中,在所述耦合模式激发区该第一波导1和该第二波导2结构不相同,该光分束器是非均匀分束。
上述方案中,在所述耦合模式激发区该第一波导1和该第二波导2的间距逐渐减小的方式包括:线性或圆弧型、椭圆弧型、指数型、抛物型、双曲型的非线性绝热渐变方式。
上述方案中,在所述耦合模式分离区该第一波导1和该第二波导2的间距逐渐增大的方式包括:线性或圆弧型、椭圆弧型、指数型、抛物型、双曲型的非线性绝热渐变方式。
上述方案中,当在所述耦合模式激发区该第一波导1和该第二波导2的结构相同时,在所述耦合模式分离区该第一波导1和该第二波导2的尺寸向相反方向变化,包括:任选耦合模式分离区的一条波导的尺寸向有效折射率增大或减小的方向变化,而另一条波导的尺寸不变;或者任选耦合模式分离区的一条波导的尺寸向有效折射率增大的方向变化,同时另一条波导的尺寸向有效折射率减小的方向变化。
上述方案中,当在所述耦合模式激发区该第一波导1和该第二波导2的结构不同时,在所述耦合模式分离区该第一波导1和该第二波导2的尺寸向相反方向变化,包括:只将耦合模式分离区的有效折射率较大的波导的尺寸向有效折射率增大的方向变化,或者只将耦合模式分离区的有效折射率较小的波导的尺寸向有效折射率减小的方向变化,而另一条波导的尺寸不变;或者将耦合模式分离区的有效折射率较大的波导的尺寸向有效折射率增大的方向变化,同时有效折射率较小的波导的尺寸向有效折射率减小的方向变化。
上述方案中,在所述耦合模式分离区该第一波导1和该第二波导2的尺寸向相反方向变化,其变化方式包括:线性或圆弧型、椭圆弧型、指数型、抛物型、双曲型的非线性绝热渐变方式。
(三)有益效果
因为分配到两耦合模式中的光能量比例可以通过改变耦合模式激发区的结构来任意调整,所以本发明提供的光分束器可以实现各种不同的分光比。又因为本发明提供的光分束器基于绝热模式变化来实现耦合模式的分离,所以还具有插入损耗低、波长范围宽以及工艺容差大等优点。
附图说明
图1(a)和图1(b)是本发明提供的基于耦合模式分离的光分束器的结构示意图,其中图1(a)对应分束比为0.5/0.5的均匀分束,图1(b)对应非均匀分束。
图2(a)和图2(b)是束传播法模拟的分束比随传输长度变化的曲线,其中图2(a)实现了0.5/0.5的均匀分束,图2(b)则实现了0.9/0.1的非均匀分束。
附图标记说明:
1-0:第一波导1的输入端  1-1:第一波导1的耦合模式激发区
1-2:第一波导1的耦合模式分离区
2-0:第二波导2的输入端  2-1:第二波导2的耦合模式激发区
2-2:第二波导2的耦合模式分离区
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
根据光波导耦合模式理论,当两条单模光波导逐步靠近时,两波导的模式会相互耦合形成两个新的耦合模式——对称模式和反对称模式。当从某一路波导输入一束光,如果两波导的结构相同,则光能量会均分到两个耦合模式;如果两波导的结构不同,则光能量以其他比例分配到两个耦合模式。
本发明首先通过控制两波导在耦合模式激发区的结构,将入射光能量以一定比例分配到两耦合模式中,然后将两波导尺寸向相反的方向变化,使两耦合模式绝热变化最后分离,从而实现光能量的分束。
如图1所示,图1(a)和图1(b)是本发明提供的基于耦合模式分离的光分束器的结构示意图,其中图1(a)对应分束比为0.5/0.5的均匀分束,图1(b)对应非均匀分束。该光分束器包括两条相邻的光波导——第一波导1和第二波导2,光从第一波导1的输入端1-0或第二波导2的输入端2-0输入,可实现2×2的光分束;其中,第一波导1和第二波导2的间距逐渐减小且尺寸不变构成耦合模式激发区,然后第一波导1和第二波导2的间距逐渐增大且尺寸向相反方向变化构成耦合模式分离区。
首先第一波导1和第二波导2逐渐靠近且尺寸不变,形成耦合模式激发区。通过控制第一波导1的耦合模式激发区1-1和第二波导2的耦合模式激发区2-1的结构,将入射光能量以一定比例分配到两耦合模式中。如图1(a)所示,第一波导1的耦合模式激发区1-1和第二波导2的耦合模式激发区2-1结构相同,入射光能量均匀分配(如图2(a)所示)到两耦合模式中;如图1(b)所示,第一波导1的耦合模式激发区1-1比第二波导2的耦合模式激发区2-1宽度窄一些,入射光能量以非均匀的比例(如图2(b)所示,分光比例为0.9/0.1)分配到两耦合模式中。
然后,第一波导1和第二波导2间距逐渐增大且尺寸向相反方向变化构成耦合模式分离区。如图1所示,第一波导1的耦合模式分离区1-2逐渐变窄,而第二波导2的耦合模式分离区2-2逐渐变宽。这个过程中,第一波导1和第二波导2的耦合逐渐变弱,两耦合模式发生绝热变化,逐步分离。如图2(a)和图2(b)所示,第一波导1和第二波导2中的光能量振荡随传输长度增加而逐步减弱。
最后,当第一波导1和第二波导2间距足够大,尺寸差异也足够大时,第一波导1和第二波导2的耦合消失,两耦合模式彻底分离,从而实现了光能量的分束。如图2(a)和图2(b)所示,第一波导1和第二波导2中的光能量振荡最终变得十分微弱。
其中,所述第一波导1和第二波导2是条形、脊形、圆形、椭圆形、狭缝形以及其他非规则图形构成的平面波导,或者是光纤及其他类型的非平面波导。
所述的耦合模式激发区的两波导的结构可以相同或不同,相同时对应均匀分束,不同时对应非均匀分束。即如果在所述耦合模式激发区该第一波导1和该第二波导2结构相同,则该光分束器是均匀分束;如果在所述耦合模式激发区该第一波导1和该第二波导2结构不相同,则该光分束器是非均匀分束。
在所述耦合模式激发区该第一波导1和该第二波导2的间距逐渐减小的方式包括:线性或圆弧型、椭圆弧型、指数型、抛物型、双曲型以及其他类型的非线性绝热渐变方式。
在所述耦合模式分离区该第一波导1和该第二波导2的间距逐渐增大的方式包括:线性或圆弧型、椭圆弧型、指数型、抛物型、双曲型以及其他类型的非线性绝热渐变方式。
在所述耦合模式分离区该第一波导1和该第二波导2的尺寸向相反方向变化,包括:当在所述耦合模式激发区该第一波导1和该第二波导2的结构相同时,可以任选耦合模式分离区的一条波导的尺寸向有效折射率增大或减小的方向变化,而另一条波导的尺寸不变;也可以任选耦合模式分离区的一条波导的尺寸向有效折射率增大的方向变化,同时另一条波导的尺寸向有效折射率减小的方向变化。当在所述耦合模式激发区该第一波导1和该第二波导2的结构不同时,可以只将耦合模式分离区的有效折射率较大的波导的尺寸向有效折射率增大的方向变化,或者只将耦合模式分离区的有效折射率较小的波导的尺寸向有效折射率减小的方向变化,而另一条波导的尺寸不变;也可以将耦合模式分离区的有效折射率较大的波导的尺寸向有效折射率增大的方向变化,同时有效折射率较小的波导的尺寸向有效折射率减小的方向变化。
在所述耦合模式分离区该第一波导1和该第二波导2的尺寸向相反方向变化,其变化方式包括:线性或圆弧型、椭圆弧型、指数型、抛物型、双曲型以及其他非线性绝热渐变方式。
实施例1
本实施例是按照图1(a)所示的结构设计的分束比为0.5/0.5的光分束器,采用顶硅层为340nm厚的绝缘体上硅(SOI)材料,波导为脊形结构。第一波导1的输入端1-0和第二波导2的输入端2-0的脊宽均为500nm,在耦合模式激发区1-1或2-1,两波导间距以圆弧型方式减小,至100nm左右或更小,而且脊宽不变;在耦合模式分离区1-2或2-2,两波导间距线性增加,最大间距大于700nm,同时第一波导1的耦合模式分离区1-2脊宽线性减至小于450nm,而第二波导2的耦合模式分离区2-2脊宽线性增至大于550nm。
图2(a)是对上述实施例的束传播法模拟结果,波长为1.55μm,可见随着传输距离增加,分束比趋向于稳定在0.5/0.5附近,且无明显插入损耗。
实施例2
本实施例是按照图1(b)所示的结构设计的分束比为0.9/0.1的光分束器,除第一波导1的输入端1-0的脊宽为468nm和第二波导2的输入端2-0的脊宽为532nm外,其余参数与实施例1相同。
图2(b)是对上述实施例的束传播法模拟结果,同样可见随着传输距离增加,分束比趋向于稳定在0.9/0.1附近,且无明显插入损耗。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于耦合模式分离的光分束器,其特征在于,该光分束器包括相邻的第一波导(1)和第二波导(2),用于实现2×2的光分束;其中,第一波导(1)和第二波导(2)的间距逐渐减小且波导尺寸不变构成耦合模式激发区,然后第一波导(1)和第二波导(2)的间距逐渐增大且波导尺寸向相反方向变化构成耦合模式分离区。
2.根据权利要求1所述的基于耦合模式分离的光分束器,其特征在于,所述第一波导(1)和第二波导(2)是平面波导或非平面波导。
3.根据权利要求2所述的基于耦合模式分离的光分束器,其特征在于,所述平面波导是条形、脊形、圆形、椭圆形或狭缝形波导,所述非平面波导是光纤。
4.根据权利要求1所述的基于耦合模式分离的光分束器,其特征在于,在所述耦合模式激发区该第一波导(1)和该第二波导(2)结构相同,该光分束器是均匀分束。
5.根据权利要求1所述的基于耦合模式分离的光分束器,其特征在于,在所述耦合模式激发区该第一波导(1)和该第二波导(2)结构不相同,该光分束器是非均匀分束。
6.根据权利要求1所述的基于耦合模式分离的光分束器,其特征在于,在所述耦合模式激发区该第一波导(1)和该第二波导(2)的间距逐渐减小的方式包括:线性或圆弧型、椭圆弧型、指数型、抛物型、双曲型的非线性绝热渐变方式。
7.根据权利要求1所述的基于耦合模式分离的光分束器,其特征在于,在所述耦合模式分离区该第一波导(1)和该第二波导(2)的间距逐渐增大的方式包括:线性或圆弧型、椭圆弧型、指数型、抛物型、双曲型的非线性绝热渐变方式。
8.根据权利要求1所述的基于耦合模式分离的光分束器,其特征在于,当在所述耦合模式激发区该第一波导(1)和该第二波导(2)的结构相同时,在所述耦合模式分离区该第一波导(1)和该第二波导(2)的尺寸向相反方向变化,包括:
任选耦合模式分离区的一条波导的尺寸向有效折射率增大或减小的方向变化,而另一条波导的尺寸不变;或者任选耦合模式分离区的一条波导的尺寸向有效折射率增大的方向变化,同时另一条波导的尺寸向有效折射率减小的方向变化。
9.根据权利要求1所述的基于耦合模式分离的光分束器,其特征在于,当在所述耦合模式激发区该第一波导(1)和该第二波导(2)的结构不同时,在所述耦合模式分离区该第一波导(1)和该第二波导(2)的尺寸向相反方向变化,包括:
只将耦合模式分离区的有效折射率较大的波导的尺寸向有效折射率增大的方向变化,或者只将耦合模式分离区的有效折射率较小的波导的尺寸向有效折射率减小的方向变化,而另一条波导的尺寸不变;或者将耦合模式分离区的有效折射率较大的波导的尺寸向有效折射率增大的方向变化,同时有效折射率较小的波导的尺寸向有效折射率减小的方向变化。
10.根据权利要求1所述的基于耦合模式分离的光分束器,其特征在于,在所述耦合模式分离区该第一波导(1)和该第二波导(2)的尺寸向相反方向变化,其变化方式包括:线性或圆弧型、椭圆弧型、指数型、抛物型、双曲型的非线性绝热渐变方式。
CN2012104789188A 2012-11-22 2012-11-22 一种基于耦合模式分离的光分束器 Pending CN102944913A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012104789188A CN102944913A (zh) 2012-11-22 2012-11-22 一种基于耦合模式分离的光分束器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012104789188A CN102944913A (zh) 2012-11-22 2012-11-22 一种基于耦合模式分离的光分束器

Publications (1)

Publication Number Publication Date
CN102944913A true CN102944913A (zh) 2013-02-27

Family

ID=47727874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012104789188A Pending CN102944913A (zh) 2012-11-22 2012-11-22 一种基于耦合模式分离的光分束器

Country Status (1)

Country Link
CN (1) CN102944913A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017190481A1 (zh) * 2016-05-04 2017-11-09 华为技术有限公司 一种光开关
CN108196340A (zh) * 2018-01-10 2018-06-22 南京邮电大学 一种基于多模干涉耦合的三维模式转换分束器
US10481466B2 (en) 2016-05-04 2019-11-19 Huawei Technolgies Co., Ltd. Optical switch
CN112558223A (zh) * 2021-01-06 2021-03-26 中国科学院上海微系统与信息技术研究所 混合模式转换器及其制备方法
WO2022037301A1 (zh) * 2020-08-19 2022-02-24 中兴光电子技术有限公司 绝热耦合器的绝热耦合波导段设计方法及其装置、设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271423A (zh) * 1997-09-26 2000-10-25 Gte实验室有限公司 光开关
US20030156795A1 (en) * 2002-02-20 2003-08-21 Heu-Gon Kim Optical power splitter
CN1952708A (zh) * 2005-10-18 2007-04-25 日立电线株式会社 波导型光分支元件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271423A (zh) * 1997-09-26 2000-10-25 Gte实验室有限公司 光开关
US20030156795A1 (en) * 2002-02-20 2003-08-21 Heu-Gon Kim Optical power splitter
CN1952708A (zh) * 2005-10-18 2007-04-25 日立电线株式会社 波导型光分支元件

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017190481A1 (zh) * 2016-05-04 2017-11-09 华为技术有限公司 一种光开关
US10481466B2 (en) 2016-05-04 2019-11-19 Huawei Technolgies Co., Ltd. Optical switch
CN108196340A (zh) * 2018-01-10 2018-06-22 南京邮电大学 一种基于多模干涉耦合的三维模式转换分束器
WO2022037301A1 (zh) * 2020-08-19 2022-02-24 中兴光电子技术有限公司 绝热耦合器的绝热耦合波导段设计方法及其装置、设备
CN112558223A (zh) * 2021-01-06 2021-03-26 中国科学院上海微系统与信息技术研究所 混合模式转换器及其制备方法
CN112558223B (zh) * 2021-01-06 2021-12-14 中国科学院上海微系统与信息技术研究所 混合模式转换器及其制备方法

Similar Documents

Publication Publication Date Title
CN102944913A (zh) 一种基于耦合模式分离的光分束器
US9529144B2 (en) Multicore fiber
Hou et al. Wideband slow light in chirped slot photonic-crystal coupled waveguides
US20210088724A1 (en) Low loss, polarization-independent, large bandwidth mode converter for edge coupling
CN101251701A (zh) “十”字波导光子晶体光学“或”、“非”、“异或”逻辑门的实现方法
US9971098B2 (en) Coupler and optical waveguide chip applying the coupler
US20160266316A1 (en) Device for coupling a plurality of different fibre modes
CN104238010B (zh) 一种方向耦合光波导探测器的前端输入波导结构
CN106154412B (zh) 耦合器和应用该耦合器的光波导芯片
CN109445034A (zh) 少模波分复用耦合器
CN105319650A (zh) 基于微纳光纤环的全光纤式多波长标准具及其制造方法
CN103941337B (zh) 基于同构二维光子晶体的y型偏振滤波分束器
JP2015524087A (ja) マルチコア光ファイバを最適化する方法およびそれを利用するデバイス
CN102368103B (zh) 一种大模场微结构光纤
KR102364302B1 (ko) 평탄한 모드 발생 장치 및 이를 구비하는 배열 도파로 격자
CN110187439B (zh) 一种偏振无关分束器
CN104516054A (zh) 一分八的多模干涉分光器
CN107924024B (zh) 一种锥形波导及硅基芯片
CN103257395B (zh) 具有偏振功能的光纤
US9507087B2 (en) Wavelength combiner unit and arrayed waveguide grating having the same
JP5759414B2 (ja) 半導体光導波路素子
CN113376740B (zh) 分光/合光元件及光子器件
CN105319642A (zh) 保偏(pm)双包层(dc)光纤
CN106154428A (zh) 一种耦合器
CN102629730A (zh) 基于双芯光纤的光纤激光器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130227